All-Pairs Shortest Path

Datenstrukturen und Algorithmen

Vorlesung 18: All-Pairs Shortest Path

Joost-Pieter Katoen
Lehrstuhl fir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

26. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/22

All-Pairs Shortest Path Transitive Hiille

Ubersicht

© Transitive Hiille
@ Algorithmus von Warshall

@ Der Algorithmus von Floyd

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/22

All-Pairs Shortest Path Transitive Hiille

Ubersicht

@ Transitive Hiille
@ Algorithmus von Warshall

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/22

Binare Relationen

Binare Relation

Eine bindre Relation lber einer Menge S ist eine Teilmenge von
R C S x S = S? (daher binir). Fiir jedes Paar (u, v) € S? gibt R an, ob es
enthalten ist (z. B. weil es eine bestimmte Eigenschaft erfillt).

» Schreibweisen: uRv, uv € R, R(u,v), R[u,v] = true, ...

Reflexivitat, Transitivitat

Eine Relation R ist reflexiv, wenn uu € R fir alle u € S.
Sie heiBt transitiv, wenn mit uv € R und vw € R auch uw € R ist.

Transitive Hiille

Die (Reflexiv-) Transitive Hiille (transitiver Abschluss) R* der Relation R
ist die kleinste Erweiterung (Obermenge) R C R* C S2, so dass R* reflexiv
und transitiv ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/22

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Transitive Hiille bei Graphen Transitive Hiille — Beispiel

Betrachte die folgenden Fragen fiir alle Paare von Knoten in einem Graph:

> Gibt es einen Pfad von Knoten u nach v? R— und die transitive Hiille R* =

» Was ist der kiirzeste Pfad von v nach v?

coocoocoo
cocorRrOR
o~ oOooo
— OO RO
o oo
el e e

11
01
01
01
0 1

e e
_ O OO+

Transitive Hiille eines Graphen

> Betrachte als Menge S die Menge der Knoten eines Graphen G, sowie
> als geordnete Paare in R die Kanten in G. @/

Fir die transitive Hiille gilt dann: uv € R* gdw. es gibt einen Pfad von u

nach v.
Wie berechnet man nun die transitive Hiille einer binaren Relation? G Q
Binare Relation R
Transitive Hille R*
Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/22
All-Pairs Shortest Path Transitive Hiille All-Pairs Shortest Path Transitive Hiille
Finden der transitiven Hiille mittels Tiefensuche (1) Erinnerung: Kondensationsgraph — Beispiel

Idee: Teste von jedem Knoten i aus mit DFS die Erreichbarkeit.

» Setze R[i,j] = true, wenn bei der Tiefensuche von Knoten s; aus
der Knoten s; gefunden wird.
(Dadurch fiillen wir R* sozusagen zeilenweise).

o

= Bei Adjazenzlistendarstellung erhalt man eine Zeitkomplexitat von
O(n-(n+ m)) =~ O(n-m)im Worst-Case.

_ . starke Zusammenhangskomponenten
» Man kann direkt R[k,j] = true fiir alle sy auf dem Pfad von s; nach

s; (die auf dem Stack liegen) setzen.
Das verbessert die Worst-Case-Laufzeit jedoch nicht.

Weitere Verbesserung: Verwende den Kondensationsgraph von G: Ein nicht-zusammenhangender Digraph und seine Kondensation.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/22

Finden der transitiven Hiille mittels Tiefensuche (II) Algorithmus von Warshall — Idee (1)

Wir betrachten zunichst den einfachsten Fall:
» Aus R[i,k] und R[k,j] folgt die Erreichbarkeit R[i,j] = true.

1. Bestimme die starken Komponenten von G. ©(n+ m)

2. Finde die Erreichbarkeitsrelation des Kondensationsgraphen GJ.

O(h - m)

3. Erweitere die Erreichbarkeitsrelation fiir G| auf ganz G, indem alle K -
Knoten in GJ durch die jeweiligen aus G, die auf diesen Knoten in G| ' ,
kollabiert wurden. O(n?)

» Es gibt — insbesondere fiir Adjazenzmatrizen — eine andere s s
Moglichkeit: Den Algorithmus von Warshall.

1 Wahle einen Knoten k € V;
> foreach (eingehende Kante (i, k) € E)
3 foreach (ausgehende Kante (k,j) € E)
4 Fige (/,j) zu E hinzu.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22
All-Pairs Shortest Path Transitive Hiille All-Pairs Shortest Path Transitive Hiille
Algorithmus von Warshall — Idee (1) Algorithmus von Warshall — Idee (I1)
Wir betrachten zunachst den einfachsten Fall: Das reicht bereits aus, um langere Pfade zu beriicksichtigen:

» Aus R[i,k] und R[k,j] folgt die Erreichbarkeit R[i,j] = true.

» Die Reihenfolge spielt dabei keine Rolle:

1 foreach (k € V)
2 foreach (eingehende Kante (i, k) € E)

3 foreach (ausgehende Kante (k,j) € E)
4 Fige (/,j) zu E hinzu.

