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Maximaler Fluss

Graphenproblem: maximale Flüsse

Beispiel (maximale Flüsse)

Eingabe: 1. Eine Straßenkarte, auf der die Kapazität der Straßen
eingezeichnet ist,

2. eine Quelle, und
3. eine Senke.

Ausgabe: Die maximale Rate, mit der Material (= Zuschauer) von der
Quelle bis zur Senke (= Stadion) transportiert werden kann,
ohne die Kapazitätsbeschränkungen der Straßen zu verletzen.
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Flussnetzwerk

Flussnetzwerk
Ein Flussnetzwerk G = (V ,E , c) ist ein digraph (V ,E ) mit

I c : V × V −→ IR>0 die Kapazitätsfunktion sodaß:
I (u, v) ∈ E dann c(u, v) > 0
I (u, v) 6∈ E dann c(u, v) = 0

I s, t ∈ V , die Quelle s und Senke t des Flussnetzwerkes
I Jeder Knoten v ∈ V liegt auf einem Pfad von Quelle s zur Senke t

s t

I An der Quelle wird produziert
I An der Senke wird verbraucht
I Kanten sind wie Wasserrohre
I Kapazität = maximale Durchsatzrate
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Fluss in einem Flussnetzwerk

Definition (Fluss)

Ein Fluss ist eine Funktion f : V × V → IR, mit folgenden Eigenschaften:

Beschränkung: Für u, v ∈ V gilt f (u, v) 6 c(u, v).
Asymmetrie: Für u, v ∈ V gilt f (u, v) = −f (v , u).

Flusserhaltung: Für u ∈ V − {s, t} gilt:
∑
v∈V

f (u, v) = 0.

f (u, v) ist der Fluss vom Knoten u zum Knoten v .

Definition (Wert eines Flusses)

Der Wert |f | des Flusses f ist der Gesamtfluss aus der Quelle s:

|f | =
∑
v∈V

f (s, v).
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Darstellung von Flüssen
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I Wir beschriften Kanten mit f (u, v)/c(u, v), falls f (u, v) > 0.
I Negative Flüsse f (u, v) < 0 werden nicht explizit angegeben.
I Der eingezeichnete Fluss f hat den Wert |f | = 5+4 = 9.
I Der alternative Fluss f ′ hat den Wert |f ′| = 11+8 = 19.
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Maximale Flüsse

Ein maximaler Fluss ist einen Fluss mit maximalem Wert.

Problem (Maximaler Fluss)

Finde einen maximalen Fluss in einem gegebenen Flussnetzwerk G.

Beispiel (Anwendungen)

I Wie groß ist der maximale Datendurchsatz zwischen zwei Computern
in einem Netzwerk?

I Wie kann der Verkehr in einem Straßennetz so geleitet werden, dass
möglichst viele Autos in einer gegeben Zeitspanne ein Ziel erreichen?

I Wie viele Leitungen müssen zerstört sein, damit zwei Computer nicht
mehr miteinander kommunizieren können?
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Ein maximaler Fluss
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I Ein maximaler Fluss in diesem Beispiel hat den Wert |f | = 24.
I Es kann mehrere maximale Flüsse geben.
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Mehrere Quellen und Senken
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I Es kann auch Flussnetzwerke mit mehrere Quellen oder Senken geben.
I Sie können durch eine neue „Superquelle“ und „Supersenke“ in ein

übliches Flussnetzwerk überführt werden.
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Flüsse zwischen Knotenmengen
Notationen

f (x ,Y ) =
∑
y∈Y

f (x , y) für Y ⊆ V

f (X , y) =
∑
x∈X

f (x , y) für X ⊆ V

f (X ,Y ) =
∑
x∈X

∑
y∈Y

f (x , y) für X ,Y ⊆ V

Eigenschaften von Flüssen zwischen Mengen
Falls f ein Fluss für Flussnetzwerk G = (V ,E , c) ist, dann gilt:
1. f (X ,X ) = 0 für X ⊆ V
2. f (X ,Y ) = −f (Y ,X ) für X ,Y ⊆ V
3. f (X ∪ Y ,Z ) = f (X ,Z ) + f (Y ,Z ) für X ,Y ,Z ⊆ V : X ∩ Y = ∅
4. f (Z ,X ∪ Y ) = f (Z ,X ) + f (Z ,Y ) für X ,Y ,Z ⊆ V : X ∩ Y = ∅
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Beweis: f (X , X ) = 0

f (X ,X ) =
∑

x1∈X

∑
x2∈X

f (x1, x2)

=
1
2

( ∑
x1∈X

∑
x2∈X

f (x1, x2) +
∑

x1∈X

∑
x2∈X

f (x1, x2)
)

=
1
2

( ∑
x1∈X

∑
x2∈X

f (x1, x2) +
∑

x1∈X

∑
x2∈X

f (x2, x1)
)

=
1
2
∑

x1∈X

∑
x2∈X

(
f (x1, x2) + f (x2, x1)

)
=

1
2
∑

x1∈X

∑
x2∈X

(
f (x1, x2)− f (x1, x2)

)
= 0.

