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Graphenproblem: maximale Fliisse
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Maximaler Fluss

Graphenproblem: maximale Fliisse

Beispiel (maximale Fliisse)

Eingabe: 1. Eine StraBenkarte, auf der die Kapazitat der StraBen
eingezeichnet ist,
2. eine Quelle, und
3. eine Senke.
Ausgabe: Die maximale Rate, mit der Material (= Zuschauer) von der
Quelle bis zur Senke (= Stadion) transportiert werden kann,
ohne die Kapazitatsbeschrankungen der StraBen zu verletzen.
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Flussnetzwerk

Flussnetzwerk
Ein Flussnetzwerk G = (V/, E, ¢) ist ein digraph (V/, E) mit
» c: V x V— IR die Kapazitatsfunktion sodaB:

» (u,v) € E dann ¢(u,v) >0
» (u,v) € E dann ¢(u,v) =0

» s, t €V, die Quelle s und Senke t des Flussnetzwerkes

> Jeder Knoten v € V liegt auf einem Pfad von Quelle s zur Senke t
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» (u,v) € E dann ¢(u,v) =0

» s, t €V, die Quelle s und Senke t des Flussnetzwerkes

» Jeder Knoten v € V liegt auf einem Pfad von Quelle s zur Senke t

v

An der Quelle wird produziert

v

An der Senke wird verbraucht

v

Kanten sind wie Wasserrohre

» Kapazitdt = maximale Durchsatzrate
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Fluss in einem Flussnetzwerk

Definition (Fluss)

Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:

Beschrankung: Fiir u,v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fiir u,v € V gilt f(u,v) = —f(v, u).

Flusserhaltung: Fir u € V —{s, t} gilt: Z f(u,v)=0.
veV
f(u, v) ist der Fluss vom Knoten u zum Knoten v.
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Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:

Beschrankung: Fiir u,v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fiir u,v € V gilt f(u,v) = —f(v, u).

Flusserhaltung: Fir u € V —{s, t} gilt: Z f(u,v)=0.
veV
f(u, v) ist der Fluss vom Knoten u zum Knoten v.

Definition (Wert eines Flusses)

Der Wert |f| des Flusses f ist der Gesamtfluss aus der Quelle s:

|f| = Z f(s,v).

vev
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Darstellung von Fliissen
2/12

7/14

» Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.
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» Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.

» Negative Flisse f(u, v) < 0 werden nicht explizit angegeben.
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Darstellung von Fliissen
2/12

7/14

» Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.
» Negative Flisse f(u, v) < 0 werden nicht explizit angegeben.
> Der eingezeichnete Fluss f hat den Wert |f| = 5+4 = 9.
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Darstellung von Fliissen
12/12

11/14

v

Wir beschriften Kanten mit f(u, v)/c(u, v), falls f(u, v) > 0.
Negative Flisse f(u, v) < 0 werden nicht explizit angegeben.
Der eingezeichnete Fluss f hat den Wert |f| = 5+4 = 9.
Der alternative Fluss f' hat den Wert |f’| = 11+8 = 19.

v

v

v
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Maximale Fliisse

Ein maximaler Fluss ist einen Fluss mit maximalem Wert.
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Maximaler Fluss Flussnetzwerke

Maximale Fliisse

Ein maximaler Fluss ist einen Fluss mit maximalem Wert.

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk G.
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Maximaler Fluss Flussnetzwerke

Maximale Fliisse

Ein maximaler Fluss ist einen Fluss mit maximalem Wert.

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk G.

Beispiel (Anwendungen)

> Wie groB ist der maximale Datendurchsatz zwischen zwei Computern
in einem Netzwerk?

> Wie kann der Verkehr in einem StraBennetz so geleitet werden, dass
moglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

> Wie viele Leitungen miissen zerstort sein, damit zwei Computer nicht
mehr miteinander kommunizieren kénnen?
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Ein maximaler Fluss

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/42



Ein maximaler Fluss

4/4

11/14

» Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.
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Ein maximaler Fluss

4/4

11/14

» Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.

