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Binare Relationen

Bindre Relation

Eine bindre Relation liber einer Menge S ist eine Teilmenge von
R C S x S = 52 (daher binar).
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enthalten ist (z. B. weil es eine bestimmte Eigenschaft erfillt).

» Schreibweisen: uRv, uv € R, R(u, v), R[u,v] = true, ...

Reflexivitat, Transitivitat

Eine Relation R ist reflexiv, wenn uu € R fir alle u € S.
Sie heiBt transitiv, wenn mit uv € R und vw € R auch uw € R ist.

Transitive Hiille

Die (Reflexiv-)Transitive Hiille (transitiver Abschluss) R* der Relation R
ist die kleinste Erweiterung (Obermenge) R C R* C S?, so dass R* reflexiv
und transitiv ist.
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Transitive Hiille bei Graphen

Betrachte die folgenden Fragen fiir alle Paare von Knoten in einem Graph:
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Transitive Hiille bei Graphen

Betrachte die folgenden Fragen fiir alle Paare von Knoten in einem Graph:
> Gibt es einen Pfad von Knoten u nach v?

» Was ist der kiirzeste Pfad von u nach v?

Transitive Hiille eines Graphen

» Betrachte als Menge S die Menge der Knoten eines Graphen G, sowie
> als geordnete Paare in R die Kanten in G.

Fur die transitive Hiille gilt dann: uv € R* gdw. es gibt einen Pfad von u
nach v.

Wie berechnet man nun die transitive Hiille einer binaren Relation?
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All-Pairs Shortest Path Transitive Hiille

Transitive Hiille — Beispiel

01 001 11111
0 0010 01 110
R=|0 1 0 0 0 | unddietransitiveHilleR*=|[ 0 1 1 1 0
0 01 0O 01110
0 0010 011 11

Binare Relation R

Transitive Hille R*
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Finden der transitiven Hiille mittels Tiefensuche (1)

Idee: Teste von jedem Knoten i aus mit DFS die Erreichbarkeit.
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Finden der transitiven Hiille mittels Tiefensuche (1)

Idee: Teste von jedem Knoten i aus mit DFS die Erreichbarkeit.

» Setze R[i,j] = true, wenn bei der Tiefensuche von Knoten s; aus
der Knoten s; gefunden wird.
(Dadurch fiillen wir R* sozusagen zeilenweise).

= Bei Adjazenzlistendarstellung erhalt man eine Zeitkomplexitat von
O(n-(n+m))~0O(n-m)im Worst-Case.

» Man kann direkt R[k,j] = true fir alle s, auf dem Pfad von s; nach
sj (die auf dem Stack liegen) setzen.
Das verbessert die Worst-Case-Laufzeit jedoch nicht.

Weitere Verbesserung: Verwende den Kondensationsgraph von G:
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All-Pairs Shortest Path Transitive Hille

Erinnerung: Kondensationsgraph — Beispiel

©

starke Zusammenhangskomponenten

Ein nicht-zusammenhangender Digraph und seine Kondensation.
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Finden der transitiven Hiille mittels Tiefensuche (1)

1. Bestimme die starken Komponenten von G. ©(n+ m)
2. Finde die Erreichbarkeitsrelation des Kondensationsgraphen GJ.

o(n - m)
3. Erweitere die Erreichbarkeitsrelation fiir G| auf ganz G, indem alle

Knoten in G| durch die jeweiligen aus G, die auf diesen Knoten in G|
kollabiert wurden.
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Finden der transitiven Hiille mittels Tiefensuche (1)

1. Bestimme die starken Komponenten von G. ©(n+ m)
2. Finde die Erreichbarkeitsrelation des Kondensationsgraphen GJ.

o(n - m)
3. Erweitere die Erreichbarkeitsrelation fiir G| auf ganz G, indem alle

Knoten in G| durch die jeweiligen aus G, die auf diesen Knoten in G|
kollabiert wurden. 0O(n?)

» Es gibt — insbesondere fiir Adjazenzmatrizen — eine andere
Moglichkeit: Den Algorithmus von Warshall.
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All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Idee (I)

Wir betrachten zunachst den einfachsten Fall:

> Aus R[i,k] und R[k,j] folgt die Erreichbarkeit R[i,j] = true.

1 Wahle einen Knoten k € V;

> foreach (eingehende Kante (i, k) € E)

3 foreach (ausgehende Kante (k,j) € E)
4 Fige (i,j) zu E hinzu.
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Algorithmus von Warshall — Idee (Il)
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e e
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Algorithmus von Warshall — Idee (Il)

Das reicht bereits aus, um langere Pfade zu beriicksichtigen:

» Die Reihenfolge spielt dabei keine Rolle:

—a
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All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Idee (I11)

Allgemeiner Fall:
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Algorithmus von Warshall — Idee (I11)

Allgemeiner Fall:

» Das lasst sich als Rekursionsgleichung schreiben, wobei tl.(jk) = true

besagt, dass nach Beriicksichtigung der Zwischenknoten {1,..., k}
der Knoten j von i aus erreichbar ist:

(k) _ ,(k=1) (k=1) (k—1)
i) =t v (T A Y
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Algorithmus von Warshall — Idee (1V)

false fir k=0, falls (i,j) € E
£k — ) true fir k =0, falls (i,j) € E

k—1 k—1 k—1 .
WDy (D A V) far k> 0
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Algorithmus von Warshall — Idee (1V)

false fir k=0, falls (i,j) € E
t,S-k) — ] true fir k =0, falls (i,j) € E
k—1 k—1 k—1 .
Vv (Y A ) far k>0

» Da zur Berechnung von t,-(jk) nur t,-S-k_l) — und keine altere Werte t

mit n < k—1 — gebraucht wird, kann die Berechnung direkt im
Ausgabearray (in-place) erfolgen: R[i,j] = t,.(j').