Für den Beweis benötigen wir lediglich die Eigenschaft der Asymmetrie.
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Eingehender Fluss in der Senke
Wie groß ist der an der Senke eingehende Fluss?

Aufgrund der Flusserhaltung in alle Zwischenknoten ist zu erwarten, dass
er dem austretenden Fluss an der Quelle entspricht:

f (s,V ) = f (V , t)

Beweis:

f (s,V ) = f (V ,V )− f (V − {s},V ) | Eigenschaft 3
= −f (V − {s},V ) | Eigenschaft 1
= f (V ,V − {s}) | Eigenschaft 2
= f (V , t) + f (V ,V − {s, t}) | Eigenschaft 4
= f (V , t). | Flusserhaltung
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Ford-Fulkerson-Methode – Idee
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1. Suche einen Pfad p von s nach t.
2. Setze den Fluss der Kanten in p um die kleinste Kapazität in p.
3. Suche einen Pfad p′ von s nach t, aus Kanten mit freier Kapazität.
4. Ergänze den Fluss der Kanten in p′ um die kleinste Restkapazität in p.
5. Wiederhole 3. und 4. bis es keinen Pfad p mehr gibt.
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Restnetzwerke

„Netzwerk minus Fluss = Restnetzwerk“

Definition (Restnetzwerk Gf )

Sei Flussnetzwerk G = (V ,E , c) und Fluss f . Dann ist Gf = (V ,Ef , cf )
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

cf (u, v) = c(u, v)− f (u, v),

und
Ef = { (u, v) ∈ V × V | cf (u, v) > 0 },

cf (u, v) ist die Restkapazität von (u, v) in G zu Fluss f .
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Restnetzwerk: Beispiel
Definition (Restnetzwerk Gf )

Sei Flussnetzwerk G = (V ,E , c) und Fluss f . Dann ist Gf = (V ,Ef , cf )
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

I cf (u, v) = c(u, v)− f (u, v)
I Ef = { (u, v) ∈ V × V | cf (u, v) > 0 }.

cf (u, v) ist die Restkapazität von (u, v) in G zu Fluss f .
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Flussnetzwerk G Restnetzwerk Gf
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Restnetzwerk: Beispiel
Definition (Restnetzwerk Gf )

Sei Flussnetzwerk G = (V ,E , c) und Fluss f . Dann ist Gf = (V ,Ef , cf )
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

I cf (u, v) = c(u, v)− f (u, v)
I Ef = { (u, v) ∈ V × V | cf (u, v) > 0 }.

cf (u, v) ist die Restkapazität von (u, v) in G zu Fluss f .
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Restnetzwerk: Beispiel
Definition (Restnetzwerk Gf )

Sei Flussnetzwerk G = (V ,E , c) und Fluss f . Dann ist Gf = (V ,Ef , cf )
das Restnetzwerk (auch: Residualnetzwerk) zu G und f mit:

I cf (u, v) = c(u, v)− f (u, v)
I Ef = { (u, v) ∈ V × V | cf (u, v) > 0 }.

cf (u, v) ist die Restkapazität von (u, v) in G zu Fluss f .

Kanten im Restnetzwerk
I Falls f (u, v) < c(u, v), dann folgt cf (u, v) > 0 und (u, v) ∈ Ef
I Falls f (u, v) > 0, dann f (v , u) < 0, und damit cf (v , u) > 0 und

(v , u) ∈ Ef
I Falls weder (u, v) 6∈ E noch (v , u) 6∈ E , dann cf (u, v) = cf (v , u) = 0

Also |Ef | 6 2·|E |.
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Augmentierende Pfade
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I Ein s-t-Pfad p in Restnetzwerk Gf heißt augmentierender Pfad
(vergrößernder Pfad).

