
All-Pairs Shortest Path

Datenstrukturen und Algorithmen
Vorlesung 18: All-Pairs Shortest Path

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

26. Juni 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/22

All-Pairs Shortest Path

Übersicht

1 Transitive Hülle
Algorithmus von Warshall

2 Der Algorithmus von Floyd

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/22

All-Pairs Shortest Path Transitive Hülle

Übersicht

1 Transitive Hülle
Algorithmus von Warshall

2 Der Algorithmus von Floyd

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/22

All-Pairs Shortest Path Transitive Hülle

Binäre Relationen
Binäre Relation
Eine binäre Relation über einer Menge S ist eine Teilmenge von
R ⊆ S × S = S2 (daher binär). Für jedes Paar (u, v) ∈ S2 gibt R an, ob es
enthalten ist (z. B. weil es eine bestimmte Eigenschaft erfüllt).

I Schreibweisen: uRv , uv ∈ R, R(u, v), R[u,v] = true, . . .

Reflexivität, Transitivität
Eine Relation R ist reflexiv, wenn uu ∈ R für alle u ∈ S.
Sie heißt transitiv, wenn mit uv ∈ R und vw ∈ R auch uw ∈ R ist.

Transitive Hülle
Die (Reflexiv-)Transitive Hülle (transitiver Abschluss) R∗ der Relation R
ist die kleinste Erweiterung (Obermenge) R ⊆ R∗ ⊆ S2, so dass R∗ reflexiv
und transitiv ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/22

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

All-Pairs Shortest Path Transitive Hülle

Transitive Hülle bei Graphen

Betrachte die folgenden Fragen für alle Paare von Knoten in einem Graph:
I Gibt es einen Pfad von Knoten u nach v?
I Was ist der kürzeste Pfad von u nach v?

Transitive Hülle eines Graphen

I Betrachte als Menge S die Menge der Knoten eines Graphen G , sowie
I als geordnete Paare in R die Kanten in G .

Für die transitive Hülle gilt dann: uv ∈ R∗ gdw. es gibt einen Pfad von u
nach v .

Wie berechnet man nun die transitive Hülle einer binären Relation?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/22

All-Pairs Shortest Path Transitive Hülle

Transitive Hülle – Beispiel

R =


0 1 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 und die transitive Hülle R∗ =


1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 1



D

C

B
A

E

Binäre Relation R
D

C

B
A

E

Transitive Hülle R∗

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/22

All-Pairs Shortest Path Transitive Hülle

Finden der transitiven Hülle mittels Tiefensuche (I)

Idee: Teste von jedem Knoten i aus mit DFS die Erreichbarkeit.
I Setze R[i,j] = true, wenn bei der Tiefensuche von Knoten si aus

der Knoten sj gefunden wird.
(Dadurch füllen wir R∗ sozusagen zeilenweise).

⇒ Bei Adjazenzlistendarstellung erhält man eine Zeitkomplexität von
Θ(n · (n + m)) ≈ Θ(n ·m) im Worst-Case.

I Man kann direkt R[k,j] = true für alle sk auf dem Pfad von si nach
sj (die auf dem Stack liegen) setzen.
Das verbessert die Worst-Case-Laufzeit jedoch nicht.

Weitere Verbesserung: Verwende den Kondensationsgraph von G :

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/22

All-Pairs Shortest Path Transitive Hülle

Erinnerung: Kondensationsgraph – Beispiel

starke Zusammenhangskomponenten

Ein nicht-zusammenhängender Digraph und seine Kondensation.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/22

All-Pairs Shortest Path Transitive Hülle

Finden der transitiven Hülle mittels Tiefensuche (II)

1. Bestimme die starken Komponenten von G . Θ(n + m)

2. Finde die Erreichbarkeitsrelation des Kondensationsgraphen G↓.
Θ(n̂ · m̂)

3. Erweitere die Erreichbarkeitsrelation für G↓ auf ganz G , indem alle
Knoten in G↓ durch die jeweiligen aus G , die auf diesen Knoten in G↓
kollabiert wurden. O(n2)

I Es gibt – insbesondere für Adjazenzmatrizen – eine andere
Möglichkeit: Den Algorithmus von Warshall.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Idee (I)
Wir betrachten zunächst den einfachsten Fall:

I Aus R[i,k] und R[k,j] folgt die Erreichbarkeit R[i,j] = true.

k

i j

1 Wähle einen Knoten k ∈ V ;
2 foreach (eingehende Kante (i , k) ∈ E)
3 foreach (ausgehende Kante (k, j) ∈ E)
4 Füge (i , j) zu E hinzu.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Idee (I)
Wir betrachten zunächst den einfachsten Fall:

I Aus R[i,k] und R[k,j] folgt die Erreichbarkeit R[i,j] = true.

k

i j

1 foreach (k ∈ V)
2 foreach (eingehende Kante (i , k) ∈ E)
3 foreach (ausgehende Kante (k, j) ∈ E)
4 Füge (i , j) zu E hinzu.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Idee (II)
Das reicht bereits aus, um längere Pfade zu berücksichtigen:

1 2

I Die Reihenfolge spielt dabei keine Rolle:

2 1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Idee (III)
Allgemeiner Fall:

i j

k

⊆ {1, . . . , k−1} ⊆ {1
, . . .

, k−
1}

I Das lässt sich als Rekursionsgleichung schreiben, wobei t(k)ij = true
besagt, dass nach Berücksichtigung der Zwischenknoten {1, . . . , k}
der Knoten j von i aus erreichbar ist:

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Idee (IV)

t(k)ij =


false für k = 0, falls (i , j) 6∈ E
true für k = 0, falls (i , j) ∈ E

t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
für k > 0

I Da zur Berechnung von t(k)ij nur t(k−1)
ij – und keine ältere Werte t(n)ij

mit n < k−1 – gebraucht wird, kann die Berechnung direkt im
Ausgabearray (in-place) erfolgen: R[i,j] = t(·)ij .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Implementierung
1 foreach (k ∈ V)
2 foreach (eingehende Kante (i , k) ∈ E)
3 foreach (ausgehende Kante (k, j) ∈ E)
4 Füge (i , j) zu E hinzu.

