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Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) =0,  Fib(1)=1,  Fib(n) = Fib(n—1) + Fib(n—2)
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» Wir wollen z. B. Fib(3) nicht standig neu berechnen.
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Erinnerung: Fibonacci
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» Wir wollen z. B. Fib(3) nicht standig neu berechnen.
> Idee: Speichere einmal berechnete Werte.
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Memoization

Memoization

» Bei jedem Funktionsaufruf iberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).
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Memoization

Memoization

» Bei jedem Funktionsaufruf iberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

> Ist das nicht der Fall, berechne den Wert und speichere zusatzlich das

Ergebnis.
Beispiel
1 int fibDP(int n) {
2 if (n < 2) return n;
3 int f1 = getCache(n-1), f2 = getCache(n-2);
4 if (f1 == -1) f1 = fibDP(n-1); // nicht gefunden
5 if (f2 == -1) f2 = fibDP(n-2);
6 int fib = f1 + £2;
7 setCache(n, fib);
8 return fib;
9}
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Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme {iberlappen.
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Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme (iberlappen.

Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).
» Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
% dass alle bendtigten Werte bereits berechnet sind.

» Eine weitere Verbesserung ergibt sich, indem man
@@ erkennt, dass hier jeweils nur die zwei letzten
Abhangigkeitsgraph Werte bendtigt werden (in-place).
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Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme (iberlappen.

Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) > der Platzbedarf wachst dabei auf ©(n).
» Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
% dass alle bendtigten Werte bereits berechnet sind.

» Eine weitere Verbesserung ergibt sich, indem man
@@ erkennt, dass hier jeweils nur die zwei letzten
Abhangigkeitsgraph Werte bendtigt werden (in-place).

= Auf diesen Grundideen basiert die ‘ Dynamische Programmierung |.
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Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden.
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Dynamische Programmierung

» Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lésung, und stelle fest ob

diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Lésung
auf.

3. Lose Rekursionsgleichung bottom-up.

4. Bestimme aus dem Wert der Lésung die Argumente der Losung.
Rekonstruiere die Losung.

Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), ...
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Matrixmultiplikation

C=A-Bmit Ac R, Be R/*K C e R*k.
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Matrixmultiplikation
C=A -Bmit Ac R, Be Rk C e Rk
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Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

» Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-As-...-A,

» Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.
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Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R™, Be R/*K C e R™*X.

» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

> Komplexitat: i-j-k FlieBkomma-Multiplikationen.

» Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-As-...-A,

» Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

» Solche Ketten lassen sich wegen der Assoziativitat der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.
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Ketten von Matrixmultiplikationen — Motivation (II)

Sei Al c IRlOXlOO, A2 c ]1:{100><5v A3 c IRSXSO.

» Berechnen wir Aj-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

» Berechnen wir aber (A;-Az)-As, dann ergeben sich
10-100-5 + 10-5-50 = 5000 + 2500 = 7500 Multiplikationen.

Finde fiir eine Kette von Matrizen A1, Ay, ..., A,, mit Dimensionen
do X di, di X dp, ..., dp_1 X dp, eine Klammerung, so dass die Anzahl der
FlieBkomma-Multiplikationen minimal ist.
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Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung

n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1
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Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(At A (At .- -An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung
n—1
P(n) =Y _ P(k)-P(n— k), P(1) =1.
k=1

» Deren Loésung liegt in (27).

» Einfach alle Méglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung fiir die
minimale Anzahl an Multiplikationen auf.
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Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen
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m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.
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Dynamische Programmierung Anwendungen

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.
» Die Dimension einer Teilkette ist d;_1 X dj.

» Teilen bei Position k ergibt: m[i, j] = m[i, k] + dj_1-dy-d; + m[k+1, j].
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Dynamische Programmierung Anwendungen

Rekursionsgleichung

(At A (Aks ... -Ap)

k Matrizen n—k Matrizen

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;.

» Offenbar ist m[i, /] =0 fir alle 0 < i < n.

» Die Dimension einer Teilkette ist d;_1 X dj.

» Teilen bei Position k ergibt: m[i, j] = m[i, k] + dj_1-dy-d; + m[k+1, j].
» Wir suchen dabei das optimale k, also:

i 0 fiir j = j,
mli,j] =
! minj<k<j(mli, k| + mlk+1, j] + di—1-di-d;) ~ fiir i < j.
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Dynamische Programmierung Anwendungen
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> Es gibt fiir alle 1 < i < j < n ein Teilproblem, also insgesamt nur
(5) € ©(n?) Teilprobleme.