» Es kann mehrere maximale Flisse geben.
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Mehrere Quellen und Senken

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.
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Maximaler Fluss Flussnetzwerke

Mehrere Quellen und Senken

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.

» Sie konnen durch eine neue ,,Superquelle” und , Supersenke” in ein
tbliches Flussnetzwerk tberfiihrt werden.
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Maximaler Fluss Flussnetzwerke

Fliisse zwischen Knotenmengen

f(x,Y) =

f(X.y) =

Joost-Pieter Katoen

> f(xy) fir Y C V
yey
Zf(x,y) fur X C V
xeX
Y3 flxy) firX,ycVv
xeXyeY
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Maximaler Fluss Flussnetzwerke

Fliisse zwischen Knotenmengen

f(x,Y) =

> f(xy) fir Y C V
yey

f(X,y) = Zf(x,y) fir X C V
xeX

X Y) = > Y flxy) firX,ycv
xeXyeY

Eigenschaften von Fliissen zwischen Mengen
Falls f ein Fluss fir Flussnetzwerk G = (V, E, ¢) ist, dann gilt:
1. f(X,X)=0 fir X C V

2 FIX,Y) = —f(Y,X) fir X,Y C V
3. f(XUY,Z)=f(X,2)+f(Y.Z) firX,Y,ZCV:XNnY=0
4. F(ZXUY)=Ff(ZX)+f(ZY) firX,Y.ZCV:XNY=0
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Beweis: (X, X) =0

X, X) = > > flxa,x)

x1EX xp€X
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Beweis: (X, X) =0

X, X) = > > flxa,x)

x1EX xp€X
1
= 2( Z Z f(Xl,X2)+ Z Z f(X11X2))
x1EX xp€X x1EX xo€X
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Beweis: (X, X) =0

X, X) = > > flxa,x)

x1EX xp€X

= (ZZfX1X2+ZZfX1X2)

x1EX xp€X x1EX xo€X

— (Zfolxz—i—szXzXl)

x1€EX x0€X x1EX x0€X
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Beweis: (X, X) =0

X, X) = > > flxa,x)

X1€XX2€X
= (ZZfX1X2+ZZfX1X2)
x1EX xp€X x1EX xo€X
= <ZZfX1X2+ZZfX2X1)
x1€EX x0€X x1EX x0€X
= 3 Z Z( x1, x2) + f(x2, X1)>
X1€XXQEX
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Flussnetzwerke

Beweis: f(X,X) =0

FX,X) = Y > flx,x)

X1€XX2€X
= (ZZfX1X2+ZZfX1X2)
x1EX xp€X x1EX xo€X
= (ZZfX1X2+ZZfX2X1)
x1€EX x0€X x1EX x0€X
= = Z Z( x1,x2) + f(x2, xl))
X1€XXQEX
= = Z Z (f X1, X2 —f(Xl X2)>
X1€XXQEX
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Flussnetzwerke

Beweis: f(X,X) =0

X, X) = > > flxa,x)

x1EX xp€X
= (ZZfX1X2+ZZfX1X2)
x1EX xp€X x1EX xo€X
— (Zfolxz—i—szXzXl)
x1€X xo€X x1€EX xp€X
= = Z Z( X1, X2 —l—f(XQ X1)>
X1€XXQEX
1
= 5 Z Z (f(Xl,XQ) — f(Xl,X2)>
x1EX xp€X
= 0.
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Beweis: (X, X) =0

X, X) = > > flxa,x)

X1€XX2€X
= (ZZfX1X2+ZZfX1X2)
x1EX xp€X x1EX xo€X
= (ZZfX1X2+ZZfX2X1)
x1€EX x0€X x1EX x0€X
= = Z Z( x1,x2) + f(x2, xl))
X1€XXQEX
= = Z Z (f X1, X2 —f(Xl X2)>
X1€XXQEX
= 0.

