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Graphenproblem: maximale Fliisse Graphenproblem: maximale Fliisse

Beispiel (maximale Fliisse)

Eingabe: 1. Eine StraBenkarte, auf der die Kapazitat der StraBen
eingezeichnet ist,
2. eine Quelle, und
3. eine Senke.

Ausgabe: Die maximale Rate, mit der Material (= Zuschauer) von der
Quelle bis zur Senke (= Stadion) transportiert werden kann,
ohne die Kapazitatsbeschrankungen der StraBen zu verletzen.
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Ubersicht Flussnetzwerk

Flussnetzwerk
Ein Flussnetzwerk G = (V/, E, ¢) ist ein digraph (V, E) mit
© Flussnetzwerke » ¢: V x V— R*® die Kapazitatsfunktion sodaB:

» (u,v) € E dann c(u,v) >0
» (u,v) & E dann c(u,v) =0

» s, t €V, die Quelle s und Senke t des Flussnetzwerkes

> Jeder Knoten v € V liegt auf einem Pfad von Quelle s zur Senke t

v

An der Quelle wird produziert

An der Senke wird verbraucht

v

Kanten sind wie Wasserrohre

v

v

Kapazitat = maximale Durchsatzrate

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/42 Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/42



Maximaler Fluss Flussnetzwerke

Maximaler Fluss Flussnetzwerke

Fluss in einem Flussnetzwerk Darstellung von Fliissen
2/12

Definition (Fluss)

Ein Fluss ist eine Funktion f: V x V — IR, mit folgenden Eigenschaften:
Beschrankung: Fir u, v € V gilt f(u, v) < c(u, v).
Asymmetrie: Fir u,v € V gilt f(u, v) = —f(v, u).

Flusserhaltung: Firr u € V — {s, t} gilt: Z f(u,v)=0.
veV
f(u, v) ist der Fluss vom Knoten u zum Knoten v.

Definition (Wert eines Flusses)

Der Wert |f| des Flusses f ist der Gesamtfluss aus der Quelle s:

1f] =" f(s, v).

veVv
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Maximaler Fluss Flussnetzwerke

Flussnetzwerke

Maximale Fliisse

Ein maximaler Fluss ist einen Fluss mit maximalem Wert.

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk G.

Beispiel (Anwendungen)

> Wie groB ist der maximale Datendurchsatz zwischen zwei Computern
in einem Netzwerk?

» Wie kann der Verkehr in einem StraBennetz so geleitet werden, dass
moglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

o . . B, : , . . » Ein maximaler Fluss in diesem Beispiel hat den Wert |f| = 24.
> Wie viele Leitungen miissen zerstdrt sein, damit zwei Computer nicht
mehr miteinander kommunizieren kdnnen? > Es kann mehrere maximale Fliisse geben.
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Mehrere Quellen und Senken Fliisse zwischen Knotenmengen

10 > flx,Y) = Zf(x,y) far Y C V
yey
fFXy) = Y flxy) fir X C V
xeX
FX,Y) = > > flxy) firX,ycv
xeXyeY

Eigenschaften von Fliissen zwischen Mengen

Falls f ein Fluss fiir Flussnetzwerk G = (V/, E, ¢) ist, dann gilt:
1. f(X,X)=0 fur X C V
_ U -
» Sie konnen durch eine neue ,Superquelle” und ,,Supersenke” in ein 2 ARG Y) =~V f?r Xyev
ubliches Flussnetzwerk tberfiihrt werden. 3. f(XUY,2)=1f(X,2)+1f(Y,2) firX, Y. ZCV:XNY=0
4. f(Z,XUY)=1f(Z,X)+f(Z,Y) furX, Y, ZCV:XNY=0

» Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.
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Beweis: f(X,X) =0 Eingehender Fluss in der Senke
Wie groB ist der an der Senke eingehende Fluss?
f(X,X) = f(xq, x . . .
(X, X) E:X E:X (x1, %) Aufgrund der Flusserhaltung in alle Zwischenknoten ist zu erwarten, dass
X1 EX X2E

er dem austretenden Fluss an der Quelle entspricht:

= (ZZfX1X2+Z ZfX1X2)) f(s,V)=1F(V,t)

x1EX xpeX x1EX xoeX
= ( Z Z f X1 X2 + Z Z f X2 Xl)) Beweis:
x1€X x0eX x1€X x0eX
157 s 1 s f(s, V) = F(V, V) — f(V — {s}, V) | Eigenschaft 3
= 5 Z > (f(xl x2) + fx, Xl)) =—f(V—-{s},V) | Eigenschaft 1
x1EX xp€X
1 s =f(V,V—-{s}) | Eigenschaft 2
) Z Z (f(xl x2) — f(x1, X2)) =f(V,t)+f(V,V —{s,t}) | Eigenschaft 4
x1€X x0eX
_ 9 1Eee =f(V,1t). | Flusserhaltung

Fir den Beweis bendtigen wir lediglich die Eigenschaft der Asymmetrie.
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Maximaler Fluss Ford-Fulkerson-Methode

Ubersicht

© Ford-Fulkerson-Methode
@ Restnetzwerke
@ Algorithmus

@ Schnitte
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Restnetzwerke

., Netzwerk minus Fluss = Restnetzwerk"

Definition (Restnetzwerk Gr)

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist Gr = (V/, Ef, cr)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u, v) = c(u,v) — f(u, v),

und
Er={(u,v) eV xV|cr(u,v)>0},

¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/42

Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Methode — ldee
12/12

14

Suche einen Pfad p von s nach t.

Setze den Fluss der Kanten in p um die kleinste Kapazitét in p.
Suche einen Pfad p’ von s nach t, aus Kanten mit freier Kapazitat.
Erganze den Fluss der Kanten in p’ um die kleinste Restkapazitat in p.
Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.

o~ W=
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Restnetzwerk: Beispiel

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist Gr = (V/, Ef, cf)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u,v) = c(u,v) — f(u,v)
Er={(u,v)eVxV|ce(uv)>0}

¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Restnetzwerk Gr

Flussnetzwerk G
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Restnetzwerk: Beispiel Restnetzwerk: Beispiel

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist Gr = (V, E¢, ¢r)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u,v) = c(u,v) — f(u,v)
Er={(u,v)eVxV|c(uv)>0}

cr(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Sei Flussnetzwerk G = (V, E, ¢) und Fluss f. Dann ist Gr = (V, Ef, ¢r)
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cr(u,v) =c(u,v) — f(u,v)
Er ={(u,v) eV xV]ce(uv)>0}.

¢r(u, v) ist die Restkapazitat von (u, v) in G zu Fluss f.

Kanten im Restnetzwerk

» Falls f(u, v) < ¢(u, v), dann folgt cr(u, v) > 0 und (u, v) € Ef
» Falls f(u, v) >0, dann f(v, u) <0, und damit c¢(v, u) > 0 und
(V, U) € Ef

» Falls weder (u, v) € E noch (v, u) € E, dann ¢f(u, v) = ¢e(v,u) =0
Also |Ef| < 2:|E].

Flussnetzwerk G Restnetzwerk Gf
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Maximaler Fluss

Ford-Fulkerson-Methode Maximaler Fluss

Ford-Fulkerson-Methode

Augmentierende Pfade Augmentierende Pfade

16 16
© ©
13 4/13
Flussnetzwerk G Restnetzwerk G Flussnetzwerk G Restnetzwerk Gr
> Ein s-t-Pfad p in Restnetzwerk G heiBt augmentierender Pfad Sei G ein Flussnetzwerk, f ein Fluss in G, p ein augmentierender Pfad in
(vergroBernder Pfad). Gr. Sei:
» cr(p) = min{ cr(u,v) | (u,v) € p} heiBt Restkapazitat von p. cr(p)  falls (u,v) auf p
fo(u, v) = ¢ —cr(p) falls (v, u) auf p
Der Pfad im obigen Beispiel hat die Restkapazitat 4. 0 sonst
Dann ist f, ein Fluss in Restnetzwerk G mit dem Wert |f,| = c¢(p) > 0.
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Maximaler Fluss Ford-Fulkerson-Methode

Ford-Fulkerson-Theorem

Idee: erganze ein Fluss f in G um den Fluss f, im Restnetzwerk Gy.