» Wahlen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i, j], dann lasst sich m[i, j] in ©(n) berechnen, da die Werte m[i, k]
und m[k+1, j] bereits bekannt sind.
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Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli ] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt ( Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31



Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] —[1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]]— [2,4]
f f
[3.3] - [3.4]

o . r
mli ] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt ( Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31



Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli ] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4]

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt ( Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31



Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
[1,1] = [1,2] — [1,3] — [1,4]
t f
[2,2] = [2,3]|— [2,4]
f f
[3.3] - [3.4]

o . r
mli ] = min (mli, K]+ mlk+1/] + dr-1-deed)) 4,4

» Damit ist eine Zeitkomplexitit von ©(n?) bei einem Platzbedarf von
©(n?) méglich.

» Erinnerung: Die naive Variante hatte (2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt ( Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31



Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Algorithmus

1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=d; fir i1=0...n
2 int matMultOrder(int dim[n+1], int n) {

3 dint m[n,nl; // hier O-basiert!

4 for (int i = 0; i < n; i++)

5 m[i,i]l = 0; // Diagonale

6 for (int i = n-1; i >= 0; i-—-) // Zeilen

7 for (int j = i+1l; j < n; j++) { // Spalten

8 int curMin = +inf;

9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,

11 mli,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }

13 m[i,j] = curMin;

14 }

15 return m[0,n-1];

16
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» Zur einfacheren Rekonstruktion der Lésung werden wir in einer
zweiten Matrix jeweils den Index k mit dem Minimum speichern.
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Ketten von Matrixmultiplikationen — Beispiel

Sei Ag € R3O A; € R0 A, € R4OX10 A, ¢ R10%25
mli,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};
0 1 B 3
0

1
2

3

> ((AoA1)A2)As3 bendtigt 20 700 Multiplikationen.
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Dynamische Programmierung Anwendungen

Das Rucksackproblem (1)
Das Rucksackproblem (0-1 Knapsack)

Gegeben sei ein Rucksack, mit maximaler Tragkraft M, sowie n
Gegenstande, die sowohl ein Gewicht als auch einen Wert haben.
Nehme moglichst viel Wert mit, ohne den Rucksack zu tiberladen.

‘?
"?
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Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
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Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
» n Gegenstande: G ={0,...,n—1},
» Gewichte: w; € INg fiir i € G,
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Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung losen.
» Wir bestimmen zunachst cpmax:
» Angenommen wir kennen den maximalen Wert ¢/,,, des Rucksacks

mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstiande
beriicksichtigt werden.
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Dynamische Programmierung Anwendungen
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= Wabhle den Fall mit dem groBeren Wert.
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Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegensténde {0, ..., — 1} bericksichtigt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31



Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i, j| der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—l,j], Ci—1+ C[i—].,_j—Wi_l])
Clij]={ —o fiir j <0
0 firi—=0j>0
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Dynamische Programmierung Anwendungen
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Clijl =4 —oo

fur j <0
0

fir i=0,j>0

» Dann ist cmax = C[n, M].
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man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—1,j], ci-1 + C[i—1, j—w;_1])
Clijl =4 —oo

fur j <0
0

fir i=0,j>0

» Dann ist cmax = C[n, M].

> Diese Rekursionsgleichung [6sen wir nun bottom-up, indem wir die
Rucksacke mit allen méglichen Gewichten {0, ..., M} berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.
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Das Rucksackproblem — Algorithmus

1 // Eingabe: Gewichte w[i], Werte c[i], Tragkraft M
2 int knapDP(int w[n], int c[n], int n, int M) {
3 int C[n+1,M+1];

4 for (int j = 0; j <= M; j++)

5 Cl0,j] = 0;

6 for (int i = 1; i <= n; i++)

7 for (int j = 0; j <= M; j++)

8 if (wli-1] <= j) {

9 Cli,j] = max(Cl[i-1,j], cli-1] + C[i-1,j-wli-1]1);
10 } else {

11 Cli,jl = Cli-1,j1; // passt nicht
12 }

13 return C[n,M];

14 }

» Zeitkomplexitat: ©(n-M), Platzkomplexitat: ©(n-M).
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Beispiel
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll=4{2,12,1,1, 43} cll ={2,4,2,1, 10}, M= 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g A W N R O
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

wll=4{2,12, 1,1, 43}, cll] =42, 4, 2, 1, 10 }, M = 15

o 1 2 3 4 5 6 7 8 9
0 0 00O OO O 0 0O 0 0

g A W N R O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31



Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 43}, cll1 =42, 4, 2, 1, 10 }, M = 15
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel

wll ={2,12, 1,1, 4}, cll =4{2,4,2,1, 103}, M=15

-
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Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 4}, c[1 =42, 4