I cf (p) = min{ cf (u, v) | (u, v) ∈ p } heißt Restkapazität von p.

Der Pfad im obigen Beispiel hat die Restkapazität 4.
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Augmentierende Pfade
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Sei G ein Flussnetzwerk, f ein Fluss in G , p ein augmentierender Pfad in
Gf . Sei:

fp(u, v) =


cf (p) falls (u, v) auf p
−cf (p) falls (v , u) auf p
0 sonst

Dann ist fp ein Fluss in Restnetzwerk Gf mit dem Wert |fp| = cf (p) > 0.
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Ford-Fulkerson-Theorem

Idee: ergänze ein Fluss f in G um den Fluss fp im Restnetzwerk Gf .

Sei f1, f2 : V × V → R zwei Flüsse. Die Flusssumme f1 + f2 ist definiert
durch: (f1+f2)(u, v) = f1(u, v) + f2(u, v).

Theorem (Ford-Fulkerson)

Sei G = (V ,E , c) ein Flussnetzwerk und f ein Fluss in G, sowie f ′ ein
Fluss in Gf .
Dann gilt: f + f ′ ist ein Fluss in G.

Beweis.
Wir zeigen, dass f + f ′ beschränkt, asymmetrisch und flusserhaltend ist (s.
nächste Folie).
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1. Asymmetrie:

(f + f ′)(u, v) = f (u, v) + f ′(u, v)
= −f (v , u)− f ′(v , u)
= −(f (v , u) + f ′(v , u))
= −(f + f ′)(v , u)

2. Flusserhaltung:

(f + f ′)(u,V ) = f (u,V ) + f ′(u,V ) = 0 | ∀u ∈ V − {s, t}

3. Beschränkung:

(f + f ′)(u, v) = f (u, v) + f ′(u, v)
6 f (u, v) + cf (u, v)
= f (u, v) + (c(u, v)− f (u, v))
= c(u, v).
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Die Ford-Fulkerson-Methode
Algorithmus
Initialisiere Fluss f zu 0
while es gibt einen augmentierenden Pfad p
do augmentiere f entlang p // f := f + fp

return f
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Implementierung Ford-Fulkerson-Methode
1 int[n,n] maxFlow(List adjLst[n], int n, int s, int t) {
2 int flow[n,n] = 0, path[];
3 int cfp; // Restkapazität des Pfades
4

5 while (true) {
6 // Finde augmentierenden Pfad und dessen Restkapazität
7 (path, cfp) = augmentPfad(adjLst, flow, s, t);
8 if (cfp == 0) { // kein Pfad gefunden
9 return flow;

10 }
11

12 // addiere Restkapazität entlang des Pfades zum Fluss
13 for (int i = 1; i < pfad.length; i++) {
14 int u = pfad[i-1], v = pfad[i];
15 f[u,v] = f[u,v] + cfp;
16 f[v,u] = -f[u,v];
17 }
18 }
19 }
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Laufzeit der Ford-Fulkerson-Methode
Ein Flussproblem ist integral, wenn alle Kapazitäten ganzzahlig sind.

Theorem
Sei f ∗ der durch die Ford-Fulkerson-Methode bestimmte Fluss zu einem
integralen Flussproblem, so benötigt die Methode |f ∗| Iterationen und es
ergibt sich eine Laufzeit von O(E · |f ∗|).

Beweis.
In jeder Iteration wird der Wert des Flusses um cf (p) > 1 erhöht.
Er ist anfangs 0 und am Ende f ∗.

Korollar
Bei rationalen Kapazitäten terminiert die Ford–Fulkerson–Methode.
Brüche können durch Multiplikation aufgehoben werden.

I Für ein integrales Flussproblem bestimmt die Ford-Fulkerson-Methode
einen Fluss f , sodass jedes f (u, v) ganzzahlig ist.
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Korrektheit Ford-Fulkerson Methode

Die Ford-Fulkerson Methode erweitert sukzessive den Fluss in G
um augmentierende Pfade im Restnetzwerk Gf
bis es keine solche Pfade mehr gibt.

Ist das korrekt?

Wir werden zeigen, dass ein Fluss in G genau dann maximal ist, wenn sein
Restnetzwerk keine augmentierende Pfade enthält.

Dazu benutzen wir Schnitte.
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Schnitte in Flussnetzwerken

Definition
Ein Schnitt (S,T ) in einem Flussnetzwerk G = (V ,E , c) ist eine Partition
S ∪ T = V , S ∩ T = ∅ mit s ∈ S und t ∈ T .