Fir den Beweis bendtigen wir lediglich die Eigenschaft der Asymmetrie.
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke
Wie groB ist der an der Senke eingehende Fluss?
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke
Wie groB ist der an der Senke eingehende Fluss?

Aufgrund der Flusserhaltung in alle Zwischenknoten ist zu erwarten, dass
er dem austretenden Fluss an der Quelle entspricht:

f(s, V) = F(V, 1)
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Maximaler Fluss Flussnetzwerke

Eingehender Fluss in der Senke
Wie groB ist der an der Senke eingehende Fluss?

Aufgrund der Flusserhaltung in alle Zwischenknoten ist zu erwarten, dass
er dem austretenden Fluss an der Quelle entspricht:

f(s, V) = F(V, 1)

Beweis:
f(s,V)=1f(V,V)—-f(V—-{s},V) | Eigenschaft 3
=—f(V—-{s},V) | Eigenschaft 1
=f(V,V —{s}) | Eigenschaft 2
=f(V,t)+f(V,V—{st}) | Eigenschaft 4
=f(V,1t). | Flusserhaltung
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Ford-Fulkerson-Methode — ldee
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1. Suche einen Pfad p von s nach t.
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Ford-Fulkerson-Methode — ldee

1. Suche einen Pfad p von s nach t.

2. Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.
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Ford-Fulkerson-Methode — ldee
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1. Suche einen Pfad p von s nach t.
2. Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.

3. Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode — ldee
12/12

1. Suche einen Pfad p von s nach t.

2. Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.

3. Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
4

. Erganze den Fluss der Kanten in p’ um die kleinste Restkapazitat in p.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42



Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode — ldee
12/12

1. Suche einen Pfad p von s nach t.

2. Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.

3. Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
4

. Erganze den Fluss der Kanten in p’ um die kleinste Restkapazitat in p.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/42



Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode — ldee
12/12

Suche einen Pfad p von s nach t.

Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.
Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
Erganze den Fluss der Kanten in p’ um die kleinste Restkapazitat in p.
Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.

ARSI
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Ford-Fulkerson-Methode — ldee
12/12

Suche einen Pfad p von s nach t.

Setze den Fluss der Kanten in p um die kleinste Kapazitat in p.
Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
Erganze den Fluss der Kanten in p’ um die kleinste Restkapazitat in p.
Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.

ARSI
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Restnetzwerke

., Netzwerk minus Fluss = Restnetzwerk"
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Restnetzwerke

., Netzwerk minus Fluss = Restnetzwerk"

Definition (Restnetzwerk Gr)

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist G = (V, Ef, ¢f)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u,v) =c(u,v) — f(u,v),

und
Er={(u,v) eV xV]|c(uv)>0}

cr(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.
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Maximaler Fluss Ford-Fulkerson-Methode

Restnetzwerk: Beispiel

Definition (Restnetzwerk Gr)

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist G = (V/, Ef, ¢f)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

> cf(u,v) =c(u,v) — f(u,v)
» Er={(u,v) e VxV|c(uv)>0}.
¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Datenstrukturen und Algorithmen
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Restnetzwerk: Beispiel

Definition (Restnetzwerk Gr)

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist G = (V/, Ef, ¢f)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

> cf(u,v) =c(u,v) — f(u,v)
» Ef={(u,v) e VxV]|ce(uv)>0}.
¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

14

Flussnetzwerk G Restnetzwerk Gy
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Maximaler Fluss Ford-Fulkerson-Methode

Restnetzwerk: Beispiel

Definition (Restnetzwerk Gr)

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist Gr = (V, Ef, cf)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

> cf(u,v) =c(u,v)— f(u,v)
» Efr={(u,v) e VxV]|ce(uv)>0}.
¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Datenstrukturen und Algorithmen
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Restnetzwerk: Beispiel

Sei Flussnetzwerk G = (V/, E, ¢) und Fluss f. Dann ist G = (V/, E¢, ¢f)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u,v) =c(u,v) — f(u,v)
Ef ={(u,v) e VxV]|ce(uv)>0}.
¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Kanten im Restnetzwerk