2,1, 10 }, M = 15
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel
wll =4{2, 12, 1, 1, 4}, cl1 =42, 4

2,1, 10 }, M = 15

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O OO O0OO0OO0OOOOO0OTO0O O
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
+4/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31



Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

Beispiel

wll ={2,12,1, 1,4}, cll =4{2,4,2,1, 103}, M=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o/ 0 0O OO O OO O0OO0OO0OOOOO0OTO0O O
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2| 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
s| 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
+4/ 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
s| 0 2 3 410 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31



Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion

Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

Beispiel

wll ={2,12, 1,1, 43}, cll =4{2,4,2,1, 103}, M=15
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel

wll ={2,12, 1,1, 4}, cll =4{2,4,2,1, 103}, M=15
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Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

Beispiel

wll ={2,12,1, 1,4}, cll =4{2,4,2,1, 103}, M=15
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Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

wll=4{2,12, 1, 1, 43}, cll] =42, 4, 2, 1, 10 }, M = 15
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Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmnax ZU erreichen.

» Falls C[i,j] = C[i — 1, ] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).

» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

wll=4{2,12, 1, 1, 43}, cll1 =42, 4, 2, 1, 10 }, M = 15

-
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Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.
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Dynamische Programmierung Anwendungen

Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.
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Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.
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Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz

Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.
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Longest Common Subsequence — einige Begriffe

Teilsequenz

Sei A= (a1,..., am) eine Sequenz. Die Sequenz A;, = (aj,, ..., a;,) ist
eine Teilsequenz von A wobei i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz

Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.
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Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31



Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.
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Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31



Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A= (a1,...,am) und B = (b1, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

beba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und iiberpriife, welche
auch eine Teilsequenz von B sind, und bewahre die langste gefundene
Teilsequenz. Zeitkomplexitat ©(2™) da es 2™ Teilsequenzen von A gibt.
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Longest Common Subsequence — Eigenschaften (1)

Sei Aj = (a1,...,a;) der i-te Prafix von A= (a1, ...,am) fir0 < i< m.
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Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—1, Bo_1), am)-
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Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—-1, Bn-1), am).
2. Andernfalls gilt entweder

LCS(Am, Bn) = LCS(Am, Bn—1) oder
LCS(Am, Bn) = LCS(Am—1, Bn)-
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Longest Common Subsequence — Eigenschaften (1)

Sei Ai = (a1, ..., a;) der i-te Prafix von A= (ay, ..., am) fir 0 < i < m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = b,, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—1, Bo_1), am)-

2. Andernfalls gilt entweder
LCS(Am, Bn) = LCS(Am, Bn—1) oder
LCS(Am, Bn) = LCS(Am-1, By).
Insbesondere ist
ILCS(Am, Br)] = max(|LCS(Am, Ba-1)|, ILCS(Am-1, Ba)).
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Longest Common Subsequence — Eigenschaften (l1)

Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—-1,Bn-1), am).
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Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am 1, B,, 1)1 am)-

Beweis.

Sei C = LCS(Am, By) der Lange k.
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Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am 1, Bn l)y am)-

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B,, erhalten.
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Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(A,T,, Bn) — (LCS(Am 1, B,, l)y am)-

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine

Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
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Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1.
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Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
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Longest Common Subsequence — Eigenschaften (l1)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b,,, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Anm, Bp) der Lange k. Wenn a,, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a, an C anhangen, und wiirde eine
Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von A, _1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn—1).
Widerspruchsbeweis.
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Longest Common Subsequence — Eigenschaften (l1)
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Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i, ] = |LCS(A;, Bj)|
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Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[i, ] = |LCS(A;, Bj)|

0
L[i,j]=<X L[i—1,j—1]+1 falls aj = bj, i,j > 0
max(L[i,j — 1], L[i — 1,j]) falls a; # bj, i,j >0

fir i=0oder j =0

» Das lasst sich direkt als Algorithmus umsetzen (Hausaufgabe).
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Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
N beiai=b;, alsol[i,j]=L[i-1j-1]+1
1 beia #b;, fur L[i,j]=L[i—1,j]
< bei a; # b;, fir L[i,j] = L[i,j — 1] und nicht 1

N I E D E R L A N D E
o 0 0 O O O O o o o0 o

OZrrrInun+dcCcmo
[eN=NoNoNooNoNoNoNoNoNal
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Zur Verdeutlichung verwenden wir folgende Notation:
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