Dynamische Programmierung

Datenstrukturen und Algorithmen

Vorlesung 20: Dynamische Programmierung (K15)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

3. Juli 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/31

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Ubersicht

@ Motivation

© Dynamische Programmierung
@ Rekursionsgleichungen

© Anwendungen
o Ketten von Matrixmultiplikationen
@ Das Rucksackproblem
@ Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/31

Ubersicht

@ Motivation

Datenstrukturen und Algorithmen 3/31

Erinnerung: Fibonacci

Fib(0) =0, Fib(1)=1, Fib(n) = Fib(n—1) + Fib(n—2)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Erinnerung: Fibonacci

Fib(0) =0, Fib(1)=1, Fib(n) = Fib(n—1) + Fib(n—2)

Rekursionsbaum

Datenstrukturen und Algorithmen

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) =0, Fib(1)=1, Fib(n) = Fib(n—1) + Fib(n—2)

/&j@\/&
R/@\?% g?% ©) g?%/.\@ @/@\@

@@ 00 ©®@0 00
@@ Rekursionsbaum

» Wir wollen z. B. Fib(3) nicht standig neu berechnen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

4/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) =0, Fib(1)=1, Fib(n) = Fib(n—1) + Fib(n—2)

R/@\gé% ([5%/.\@) g%%/.\@) ®/@\@

@@ 00 ©®@0 00
@@ Rekursionsbaum

» Wir wollen z. B. Fib(3) nicht standig neu berechnen.
> Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

4/31

Memoization

Memoization

» Bei jedem Funktionsaufruf iberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Memoization

Memoization

» Bei jedem Funktionsaufruf iberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

> Ist das nicht der Fall, berechne den Wert und speichere zusatzlich das
Ergebnis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Memoization

Memoization

» Bei jedem Funktionsaufruf iberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

> Ist das nicht der Fall, berechne den Wert und speichere zusatzlich das

Ergebnis.
Beispiel
1 int fibDP(int n) {
2 if (n < 2) return n;
3 int f1 = getCache(n-1), f2 = getCache(n-2);
4 if (f1 == -1) f1 = fibDP(n-1); // nicht gefunden
5 if (f2 == -1) f2 = fibDP(n-2);
6 int fib = f1 + £2;
7 setCache(n, fib);
8 return fib;
9}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme {iberlappen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme {iberlappen.

> Bessere Zeit-Komplexitat: ©(n) statt ©(2"),

@g%@

Abhangigkeitsgraph

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme {iberlappen.

> Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).

@g%@

Abhangigkeitsgraph

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme {iberlappen.

> Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).

» Durch Auswertung von unten-nach-oben
(Bottom-Up) kann sogar sichergestellt werden,
% dass alle bendtigten Werte bereits berechnet sind.

L

Abhangigkeitsgraph

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme (iberlappen.

Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).
» Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
% dass alle bendtigten Werte bereits berechnet sind.

» Eine weitere Verbesserung ergibt sich, indem man
@@ erkennt, dass hier jeweils nur die zwei letzten
Abhangigkeitsgraph Werte bendtigt werden (in-place).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme (iberlappen.

Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).
» Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
% dass alle bendtigten Werte bereits berechnet sind.

» Eine weitere Verbesserung ergibt sich, indem man
@@ erkennt, dass hier jeweils nur die zwei letzten
Abhangigkeitsgraph Werte bendtigt werden (in-place).

= Auf diesen Grundideen basiert die ‘ Dynamische Programmierung |.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Ubersicht

© Dynamische Programmierung
@ Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

35

Sei d,S-k) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0,1,..., k}.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

35

Sei d,S-k) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0, 1, ..., k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

{ W(i,j) fiir k = 0

k) —
min (d,g-k_l), d,-(kk_l) + d,gj-(_l)) fur k >0

i)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

35

Sei d,S-k) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0, 1, ..., k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

{ W(i,j) fiir k = 0

k) —
min (d,g-k_l), d,-(kk_l) + d,gj-(_l)) fur k >0

i)

» Top-down Abhangigkeit: d,-(jk) hangt von d.(.k_l) ab.

y

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

35

Sei d,S-k) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0, 1, ..., k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

{ W(i,j) fiir k = 0

k) —
min (d,g-k_l), d,-(kk_l) + d,gj-(_l)) fur k >0

i)

» Top-down Abhangigkeit: d,-(jk) hangt von d.(.k_l) ab.

i
0) (1) 4(2)
d,-j ,d,-j ,d,-j

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

» Bottom-up Berechnung: usw.