» Falls f(u,v) < c(u, v), dann folgt c¢f(u, v) > 0 und (u, v) € Ef

» Falls f(u,v) >0, dann f(v, u) <0, und damit ¢¢(v, u) > 0 und
(V, U) € Ef

» Falls weder (u, v) & E noch (v, u) € E, dann c¢(u, v) = ce(v,u) =0
Also |Ef| < 2-|E|.
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/42



Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

» Ein s-t-Pfad p in Restnetzwerk Gy heiBt augmentierender Pfad
(vergroBernder Pfad).
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

» Ein s-t-Pfad p in Restnetzwerk Gy heiBt augmentierender Pfad
(vergroBernder Pfad).

> c¢r(p) = min{ cr(u,v) | (u,v) € p} heiBt Restkapazitat von p.
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Maximaler Fluss Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

» Ein s-t-Pfad p in Restnetzwerk Gy heiBt augmentierender Pfad
(vergroBernder Pfad).

> c¢r(p) = min{ cr(u,v) | (u,v) € p} heiBt Restkapazitat von p.

Der Pfad im obigen Beispiel hat die Restkapazitat 4.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/42



Maximaler Fluss

Ford-Fulkerson-Methode

Augmentierende Pfade

Flussnetzwerk G Restnetzwerk Gf

Sei G ein Flussnetzwerk, f ein Fluss in G, p ein augmentierender Pfad in
Gr. Sei:
cr(p)  falls (u,v) auf p
fo(u,v) =S —cr(p) falls (v, u) auf p
0 sonst

Dann ist f, ein Fluss in Restnetzwerk G mit dem Wert |f,| = cf(p) > 0.

Joost-Pieter Katoen
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Flussnetzwerk G Restnetzwerk Gf

Sei G ein Flussnetzwerk, f ein Fluss in G, p ein augmentierender Pfad in
Gr. Sei:
cr(p)  falls (u,v) auf p
fo(u,v) =S —cr(p) falls (v, u) auf p
0 sonst

Dann ist f, ein Fluss in Restnetzwerk G mit dem Wert |f,| = cf(p) > 0.
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Ford-Fulkerson-Theorem

Idee: erganze ein Fluss f in G um den Fluss f, im Restnetzwerk Gr.
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Theorem

Idee: erganze ein Fluss f in G um den Fluss f, im Restnetzwerk Gr.

Sei 1,5 : V x V — R zwei Flisse. Die Flusssumme f; + f> ist definiert
durch: (A+f)(u,v) = A(u, v) + fHa(u, v).
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Sei 1,5 : V x V — R zwei Flisse. Die Flusssumme f; + f> ist definiert
durch: (A+f)(u,v) = A(u, v) + fHa(u, v).

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie f’ ein
Fluss in Gy.

Dann gilt: f + ' ist ein Fluss in G.
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Theorem

Idee: erganze ein Fluss f in G um den Fluss f, im Restnetzwerk Gr.

Sei 1,5 : V x V — R zwei Flisse. Die Flusssumme f; + f> ist definiert
durch: (A+f)(u,v) = A(u, v) + fHa(u, v).

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie f’ ein
Fluss in Gy.

Dann gilt: f + ' ist ein Fluss in G.

Beweis.

Wir zeigen, dass f + f’ beschrankt, asymmetrisch und flusserhaltend ist (s.
nachste Folie). O
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Maximaler Fluss Ford-Fulkerson-Methode

1. Asymmetrie:
(F+ f/)(u, v) = f(y, v)—i—f’(u, v)
= —f(v,u)—f(v,u)
= —(f(v,u)+ f'(v,uv))
= —(f+f)(v,u)
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2. Flusserhaltung:

(f+f)u,V) = f(u,V)+f(u,V)=0 |Yue V —{s, t}
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Maximaler Fluss Ford-Fulkerson-Methode