I Wenn f ein Fluss in G ist, dann ist f (S,T ) der Fluss über (S,T ).
I Die Kapazität von (S,T ) ist c(S,T ).
I Ein minimaler Schnitt ist ein Schnitt mit minimaler Kapazität.

Datenstrukturen und Algorithmen (Folie 366, Seite 62 im Skript)

Schnitte in Netzwerken
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Der Fluß über (S ,T ) ist 19.

Die Kapazität von (S ,T ) ist 26.
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Schnitte in Netzwerken

Datenstrukturen und Algorithmen (Folie 368, Seite 62 im Skript)

Schnitte in Netzwerken

s

v1
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ts
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t
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12/12
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Der Fluß über (S ,T ) ist 19.

Die Kapazität von (S ,T ) ist 23.

S : {s, v1, v2} {s} {s, v1, v2, v4}
T : {t, v3, v4} {t, v1, v2, v3, v4} {t, v3}
Fluss : 19 19 19
Kapazität : 26 29 23

I Für den Fluss über einen Schnitt gilt: f (S,T ) = |f | 6 c(S,T ).
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T ) ist minimal.

Folgerungen
1. Die Kapazität eines minimalen Schnittes ist gleich dem Wert eines

maximalen Flusses.
2. Falls die Ford–Fulkerson–Methode terminiert, berechnet sie einen

maximalen Fluss.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 39/42

Maximaler Fluss Ford-Fulkerson-Methode

Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T ) ist minimal.

1. ⇒ 2. (Widerspruchsbeweis).

Sei f ein maximaler Fluss in G und p einen augmentierender Pfad in Gf .
⇒ f + fp ist ein Fluss in G mit |f + fp| > |f |.
⇒ Widerspruch! Denn f ist ein maximaler Fluss.
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Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T ) ist minimal.

2. ⇒ 3.
Es gibt keinen s-t-Pfad (d.h. augmentierden Pfad) in Gf .
Sei S := { v ∈ V | ∃ s-v -Pfad in Gf } und T := V − S, dann gilt:
1. ∀u ∈ S, v ∈ T gilt: cf (u, v) = 0 ⇒ f (u, v) = c(u, v).
2. (S,T ) ist ein Schnitt und somit gilt f (S,T ) = |f |.
⇒ c(S,T ) = f (S,T ) = |f |.
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Maximaler Fluss Ford-Fulkerson-Methode

Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut)

Sei f ein Fluss im Flussnetzwerk G = (V ,E , c), dann sind äquivalent:
1. f ist ein maximaler Fluss.
2. In Gf gibt es keinen augmentierenden Pfad.
3. |f | = c(S,T ) für einen Schnitt (S,T ), d. h. (S,T ) ist minimal.

3. ⇒ 1.
Sei f ′ ein beliebiger Fluss in G dann gilt:

|f ′| = f ′(S,T ) =
∑
u∈S

∑
v∈T

f ′(u, v) 6
∑
u∈S

∑
v∈T

c(u, v) = c(S,T )

Da |f | = c(S,T ) und ∀ f ′ : |f ′| 6 c(S,T ), folgt f ist maximal.
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Maximaler Fluss Ford-Fulkerson-Methode

Laufzeit der Ford-Fulkerson-Methode

s t

1/100

1/100

0/1

1/100

1/100

Die Worst-Case-Laufzeit ist abhängig vom Wert eines maximalen Flusses,
da der Wert des Flusses im schlimmsten Fall sich jeweils nur um eine
Einheit erhöht.
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Maximaler Fluss Edmonds-Karp-Algorithmus

Übersicht
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Maximaler Fluss Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus

Edmonds-Karp-Algorithmus
Eine Implementierung der Ford-Fulkerson-Methode, die zur Bestimmung
augmentierender Pfade eine Breitensuche nutzt. Laufzeit: O(V · E 2).
1ex] Sie erweitert stets den Fluss entlang kürzester Pfade.

Lemma
Im Edmonds-Karp-Algorithmus steigt für alle Knoten v ∈ V − {s, t} der
Abstand (d.h. Anzahl der Kanten) des kürzesten Pfades von s nach v im
Restnetzwerk Gf monoton mit jeder Flusserweiterung.

Theorem
Die Gesamtzahl der Flusserweiterungen im Edmonds-Karp-Algorithmus für
das Flussnetzwerk G = (V ,E , c) ist in O(V · E ).
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