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung

Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet

werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.

maximalem Wert).

Joost-Pieter Katoen Datenstrukturen und Algorithmen

9/31

Dynamische Programmierung

Dynamische Programmierung

Dynamische Programmierung
» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).
Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob
diese DP ermoglicht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob
diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob

diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Lésung

auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung

Dynamische Programmierung

Dynamische Programmierung
» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).
Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob
diese DP ermoglicht.

» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Lésung
auf.
3. Lose Rekursionsgleichung bottom-up.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob
diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Lésung
auf.
3. Lose Rekursionsgleichung bottom-up.

4. Bestimme aus dem Wert der Lésung die Argumente der Losung.
Rekonstruiere die Losung.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob

diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Lésung
auf.

3. Lose Rekursionsgleichung bottom-up.

4. Bestimme aus dem Wert der Lésung die Argumente der Losung.
Rekonstruiere die Losung.

Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), ...

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Ubersicht

© Anwendungen
o Ketten von Matrixmultiplikationen
@ Das Rucksackproblem
@ Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation

C=A-Bmit Ac R, Be R/*K C e R*k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R™, Be R/*K C e R™*X.

» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R™, Be R/*K C e R™*X.

» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R™, Be R/*K C e R™*X.

» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

» Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-As-...-A,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A -Bmit Ac R, Be Rk C e Rk
» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

» Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-As-...-A,

» Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R™, Be R/*K C e R™*X.

» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

» Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-As-...-A,

» Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

» Solche Ketten lassen sich wegen der Assoziativitat der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c IRIOOXE’, A3 c IRSXSO.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Ay € IR10X100 A, ¢ [R100X5 A, c R5%50.
» Berechnen wir A;-(Az-As3),

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c]1:{100><5v A3 c IRSXSO.

» Berechnen wir Aj-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c]1:{100><5v A3 c IRSXSO.

» Berechnen wir Aj-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

» Berechnen wir aber (A;-A)-As,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c]1{100><5v A3 c IRSXSO.

» Berechnen wir Aj-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

» Berechnen wir aber (A;-Az)-As, dann ergeben sich
10-100-5 + 10-5-50 = 5000 + 2500 = 7500 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c]1:{100><5v A3 c IRSXSO.

» Berechnen wir Aj-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

» Berechnen wir aber (A;-Az)-As, dann ergeben sich
10-100-5 + 10-5-50 = 5000 + 2500 = 7500 Multiplikationen.

Finde fiir eine Kette von Matrizen A1, Ay, ..., A,, mit Dimensionen
do X di, di X dp, ..., dp_1 X dp, eine Klammerung, so dass die Anzahl der
FlieBkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung

n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung
n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1

» Deren Loésung liegt in (27).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung
n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1

» Deren Loésung liegt in (27).

» Einfach alle Méglichkeiten auszuprobieren ist keine Option.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung
n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1

» Deren Loésung liegt in (27).

» Einfach alle Méglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung fiir die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.

» Die Dimension einer Teilkette ist d;_1 X dj.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.
» Die Dimension einer Teilkette ist d;_1 X dj.

» Teilen bei Position k ergibt: m[i, j] = m[i, k] + dj_1-dy-d; + m[k+1, j].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.

» Die Dimension einer Teilkette ist d;_1 X dj.