Sei f1,: V x V — R zwei Flusse. Die Flusssumme f; 4 f5 ist definiert
durch: (A+hH)(u,v) = fi(u, v) + f(u, v).

Theorem (Ford-Fulkerson)

Sei G = (V, E, c) ein Flussnetzwerk und f ein Fluss in G, sowie f’ ein
Fluss in Gr.

Dann gilt: f + f ist ein Fluss in G.

Beweis

Wir zeigen, dass f + ' beschrankt, asymmetrisch und flusserhaltend ist (s.

nachste Folie). O
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Maximaler Fluss Ford-Fulkerson-Methode

Die Ford-Fulkerson-Methode

Algorithmus

Initialisiere Fluss f zu 0

while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f:=f+ 1,

return f

(<)
13
4 |3 (1)

6+7/13

®) 7/14 ©

Flussnetzwerk G |only<2>Restnetzwerk G
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Maximaler Fluss Ford-Fulkerson-Methode

1. Asymmetrie:

(f+fYuv) = fluv)+Ff(uv)
= —f(v,u)—f'(v,u)
= —(f(v,u)+f'(v,u))
= —(f+f)(v,u)

2. Flusserhaltung:

(f+fYu, V) = f(u,V)+Ff(u,V)=0 |VueV —{s, t}

3. Beschrankung:

(f +fYu,v) = f(uv)+Ff(uv)
< f(u,v) 4+ cr(u, v)
= f(u,v) + (c(u,v) = f(u,v))
= c(u,v).
Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/42

Implementierung Ford-Fulkerson-Methode

1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {
int flow[n,n] = 0, path[];
int cfp; // Restkapazitdt des Pfades

2
3
4
5 while (true) {

6 // Finde augmentierenden Pfad und dessen Restkapazitdt
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);

8 if (cfp == 0) { // kein Pfad gefunden

9 return flow;

10 }

11

12 // addiere Restkapazitdt entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {

14 int u = pfad[i-1], v = pfad[il;
15 flu,v] = flu,v] + cfp;
16 flv,u] = -f[u,v];
17 }
18}
19 }
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Laufzeit der Ford-Fulkerson-Methode

Ein Flussproblem ist integral, wenn alle Kapazitaten ganzzahlig sind.

Theorem

Sei f* der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benétigt die Methode |f*| Iterationen und es
ergibt sich eine Laufzeit von O(E - |f*|).

Beweis.

In jeder Iteration wird der Wert des Flusses um c¢(p) > 1 erhoht.
Er ist anfangs 0 und am Ende f*. Ol

Korollar

Bei rationalen Kapazitaten terminiert die Ford—Fulkerson—Methode.
Briiche konnen durch Multiplikation aufgehoben werden.

» Fiir ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f, sodass jedes f(u, v) ganzzahlig ist.
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Flussnetzwerken

Definition
Ein Schnitt (S, T) in einem Flussnetzwerk G = (V/, E, c) ist eine Partition
SUuT=V,SNT=2mitseSundteT.

» Wenn f ein Fluss in G ist, dann ist (S, T) der Fluss tber (S, T).

» Die Kapazitat von (S, T) ist ¢(S, T).

» Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazitat.

o 12/12 A
11/16 /] 15/20
/4
0€ mbo
8/1 ‘ 4/4
2) @)

11[14
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Maximaler Fluss Ford-Fulkerson-Methode

Korrektheit Ford-Fulkerson Methode

Die Ford-Fulkerson Methode erweitert sukzessive den Fluss in G
um augmentierende Pfade im Restnetzwerk Gy
bis es keine solche Pfade mehr gibt.