1 void transClos(bool A[][], int n, bool &R[][]) {
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; j++)
4 R[i,j] = A[i,j]; // Kopiere A nach R
5

6 for (int i = 0; i < n; i++)
7 R[i,i] = true; // reflexive Hülle / reflexiver Abschluss
8

9 for (int k = 0; k < n; k++)
10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < n; j++)
12 R[i,j] = R[i,j] || (R[i,k] && R[k,j]);
13 }

I Zeitkomplexität: Θ(n3), Platzkomplexität: Θ(n2).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Beispiel (I)

0

1

2

3

5

4 6

7

· x x · x · · ·
· · · x · · · ·
· · · · x · · ·
· · · · · x · ·
· · · · · · x ·
· · · · x · · x
· · · · · · · ·
· · · · · · · ·

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Beispiel (I)

0

1

2

3

5

4 6

7

x x x x x x · ·
· x · x · x · ·
· · x · x · · ·
· · · x · x · ·
· · · · x · x ·
· · · · x x · x
· · · · · · x ·
· · · · · · · x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Beispiel (I)

0

1

2

3

5

4 6

7

x x x x x x x x
· x · x x x x x
· · x · x · x ·
· · · x x x x x
· · · · x · x ·
· · · · x x x x
· · · · · · x ·
· · · · · · · x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Beispiel (II)
Andere Reihenfolge der Knoten:

0

1

4

7

6

5 2

3

x x x · x x · x
· x · · · · · x
· · x · · · · ·
· · · x · · · ·
· · x · x x · ·
· · x · · x · ·
· · x x · x x ·
· · · · · · x x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/22

All-Pairs Shortest Path Transitive Hülle

Algorithmus von Warshall – Beispiel (II)
Andere Reihenfolge der Knoten:

0

1

4

7

6

5 2

3

x x x · x x · x
· x · · · · · x
· · x · · · · ·
· · · x · · · ·
· · x · x x · ·
· · x · · x · ·
· · x x · x x ·
· · x x · x x x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Übersicht

1 Transitive Hülle
Algorithmus von Warshall

2 Der Algorithmus von Floyd

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/22

All-Pairs Shortest Path Der Algorithmus von Floyd

All-Pairs Shortest Paths

Wir betrachten gewichtete Digraphen G = (V ,E ,W).
I Die Funktion W ordnet Kanten ein Gewicht zu.
I Negative Gewichte sind zugelassen, aber keine Zyklen mit negativem

Gewicht.
I Nicht vorhandene Kanten haben Gewicht W (·, ·) =∞.

Problem (All-Pairs Shortest Path)

Berechne für jedes Paar i, j die Länge D[i,j] des kürzesten Pfades.

Naive Lösung: lasse ein SSSP-Algorithmus (z. B. Bellman-Ford) |V | mal
laufen. Dies führt zu einer Worst-Case Zeitkomplexität O(|V |4).
Effizientere Version: Floyd’s Algorithmus.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd – Idee

i j

k

⊆ {1, . . . , k−1} ⊆ {1
, . . .

, k−
1}

25 10

36

I Vorgehen wie bei Warshall, jedoch mit folgender Rekursionsgleichung:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

(statt: t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
)

I Auch hier arbeiten wir direkt im Ausgabearray: D[i,j] = d (·)
ij .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd – Idee

i j

k

⊆ {1, . . . , k−1} ⊆ {1
, . . .

, k−
1}

25 10

35

I Vorgehen wie bei Warshall, jedoch mit folgender Rekursionsgleichung:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

(statt: t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
)

I Auch hier arbeiten wir direkt im Ausgabearray: D[i,j] = d (·)
ij .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd – Beispiel

0

1

4

7

6

5 2

3

x x x x x x x x
· x x x · x x x
· · x · · · · ·
· · · x · · · ·
· · x · x x · ·
· · x · · x · ·
· · x x · x x ·
· · x x · x x x

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd – Implementierung

1 void floydSP(double W[][], int n, double &D[][]) {
2 for (int i = 0; i < n; i++)
3 for (int j = 0; j < n; j++)
4 D[i,j] = W[i,j]; // Kopiere W nach D
5

6 for (int i = 0; i < n; i++)
7 D[i,i] = 0;
8

9 for (int k = 0; k < n; k++)
10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < n; j++)
12 D[i,j] = min(D[i,j], D[i,k] + D[k,j]);
13 }

I Zeitkomplexität: Θ(n3), Platzkomplexität: Θ(n2).
I Hier nicht behandelt: Der Algorithmus kann auch mit negativen

Zyklen umgehen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/22

All-Pairs Shortest Path Der Algorithmus von Floyd

Der Algorithmus von Floyd – Erweiterung

I Der Algorithmus lässt sich einfach auf die Rückgabe von Pfaden
erweitern (z. B. Routingtabellen).

I Dazu speichere zu jedem Paar i , j jeweils den letzten Zwischenknoten
des kürzesten Pfads in πij (den Vorgänger von j).

π
(k)
ij =



i für k = 0, i 6= j , falls W (i , j) 6=∞
null für k = 0, sonst

π
(k−1)
kj für k > 0, falls d (k−1)

ij > d (k−1)
ik + d (k−1)

kj

π
(k−1)
ij sonst

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/22

	Transitive Hülle
	Algorithmus von Warshall

	Der Algorithmus von Floyd