» Teilen bei Position k ergibt: m[i, j] = m[i, k] + dj_1-dy-d; + m[k+1, j].
» Wir suchen dabei das optimale k, also:

i 0 fiir j = j,
mli,j] =
! minj<k<j(mli, k| + mlk+1, j] + di—1-di-d;) ~ fiir i < j.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen —
Bottom-Up-Lo6sung (1)

il fiir i =,
mli,j]l =
/ minj<k<j(mli, k] + mlk+1,j] + di—1-di-d;) ~ fir i <.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen —
Bottom-Up-Lo6sung (1)

il fiir i =,
mli,j]l =
/ minj<k<j(mli, k] + mlk+1,j] + di—1-di-d;) ~ fir i <.

» Wie bei Fibonacci wird z. B. das Teilproblem m|[0, 1] mehrfach
verwendet: von m[0, 2], m[0, 3], ..., m|0, n].

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen —
Bottom-Up-Lo6sung (1)

il fiir i =,
mli,j]l =
/ minj<k<j(mli, k] + mlk+1,j] + di—1-di-d;) ~ fir i <.

» Wie bei Fibonacci wird z. B. das Teilproblem m][0, 1] mehrfach
verwendet: von m[0, 2], m[0, 3], ..., m|0, n].

> Es gibt fiir alle 1 < i < j < n ein Teilproblem, also insgesamt nur
(5) € ©(n?) Teilprobleme.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen —
Bottom-Up-Lo6sung (1)

il fiir i =,
mli,j]l =
/ minj<k<j(mli, k] + mlk+1,j] + di—1-di-d;) ~ fir i <.

» Wie bei Fibonacci wird z. B. das Teilproblem m][0, 1] mehrfach
verwendet: von m[0, 2], m[0, 3], ..., m(0, n].

> Es gibt fiir alle 1 < i < j < n ein Teilproblem, also insgesamt nur
(5) € ©(n?) Teilprobleme.

» Wahlen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i, j], dann lasst sich m[i, j] in ©(n) berechnen, da die Werte m[i, k]
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt (Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] —[1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]]— [2,4]
f f
[3.3] - [3.4]

o . r
mli] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt (Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt (Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt (Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Algorithmus

1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=d; fir i1=0...n
2 int matMultOrder(int dim[n+1], int n) {

3 dint m[n,nl; // hier O-basiert!

4 for (int i = 0; i < n; i++)

5 m[i,i]l = 0; // Diagonale

6 for (int i = n-1; i >= 0; i-—-) // Zeilen

7 for (int j = i+1l; j < n; j++) { // Spalten

8 int curMin = +inf;

9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,

11 mli,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }

13 m[i,j] = curMin;

14 }

15 return m[0,n-1];

16

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Algorithmus

1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=d; fir i1=0...n
2 int matMultOrder(int dim[n+1], int n) {

3 dint m[n,nl; // hier O-basiert!

4 for (int i = 0; i < n; i++)

5 m[i,i]l = 0; // Diagonale

6 for (int i = n-1; i >= 0; i-—-) // Zeilen

7 for (int j = i+1l; j < n; j++) { // Spalten

8 int curMin = +inf;

9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,

11 mli,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }

13 m[i,j] = curMin;

14 }

15 return m[0,n-1];

16

» Zur einfacheren Rekonstruktion der Lésung werden wir in einer
zweiten Matrix jeweils den Index k mit dem Minimum speichern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Ketten von Matrixmultiplikationen — Beispiel

Sei Ag € R3O A; € R0 A, € R4OX10 A, ¢ R10%25
mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};
0 1 B 3
0

1
2

3

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol O
1 0
2 0
3 0

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2
ol O
1 0 i=2 j=3
2 0 10000 2 AsA3
3 0

0+ 0+ 40-10-25
(k=2): Az-As

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 2
ol O
1 0 400 1 i=1 j=2
2 0 10000 2 A1Ar
3 0
0+0-+1-40-10
(k=1): A1-As

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2
of O
1 0 400 650 1 2(i=1 =3
2 0 10000 2 AiAA3
3 0

0+ 10000 + 1-40-25, 40040+ 1-10-25
(k=1): A1~(A2A3) (k=2): (A1A2)-A3

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol 0 1200 0
1 0 400 650 1 2(i=0,j=1
2 0 10000 2 ApAr
3 0
0-+0+30-1-40
(k=0): Ag-A1