Ist das korrekt?

Wir werden zeigen, dass ein Fluss in G genau dann maximal ist, wenn sein
Restnetzwerk keine augmentierende Pfade enthilt.

Dazu benutzen wir Schnitte.
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Maximaler Fluss Ford-Fulkerson-Methode

Schnitte in Netzwerken
12[12

15/20

11/14
S o s, vi, »} {s} {s,v1,v2,va}
T : {t, V3,V4} {t, V1,V2,V3,V4} {t, V3}
Fluss : 19 19 19
Kapazitat : 26 29 23

» Fir den Fluss iiber einen Schnitt gilt: £(S, T) = |f| < ¢(S, T).
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Max-flow Min-cut Theorem Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut) Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent: Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
1. f ist ein maximaler Fluss. 1. f ist ein maximaler Fluss.
2. In G¢ gibt es keinen augmentierenden Pfad. 2. In G¢ gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal. |f| = c(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.

Folgerungen 1. = 2. (Widerspruchsbeweis).

1. Die Kapazitat eines minimalen Schnittes ist gleich dem Wert eines ] ] ] ] ] ] ]
Sei f ein maximaler Fluss in G und p einen augmentierender Pfad in Gr.

maximalen Flusses.
2. Falls die Ford—Fulkerson—Methode terminiert, berechnet sie einen = f+fyistein Flussin G mit | +f,[ > [f].
= Widerspruch! Denn f ist ein maximaler Fluss.

maximalen Fluss.

L]
Maximaler Fluss Ford-Fulkerson-Methode
Max-flow Min-cut Theorem Max-flow Min-cut Theorem
Theorem (Max-flow Min-cut) Theorem (Max-flow Min-cut)
Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent: Sei f ein Fluss im Flussnetzwerk G = (V, E, ¢), dann sind dquivalent:
f ist ein maximaler Fluss. 1. f ist ein maximaler Fluss.
2. In G¢ gibt es keinen augmentierenden Pfad. In Gr gibt es keinen augmentierenden Pfad.
3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal. 3. |f| = ¢(S, T) fiir einen Schnitt (S, T), d. h. (S, T) ist minimal.
Es gibt keinen s-t-Pfad (d.h. augmentierden Pfad) in Gy. Sei f' ein beliebiger Fluss in G dann gilt:
Sei S:={veV|Isv-Pfadin G nd T :=V -5, dann gilt:
| {V | -V I f}u gl |f/| _ f/(S,T):ZZf/(U,V)< ZZC(U,V):C(S,T)
1.VueS, ve Tgilt: ¢r(u,v) =0 = f(u,v)=c(uv). ey e ST
2. (S, T) ist ein Schnitt und somit gilt £(S, T) = |f]. o 17 5 LY (T S T ol -~
= , ; < 0 , t t .
L (S T) = (5. T) = |fl. a|f| =c( ) un I < ¢( ), folgt f ist maxima .
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Laufzeit der Ford-Fulkerson-Methode Ubersicht

Die Worst-Case-Laufzeit ist abhangig vom Wert eines maximalen Flusses, © Edmonds-Karp-Algorithmus
da der Wert des Flusses im schlimmsten Fall sich jeweils nur um eine
Einheit erhoht.
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Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus

Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt. Laufzeit: O(V - E2).
lex] Sie erweitert stets den Fluss entlang kiirzester Pfade.

Lemma

Im Edmonds-Karp-Algorithmus steigt fiir alle Knoten v € V — {s, t} der
Abstand (d.h. Anzahl der Kanten) des kiirzesten Pfades von s nach v im
Restnetzwerk G¢ monoton mit jeder Flusserweiterung.

Die Gesamtzahl der Flusserweiterungen im Edmonds-Karp-Algorithmus fir
das Flussnetzwerk G = (V, E, ¢) ist in O(V - E).
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