1. Asymmetrie:

(f—i—f’)(u, v) = f(y, v)—i—f’(u, v)
= —f(v,u)—f(v,u)
= —(f(v,u)+ f'(v,uv))
= —(f+f)(v,u)
2. Flusserhaltung:

(f+f)u,V) = f(u,V)+f(u,V)=0 |Yue V —{s, t}

3. Beschrankung:

(f+f)u,v) = f(uv)+Ff(uv)
< f(uv)+cr(u, v
= f(u,v)+ (c(u,v)—f(u,v))
= c(u,v)
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Die Ford-Fulkerson-Methode

Algorithmus

Initialisiere Fluss f zu 0

while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p  // f:=f+f,

return f

Flussnetzwerk G lonly<2>Restnetzwerk G
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Implementierung Ford-Fulkerson-Methode

1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {

2 int flow([n,n] = 0, pathl[];

s int cfp; // Restkapazitit des Pfades

4

5 while (true) {

6 // Finde augmentierenden Pfad und dessen Restkapazitdt
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);

8 if (cfp == 0) { // kein Pfad gefunden

9 return flow;

10 }

11

12 // addiere Restkapazitdt entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {

14 int u = pfad[i-1], v = pfadl[il;

15 flu,v] = f[lu,v] + cfp;

16 flv,ul = -flu,v];

17 }

18}

19 }
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Laufzeit der Ford-Fulkerson-Methode

Ein Flussproblem ist integral, wenn alle Kapazitidten ganzzahlig sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/42



Maximaler Fluss Ford-Fulkerson-Methode

Laufzeit der Ford-Fulkerson-Methode

Ein Flussproblem ist integral, wenn alle Kapazitidten ganzzahlig sind.

Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).
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Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhdht.
Er ist anfangs 0 und am Ende f*. O
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ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhdht.
Er ist anfangs 0 und am Ende f*. O

Korollar

Bei rationalen Kapazitaten terminiert die Ford—Fulkerson—Methode.
Briiche kénnen durch Multiplikation aufgehoben werden.
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Ein Flussproblem ist integral, wenn alle Kapazitidten ganzzahlig sind.

Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhdht.
Er ist anfangs 0 und am Ende f*. O

Korollar
Bei rationalen Kapazitaten terminiert die Ford—Fulkerson—Methode.
Briiche kénnen durch Multiplikation aufgehoben werden.
» Fir ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f, sodass jedes f(u, v) ganzzahlig ist.
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Korrektheit Ford-Fulkerson Methode

Die Ford-Fulkerson Methode erweitert sukzessive den Fluss in G
um augmentierende Pfade im Restnetzwerk Gf
bis es keine solche Pfade mehr gibt.
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Die Ford-Fulkerson Methode erweitert sukzessive den Fluss in G
um augmentierende Pfade im Restnetzwerk Gf
bis es keine solche Pfade mehr gibt.

Ist das korrekt?

Wir werden zeigen, dass ein Fluss in G genau dann maximal ist, wenn sein
Restnetzwerk keine augmentierende Pfade enthalt.
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Korrektheit Ford-Fulkerson Methode

Die Ford-Fulkerson Methode erweitert sukzessive den Fluss in G
um augmentierende Pfade im Restnetzwerk Gf
bis es keine solche Pfade mehr gibt.

Ist das korrekt?

Wir werden zeigen, dass ein Fluss in G genau dann maximal ist, wenn sein
Restnetzwerk keine augmentierende Pfade enthalt.

Dazu benutzen wir Schnitte.
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Schnitte in Flussnetzwerken

Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, c) ist eine Partition
SUT=V,SNT=2mitseSundteT.
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Schnitte in Flussnetzwerken

Definition
Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, ¢) ist eine Partition
SUT=V,SNT=0mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss dber (S, T).
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SUT=V,SNT=0mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss dber (S, T).

» Die Kapazitat von (S, T) ist ¢(S, T).
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Flussnetzwerken

Definition

Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, ¢) ist eine Partition
SUT=V,SNT=0mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss dber (S, T).
» Die Kapazitat von (S, T) ist ¢(S, T).

» Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazitat.

Joost-Pieter Katoen
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken
12/12

11 /14
S o A{s,v1, v}
T o {t, vz, va}
Fluss
Kapazitat :
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Maximaler Fluss

Schnitte in Netzwerken
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken

S c {s,vi, v} {s} {s,vi,v,wa}

T c {tivs el {t,vi,va,v3, va} {t, v}

Fluss : 19 19 19

Kapazitat : 26 29 23
Datenstrukturen und Algorithmen 38/42
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken

1212
D ——3)
11/16 15/20
O (D
8/13 / 4/4
& 11/14 @ 1
S c {s,vi, v} {s} {s,vi,v,wa}
T Atz e} {t,vi, v, v3, va} {t,v3}
Fluss : 19 19 19
Kapazitat : 26 29 23

» Fir den Fluss tber einen Schnitt gilt: £(S, T) = |f|
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken

1212
D ——3)
11/16 15/20
O (D
8/13 / 4/4
& 11/14 @ 1
S c {s,vi, v} {s} {s,vi,v,wa}
T Atz e} {t,vi, v, v3, va} {t,v3}
Fluss : 19 19 19
Kapazitat : 26 29 23

» Fir den Fluss tber einen Schnitt gilt: (S, T) = |f| < (S, T).
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Folgerungen

1. Die Kapazitat eines minimalen Schnittes ist gleich dem Wert eines
maximalen Flusses.

2. Falls die Ford—Fulkerson—Methode terminiert, berechnet sie einen
maximalen Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
2. In Gr gibt es keinen augmentierenden Pfad.
|f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

1. = 2. (Widerspruchsbeweis).

Sei f ein maximaler Fluss in G und p einen augmentierender Pfad in Gr.
= f +f, ist ein Fluss in G mit |f + f,| > |f].

= Widerspruch! Denn f ist ein maximaler Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
f ist ein maximaler Fluss.

2. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢c(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Es gibt keinen s-t-Pfad (d.h. augmentierden Pfad) in Gy.

Sei S:={veV|Isv-Pfadin Gr} und T :=V — S, dann gilt:
1.Vue S, veTgilt: ¢r(u,v) =0 = f(u,v)=c(u,v).
2. (S, T) ist ein Schnitt und somit gilt (S, T) = |f].
= (S, T)=1(5T)=|f|
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V/, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss.
In G¢ gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Sei f’ ein beliebiger Fluss in G dann gilt:

F = F(S,T)=> Y Fluv) <D > cluv)=c(ST)

ueSveT ueSveT

Da|fl=¢(S, T) und V" : |f'| < c(S, T), folgt f ist maximal.
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Laufzeit der Ford-Fulkerson-Methode

Die Worst-Case-Laufzeit ist abhdngig vom Wert eines maximalen Flusses,
da der Wert des Flusses im schlimmsten Fall sich jeweils nur um eine
Einheit erhoht.
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Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus

Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt. Laufzeit: O(V - E?).
lex]
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lex| Sie erweitert stets den Fluss entlang kiirzester Pfade.

Lemma

Im Edmonds-Karp-Algorithmus steigt fiir alle Knoten v € V — {s, t} der
Abstand (d.h. Anzahl der Kanten) des kiirzesten Pfades von s nach v im
Restnetzwerk Gf monoton mit jeder Flusserweiterung.
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Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt. Laufzeit: O(V - E?).
lex| Sie erweitert stets den Fluss entlang kiirzester Pfade.

Lemma

Im Edmonds-Karp-Algorithmus steigt fiir alle Knoten v € V — {s, t} der
Abstand (d.h. Anzahl der Kanten) des kiirzesten Pfades von s nach v im
Restnetzwerk Gf monoton mit jeder Flusserweiterung.

Die Gesamtzahl der Flusserweiterungen im Edmonds-Karp-Algorithmus fiir
das Flussnetzwerk G = (V, E, c) ist in O(V - E).
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