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol 0 1200 700 0 0
1 0 400 650 1 2(i=0, =2
2 0 10000 21 AiAiA
3 0

0+ 400 + 30-1-10, 1200+ 0+ 30-40-10
(k=0): Ap-(A1A2) (k=1): (AoA1)-Az

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
of 0 1200 700 1400 0 0O
1 0 400 650 1 2(i=0, =3
2 0 10000 2| ApA1ArA3
3 0

0+ 650 + 30-1-25, 1200 + 10000 + 30-40-25, 700+ 0+ 30-10-25
(k=0): A0~(A1A2A3) (k=1): (AOA1)~(A2A3) (k=2): (AOA1A2)~A3

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol 0 1200 700 1400 0 0O
1 0 400 650 1 2
2 0 10000 2
3 0

0+ 650 + 30-1-25, 1200 + 10000 + 30-40-25, 700+ 0+ 30-10-25
(k=0): A0~(A1A2A3) (k=1): (AOA1)~(A2A3) (k=2): (AOA1A2)~A3

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ag A; A> As ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
of 0 1200 700 1400 0 0O
1 0 400 650 1 2(i=0, =3
2 0 10000 2| ApA1ArA3
3 0

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ap-(A1 Az As) ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
of 0 1200 700 1400 0 0O
1 0 400 650 1 2(i=1 =3
2 0 10000 2 AiAA3
3 0

> ((AoA1)A2)Asz bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ap-((A;1 A2)-As3) ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol 0 1200 700 1400 0 0O
1 0 400 650 1 2(i=1j=2
2 0 10000 2 A1A>
3 0

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ap-((A1-A2)-As3) ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Ketten von Matrixmultiplikationen — Beispiel
Sei Ag € R3%L A; € RV, A, ¢ R¥%10 A, ¢ R10%25,

mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3
ol 0 1200 700 1400 0 0O
1 0 400 650 1 2
2 0 10000 2
3 0

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ap-((A1-A2)-As3) ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (1)
Das Rucksackproblem (0-1 Knapsack)

Gegeben sei ein Rucksack, mit maximaler Tragkraft M, sowie n
Gegenstande, die sowohl ein Gewicht als auch einen Wert haben.
Nehme moglichst viel Wert mit, ohne den Rucksack zu tiberladen.

‘?
"?

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/31

Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
» n Gegenstande: G ={0,...,n—1},

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
» n Gegenstande: G ={0,...,n—1},
» Gewichte: w; € INg fiir i € G,

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:

» Maximale Tragkraft M,

» n Gegenstande: G ={0,...,n—1},
Gewichte: w; € INg fiur i € G,
Wert: ¢; € IN fir i € G (bzw. Kosten).

v

v

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
» n Gegenstande: G ={0,...,n—1},
» Gewichte: w; € INg fiir i € G,
» Wert: ¢; € INg fiir i € G (bzw. Kosten).

Gesucht:

» Der maximale Wert cpax.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:

» Maximale Tragkraft M,

» n Gegenstande: G ={0,...,n—1},
Gewichte: w; € INg fiur i € G,
» Wert: ¢; € INg fiir i € G (bzw. Kosten).

v

Gesucht:

» Der maximale Wert cpax.

> S C G mit cmax :Z ¢; unter der Nebenbedingung Z w; < M.
ieS ieS

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem (I1)

Gegeben:

» Maximale Tragkraft M,

» n Gegenstande: G ={0,...,n—1},
Gewichte: w; € INg fiur i € G,
» Wert: ¢; € INg fiir i € G (bzw. Kosten).

v

Gesucht:

» Der maximale Wert cpax.

> S C G mit cmax :Z ¢; unter der Nebenbedingung Z w; < M.
ieS ieS

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.

» Wir bestimmen zunachst cpmax:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.
» Wir bestimmen zunachst cpmax:
» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks

mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.
» Wir bestimmen zunachst cpmax:
» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks

mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.

> Flr cnax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: w,_1, Wert: ¢,—1) mitgenommen wird.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.
» Wir bestimmen zunachst cpmax:
» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks

mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.