(n)
ij
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All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Implementierung

1 foreach (ke V)

> foreach (eingehende Kante (i, k) € E)

3 foreach (ausgehende Kante (k,j) € E)
4 Fige (i,j) zu E hinzu.
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Algorithmus von Warshall — Implementierung

1 foreach (k€ V)
> foreach (eingehende Kante (i, k) € E)
3 foreach (ausgehende Kante (k,j) € E)

4 Fige (i,j) zu E hinzu.

1 void transClos(bool A[]J[], int n, bool &RI[I[]) {
2 for (int i = 0; i < n; i++)

3 for (int j = 0; j < m; j++)

4 R[i,j] = A[i,j); // Kopiere A nach R

5

6 for (int i = 0; i < n; i++)

7 R[i,i] = true; // reflexive Hille / reflexziver Abschluss
8

9 for (int k = 0; k < n; k++)

10 for (int i = 0; i < n; i++)

11 for (int j = 0; j < nj; j++)

12 R[i,j] = R[i,j] Il (R[i,k] && R[k,jl1);

13

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/22



All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Implementierung

1 foreach (k€ V)
> foreach (eingehende Kante (i, k) € E)
3 foreach (ausgehende Kante (k,j) € E)

4 Fige (i,j) zu E hinzu.

1 void transClos(bool A[]J[], int n, bool &RI[I[]) {
2 for (int i = 0; i < n; i++)

3 for (int j = 0; j < n; j++)

4 R[i,j] = A[i,j); // Kopiere A nach R

5
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8
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11 for (int j = 0; j < nj; j++)
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» Zeitkomplexitat: ©(n3), Platzkomplexitat: ©(n?).
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All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Beispiel (1)

.XX.X...
...X....
..X...
..... X..
...... X.
X X
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Ubersicht

© Der Algorithmus von Floyd
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All-Pairs Shortest Paths

Wir betrachten gewichtete Digraphen G = (V, E, W).
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All-Pairs Shortest Path Der Algorithmus von Floyd

All-Pairs Shortest Paths
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Wir betrachten gewichtete Digraphen G = (V, E, W).
» Die Funktion W ordnet Kanten ein Gewicht zu.

> Negative Gewichte sind zugelassen, aber keine Zyklen mit negativem
Gewicht.

» Nicht vorhandene Kanten haben Gewicht W(-,-) = cc.
Problem (All-Pairs Shortest Path)
Berechne fiir jedes Paar i, j die Linge D[i,j] des kiirzesten Pfades.

Naive Losung: lasse ein SSSP-Algorithmus (z. B. Bellman-Ford) | V| mal
laufen. Dies filhrt zu einer Worst-Case Zeitkomplexitat O(|V[*).

Effizientere Version: Floyd's Algorithmus.
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Der Algorithmus von Floyd — Idee

» Vorgehen wie bei Warshall, jedoch mit folgender Rekursionsgleichung:

{ W(i,j) fiir k = 0

dk) —
min (d,S-k_l), d,-(kk_l) + d,gjl-(_l)) fur k >0

i)

(statt: ¢V v (e A YY)

> Auch hier arbeiten wir direkt im Ausgabearray: D[i,j] = d,-(j').
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Der Algorithmus von Floyd — Beispiel
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Der Algorithmus von Floyd — Implementierung

1 void floydSP(double W[][], int n, double &D[][]) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
D[i,j] = Wli,jl; // Kopiere W nach D

2
3
4
5
6 for (int i = 0; i < n; i++)
7
8
9

D[i,i] = O;
for (int k = 0; k < n; k++)
10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < nj; j++)
12 D[i,j] = min(D[i,jl, D[i,k] + D[k,jl1);
13 }
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3
4
5
6 for (int
7
8
9

i=0; i< n; i++)
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10 for (int i = 0; i < n; i++)
1 for (int j = 0; j < n; j++)
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1 void floydSP(double W[][], int n, double &D[][]) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
D[i,j] = Wli,jl; // Kopiere W nach D

2
3
4
5
6 for (int i = 0; i < n; i++)
7
8
9

D[i,i] = O;
for (int k = 0; k < n; k++)
10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < nj; j++)
12 D[i,j] = min(D[i,jl, D[i,k] + D[k,jl1);
13 }

» Zeitkomplexitat: ©(n3), Platzkomplexitit: ©(n?).
» Hier nicht behandelt: Der Algorithmus kann auch mit negativen
Zyklen umgehen.
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Der Algorithmus von Floyd — Erweiterung

» Der Algorithmus lasst sich einfach auf die Riickgabe von Pfaden
erweitern (z. B. Routingtabellen).
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