L
!
\
~
L
!
\
~

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/22

Algorithmus von Warshall — Idee (l11) Algorithmus von Warshall — Idee (1V)

Allgemeiner Fall:

false fir k=0, falls (i,j) € E
r,.(jk) — ! true fir k =0, falls (i,j) € E

k—1 k—1 k—1 .
N G o)

> Da zur Berechnung von t,-(jk) nur ti(jk_l) — und keine altere Werte t,.(j")
> Das lasst sich als Rekursionsgleichung schreiben, wobei t,-(jk) = true mit n < k—1 — gebraucht wird, kann die Berechnung direkt im
besagt, dass nach Beriicksichtigung der Zwischenknoten {1, ..., k} Ausgabearray (in-place) erfolgen: R[i,j] = t,-(j').
der Knoten j von i aus erreichbar ist:
(k) _ 4(k=1) (k=1) (k=1)
Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/22
All-Pairs Shortest Path Transitive Hiille All-Pairs Shortest Path Transitive Hiille
Algorithmus von Warshall — Implementierung Algorithmus von Warshall — Beispiel (1)
1 foreach (k€ V)
> foreach (eingehende Kante (i, /) € E)
3 foreach (ausgehende Kante (k,j) € E)
4 Fige (/,j) zu E hinzu.
1 void transClos(bool A[][], int n, bool &R[1[1) { 0 =® - 6
> for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; j++) XXX
4 R[i,j] = A[i,j]; // Kopiere A nach R :::).()'(:::
B e e e e X ..
6 for (imt i = 0; i < n; i++) IV
7 R[i,i] = true; // reflezive Hille / reflexziver Abschluss [e
8
9 for (int k = 0; k < n; k++)
10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < mn; j++)
12 R[i,j] = R[i,j]1 Il (R[i,k] && R[k,jl);
13}

» Zeitkomplexitit: ©(n?), Platzkomplexitat: ©(n?).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

All-Pairs Shortest Path Transitive Hiille All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Beispiel (1) Algorithmus von Warshall — Beispiel (1)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

All-Pairs Shortest Path Transitive Hiille All-Pairs Shortest Path Transitive Hiille

Algorithmus von Warshall — Beispiel (1) Algorithmus von Warshall — Beispiel (11)

Andere Reihenfolge der Knoten: Andere Reihenfolge der Knoten:

0 % 3@
XXX+ XXX XXX+ XXX
. x .X x
..... ..x.....
oX....
P ..x.xx..
. . ..X. .X..
. ..Xx.xx.
X X - o XX - XXX

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Ubersicht All-Pairs Shortest Paths

Wir betrachten gewichtete Digraphen G = (V, E, W).
» Die Funktion W ordnet Kanten ein Gewicht zu.

> Negative Gewichte sind zugelassen, aber keine Zyklen mit negativem
Gewicht.

» Nicht vorhandene Kanten haben Gewicht W (-,) = oco.

Problem (All-Pairs Shortest Path)

@ Der Algorithmus von Floyd Berechne fiir jedes Paar i, j die Lange D[i,j] des kiirzesten Pfades.

Naive Losung: lasse ein SSSP-Algorithmus (z. B. Bellman-Ford) |V| mal
laufen. Dies fiihrt zu einer Worst-Case Zeitkomplexitat O(] V/|*).

Effizientere Version: Floyd's Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/22
Der Algorithmus von Floyd — Idee Der Algorithmus von Floyd — Idee

» Vorgehen wie bei Warshall, jedoch mit folgender Rekursionsgleichung: » Vorgehen wie bei Warshall, jedoch mit folgender Rekursionsgleichung:
W(i,J) fir k=0 W(i,J) fir k=0
dyf? = k—1) (k-1 k—1 dif? = k—1) (k-1 k—1
i min (0§, d{ D + df V) far k>0 y min (df"Y, d{ D + df V) fir k>0
(statt: ¢ v (6D A YY) (statt: ¢ v (6D A YY)
» Auch hier arbeiten wir direkt im Ausgabearray: D[i,j] = d,-(j'). » Auch hier arbeiten wir direkt im Ausgabearray: D[i,j] = d,-(j').
Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/22

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/22

Al-Pair Shortest Pach Der Algorithms von Flyd
Der Algorithmus von Floyd — Beispiel Der Algorithmus von Floyd — Implementierung

1 void floydSP(double W[][], int n, double &D[][]1) {
for (int i = 0; i < n; i++)
for (int j = 0; j < mn; j++)
D[i,j] = W[i,jl; // Kopiere W mach D

2
3
4
5
¢ for (int
7
8
9

i=0; 1< mn; i++)
\ ‘ XXXXXXXX D[i,i] = O;
TXXX XXX
x for (int k = 0; k < n; k++)
,‘ § Xﬁ: : 10 for (int i = 0; i < m; i++)
. CXX XX - 1 for (int j = 0; j < nj; j++)
/ D ZES B L 12 D[i,j] = min(D[i,j], D[i,k] + D[k,jl);

1 ; 6 @
W » Zeitkomplexitit: ©(n3), Platzkomplexitit: ©(n?).
> Hier nicht behandelt: Der Algorithmus kann auch mit negativen

Zyklen umgehen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/22 Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd — Erweiterung

» Der Algorithmus l3sst sich einfach auf die Riickgabe von Pfaden
erweitern (z. B. Routingtabellen).

» Dazu speichere zu jedem Paar i, j jeweils den letzten Zwischenknoten
des kiirzesten Pfads in 7j; (den Vorganger von j).

i fir k =0, # j, falls W(i,j) # oo
) null fir k =0, sonst
v =
! 75D i k> 0, falls a7 > gD 4 kD
(.k 1)

sonst

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/22

	Transitive Hülle
	Algorithmus von Warshall

	Der Algorithmus von Floyd