> Flr cnax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: w,_1, Wert: ¢,—1) mitgenommen wird.
Betrachten wir beide Falle:

Ohne: cmax ware dann gleich ¢ ., fir M' = M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.

» Wir bestimmen zunachst cpmax:

» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks
mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.

> Flr cnax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: w,_1, Wert: ¢,—1) mitgenommen wird.

Betrachten wir beide Falle:

Ohne: cmax ware dann gleich ¢ ., fir M' = M.

Mit: cmax ware dann gleich ¢/, + cp—1 fur M = M — w,,_1.

Falls M’ < 0, dann setzen wir ¢/,,, = —o0 (, geht nicht").

max

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.

» Wir bestimmen zunachst cpmax:

» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks
mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.

> Flr cnax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: w,_1, Wert: ¢,—1) mitgenommen wird.

Betrachten wir beide Falle:

Ohne: cmax ware dann gleich ¢ ., fir M' = M.

Mit: cmax ware dann gleich ¢/, + cp—1 fur M = M — w,,_1.

Falls M’ < 0, dann setzen wir ¢/,,, = —o0 (, geht nicht").

max

= Wabhle den Fall mit dem groBeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegensténde {0, ..., — 1} bericksichtigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—l,j], Ci—1+ C[i—].,_j—Wi_l])
Clij]={ —o fiir j <0
0 firi—=0j>0

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—1,j], ci-1 + C[i—1, j—w;_1])
Clijl =4 —oo

fur j <0
0

fir i=0,j>0

» Dann ist cmax = C[n, M].

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—1,j], ci-1 + C[i—1, j—w;_1])
Clijl =4 —oo

fur j <0
0

fir i=0,j>0

» Dann ist cmax = C[n, M].

> Diese Rekursionsgleichung [6sen wir nun bottom-up, indem wir die
Rucksacke mit allen méglichen Gewichten {0, ..., M} berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Das Rucksackproblem — Algorithmus

1 // Eingabe: Gewichte w[i], Werte c[i], Tragkraft M
2 int knapDP(int w[n], int c[n], int n, int M) {
3 int C[n+1,M+1];

4 for (int j = 0; j <= M; j++)

5 Cl0,j] = 0;

6 for (int i = 1; i <= n; i++)

7 for (int j = 0; j <= M; j++)

8 if (wli-1] <= j) {

9 Cli,j] = max(Cl[i-1,j], cli-1] + C[i-1,j-wli-1]1);
10 } else {

11 Cli,jl = Cli-1,j1; // passt nicht
12 }

13 return C[n,M];

14 }

» Zeitkomplexitat: ©(n-M), Platzkomplexitat: ©(n-M).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Beispiel

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll=4{2,12,1,1, 43} cll ={2,4,2,1, 10}, M= 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g A W N R O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

wll=4{2,12, 1,1, 43}, cll] =42, 4, 2, 1, 10 }, M = 15

o 1 2 3 4 5 6 7 8 9
0 0 00O OO O 0 0O 0 0

g A W N R O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 43}, cll1 =42, 4, 2, 1, 10 }, M = 15

=
o
=
jan
-
N
=
w
=
IS
=
o1

O O |o
O O |~
N O o

3 4 5 6
0 0 0 O
2 2 2 2

N O |o
N O
N O
N O
N O
N O
N O

g A W N R O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel

wll ={2,12, 1,1, 4}, cll =4{2,4,2,1, 103}, M=15

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0o 0 00O 0O0OO OOOOTOOTUOTG OO
o 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0o 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6

g A W N R O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 4}, c[1 =42, 4

2,1, 10 }, M = 15

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 00O OOODOOU OTG OT OGO OTU OGO 0O
00 22 2 222 222 222 22
] 000 2 2 2 2 2 2 2 2 2 2 4 4 6 6
5| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4
5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 4}, cl1 =42, 4

2,1, 10 }, M = 15

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O OO O0OO0OO0OOOOO0OTO0O O
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
+4/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel

wll ={2,12,1, 1,4}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O OO O0OO0OO0OOOOO0OTO0O O
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
+4/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
s| 0 2 3 410 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

Beispiel

wll ={2,12, 1,1, 43}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 O OO O O O0OO0OO0OO0OOOO0OO0OTO0O O
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
+/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
s| 0 2 3 410 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel

wll ={2,12, 1,1, 4}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 O OO O O O O0OO0OO0OOOOO0OTO0O O
1| 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 38
+/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
s| 0 2 3 410 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel
wll = {2, 12,1, 1, 4}, cll

]
~
N
N

2,1, 10 }, M = 15

=
S}
o
o
-
N
o
w
=
>
=
@

B . v~ o
OO OOOO|o
NNNO OO |~
WWNNDN O |
APBEAPAEANDNNO|W
OQOTENNO |~
NOBENN O |u»
WOITENNO |
PO BAEANDNO|N
CITOTENN O |
CITOTBEDNDNO|o

CIToOOBENDNO
ok PRANO
CIoOOPR~NO

[y
=
=
—
[y
[y
—

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel

wll ={2,12,1, 1,4}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O O O0OO0OO0OO0OO0OOO0OO0OTO0O O
10 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
> 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4l 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel

wll ={2,12, 1,1, 4}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O O O0OO0OO0OO0OO0OOO0OO0OTO0O O
10 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4l 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

wll=4{2,12, 1, 1, 43}, cll] =42, 4, 2, 1, 10 }, M = 15

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o/ 0 0O OOO OO O0OO0OO0OOOOO0OTO0O O
B o 02 2 2 2 2 2 2 2 2 2 2 2 22
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4l 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

wll=4{2,12, 1, 1, 43}, cll1 =42, 4, 2, 1, 10 }, M = 15

-

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o/, 0 0O 0O OO O O OOOTOOOTOTG OO
o 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0o 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6

0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8

0 2 3 45 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz

Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz

Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und iiberpriife, welche
auch eine Teilsequenz von B sind, und bewahre die langste gefundene
Teilsequenz. Zeitkomplexitat ©(2™) da es 2™ Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Longest Common Subsequence — Eigenschaften (1)

Sei Aj = (a1,...,a;) der i-te Prafix von A= (a1, ...,am) fir0 < i< m.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—1, Bo_1), am)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—-1, Bn-1), am).
2. Andernfalls gilt entweder

LCS(Am, Bn) = LCS(Am, Bn—1) oder
LCS(Am, Bn) = LCS(Am—1, Bn)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—1, Bo_1), am)-

2. Andernfalls gilt entweder
LCS(Am, Bn) = LCS(Am, Bn—1) oder
LCS(Am, Bn) = LCS(Am-1, By).
Insbesondere ist
ILCS(Am, Br)] = max(|LCS(Am, Ba-1)|, ILCS(Am-1, Ba)).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Longest Common Subsequence — Eigenschaften (l1)

Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—-1,Bn-1), am).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am 1, B,, 1)1 am)-

Beweis.

Sei C = LCS(Am, By) der Lange k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am 1, Bn l)y am)-

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B,, erhalten.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(A,T,, Bn) — (LCS(Am 1, B,, l)y am)-

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine

Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
Widerspruchsbeweis.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Ap—1 und B,_1 mit einer Lange von mindestens k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Ap—1 und B,_1 mit einer Lange von mindestens k. Dann wiirde das
Anhangen von a,, = b, an D zu einer gemeinsamen Teilsequenz von A
und B fiihren, deren Lange groBer ist als k.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am 1, Bn 1)! am)'

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Ap—1 und B,_1 mit einer Lange von mindestens k. Dann wiirde das
Anhangen von a,, = b, an D zu einer gemeinsamen Teilsequenz von A
und B fihren, deren Lange groBer ist als k. Widerspruch. O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i,] = |LCS(A;, Bj)|

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i,] = |LCS(A;, Bj)|

0
L[i,j]=<X L[i—1,j—1]+1 falls aj = bj, i,j > 0
max(L[i,j — 1], L[i — 1,j]) falls a; # bj, i,j >0

fir i=0oder j =0

» Das lasst sich direkt als Algorithmus umsetzen (Hausaufgabe).

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i,] = |LCS(A;, Bj)|

0
L[i,j]=<X L[i—1,j—1]+1 falls aj = bj, i,j > 0
max(L[i,j — 1], L[i — 1,j]) falls a; # bj, i,j >0

fir i=0oder j =0

» Das lasst sich direkt als Algorithmus umsetzen (Hausaufgabe).
» Dessen Laufzeit ist O(|A|-|B

), ebenso seine Platzkomplexitat.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i,] = |LCS(A;, Bj)|

0
L[i,j]=<X L[i—1,j—1]+1 falls aj = bj, i,j > 0
max(L[i,j — 1], L[i — 1,j]) falls a; # bj, i,j >0

fir i=0oder j =0

» Das lasst sich direkt als Algorithmus umsetzen (Hausaufgabe).
» Dessen Laufzeit ist O(|A|-|B

), ebenso seine Platzkomplexitat.
» Ahnlich dem Rucksackproblem lasst sich dann die LCS rekonstruieren.

Joost-Pieter Katoen

Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< bei a; # b;, fir L[i,j] = L[i,j — 1] und nicht 1

N I E D E R L A N D E
o 0 0 O O O O o o o0 o

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< bei a; # b;, fir L[i,j] = L[i,j — 1] und nicht 1

N I E D E R L A N D E
o 0 0 O O O O o o o0 o

10 10 10 K1 1 «1 <1 «1 «1 K1 «1

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< bei a; # b;, fir L[i,j] = L[i,j — 1] und nicht 1

N I E D E R L A N D E
o 0 0 O O O O o o o0 o
10 10 10 Rl 1 «1 «1 +1 «1 K1 «1

10 10 N1 11 N2 2 2 <2 <2 2 N2

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
0 10 11 11 12 12 13 N4 +4 4 4

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N I E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
NI «~1 11 11 12 12 13 14 X5 +5 «5
A1 1 R2 12 12 13 14 15 K6 +6

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
NI «~1 11 11 12 12 13 14 X5 +5 «5
A1 1 R2 12 12 13 14 15 K6 +6

OZrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 <1 11 11 12 12 13 14 X5 <5 5
A1 1 R2 12 12 13 14 15 K6 +6

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E
0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 «1 +1 +1 «+1 «+1X1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 KN4 <4 4 +4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrIn0un+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
10 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrIn0undcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrIn0n+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrIn0un+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrIn0un+H4cCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZrrInun—-HcCcmo
[eN=NoNoNooNoNoNoNoNoNal

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 <2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OzZr»rrI0unH4cCcmo
OO OO OO ODODOO OO

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 +2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OzZr»rrI0unH4cCcmo
OO OO OO ODODOO OO

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
170 10 10 N1 <1 «1 +1 «1 +1RX1+«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OzZr>»rI0ounH4cCcmo
OO OO OO ODODOO OO

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZ>»rI0oun-H4cCcmoU
OO OO OO ODODOO OO

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< beiaj #b;, fir L[i,j] =L[i,j— 1] und nicht T

N Il E D E R L A N D E

0o 0 0 0o 0o O O O O o0 oO
10 10 10 N1 <1 «1 +1 «1 +1RX1 +«1
10 10 N1 11 N2 2 2 <2 <2 2 N2
0 10 11 11 12 12 12 12 12 12 12
170 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 1 11 12 12 12 12 12 12 12
0 10 11 1 12 12 12 12 12 12 12
0 10 11 11 12 12 X3 <3 <3 <3 «3
10 10 11 11 12 12 13 N4 +4 <4 4
N1 «~1 11 11 12 12 13 14 X5 +5 «5
41 1 R2 12 12 13 14 15 K6 +6

OZ>»rI0oun-H4cCcmoU
OO OO OO ODODOO OO

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

	Motivation
	Dynamische Programmierung
	Rekursionsgleichungen

	Anwendungen
	Ketten von Matrixmultiplikationen
	Das Rucksackproblem
	Longest Common Subsequence (LCS)

