
Dynamische Programmierung

Datenstrukturen und Algorithmen
Vorlesung 20: Dynamische Programmierung (K15)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

3. Juli 2012

Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/31

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Dynamische Programmierung

Übersicht

1 Motivation

2 Dynamische Programmierung
Rekursionsgleichungen

3 Anwendungen
Ketten von Matrixmultiplikationen
Das Rucksackproblem
Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/31

Dynamische Programmierung Motivation

Übersicht

1 Motivation

2 Dynamische Programmierung
Rekursionsgleichungen

3 Anwendungen
Ketten von Matrixmultiplikationen
Das Rucksackproblem
Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) = 0, Fib(1) = 1, Fib(n) = Fib(n−1) + Fib(n−2)

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

Rekursionsbaum

I Wir wollen z. B. Fib(3) nicht ständig neu berechnen.
I Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) = 0, Fib(1) = 1, Fib(n) = Fib(n−1) + Fib(n−2)

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

Rekursionsbaum

I Wir wollen z. B. Fib(3) nicht ständig neu berechnen.
I Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) = 0, Fib(1) = 1, Fib(n) = Fib(n−1) + Fib(n−2)

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

Rekursionsbaum

I Wir wollen z. B. Fib(3) nicht ständig neu berechnen.

I Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) = 0, Fib(1) = 1, Fib(n) = Fib(n−1) + Fib(n−2)

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

Rekursionsbaum

I Wir wollen z. B. Fib(3) nicht ständig neu berechnen.
I Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

Dynamische Programmierung Motivation

Memoization
Memoization

I Bei jedem Funktionsaufruf überprüfe, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

I Ist das nicht der Fall, berechne den Wert und speichere zusätzlich das
Ergebnis.

Beispiel

1 int fibDP(int n) {
2 if (n < 2) return n;
3 int f1 = getCache(n-1), f2 = getCache(n-2);
4 if (f1 == -1) f1 = fibDP(n-1); // nicht gefunden
5 if (f2 == -1) f2 = fibDP(n-2);
6 int fib = f1 + f2;
7 setCache(n, fib);
8 return fib;
9 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Dynamische Programmierung Motivation

Memoization
Memoization

I Bei jedem Funktionsaufruf überprüfe, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

I Ist das nicht der Fall, berechne den Wert und speichere zusätzlich das
Ergebnis.

Beispiel

1 int fibDP(int n) {
2 if (n < 2) return n;
3 int f1 = getCache(n-1), f2 = getCache(n-2);
4 if (f1 == -1) f1 = fibDP(n-1); // nicht gefunden
5 if (f2 == -1) f2 = fibDP(n-2);
6 int fib = f1 + f2;
7 setCache(n, fib);
8 return fib;
9 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Dynamische Programmierung Motivation

Memoization
Memoization

I Bei jedem Funktionsaufruf überprüfe, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

I Ist das nicht der Fall, berechne den Wert und speichere zusätzlich das
Ergebnis.

Beispiel

1 int fibDP(int n) {
2 if (n < 2) return n;
3 int f1 = getCache(n-1), f2 = getCache(n-2);
4 if (f1 == -1) f1 = fibDP(n-1); // nicht gefunden
5 if (f2 == -1) f2 = fibDP(n-2);
6 int fib = f1 + f2;
7 setCache(n, fib);
8 return fib;
9 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n), aber
I der Platzbedarf wächst dabei auf Θ(n).
I Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n),

aber
I der Platzbedarf wächst dabei auf Θ(n).
I Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n), aber
I der Platzbedarf wächst dabei auf Θ(n).

I Durch Auswertung von unten-nach-oben
(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n), aber
I der Platzbedarf wächst dabei auf Θ(n).
I Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n), aber
I der Platzbedarf wächst dabei auf Θ(n).
I Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Motivation

Memoization – Dynamische Programmierung

I Memoization hilft, wenn die Teilprobleme überlappen.

6

5

4

3

2

1 0

Abhängigkeitsgraph

I Bessere Zeit-Komplexität: Θ(n) statt Θ(2n), aber
I der Platzbedarf wächst dabei auf Θ(n).
I Durch Auswertung von unten-nach-oben

(Bottom-Up) kann sogar sichergestellt werden,
dass alle benötigten Werte bereits berechnet sind.

I Eine weitere Verbesserung ergibt sich, indem man
erkennt, dass hier jeweils nur die zwei letzten
Werte benötigt werden (in-place).

⇒ Auf diesen Grundideen basiert die Dynamische Programmierung .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Dynamische Programmierung

Übersicht

1 Motivation

2 Dynamische Programmierung
Rekursionsgleichungen

3 Anwendungen
Ketten von Matrixmultiplikationen
Das Rucksackproblem
Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

36

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.
I Bottom-up Berechnung: d (0)

ij , d (1)
ij , d (2)

ij , . . . usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

35

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.
I Bottom-up Berechnung: d (0)

ij , d (1)
ij , d (2)

ij , . . . usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

35

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.

Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.
I Bottom-up Berechnung: d (0)

ij , d (1)
ij , d (2)

ij , . . . usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

35

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.
I Bottom-up Berechnung: d (0)

ij , d (1)
ij , d (2)

ij , . . . usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

35

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.

I Bottom-up Berechnung: d (0)
ij , d (1)

ij , d (2)
ij , . . . usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

i j

k

⊆ {0, . . . , k−1} ⊆ {0
, . . .

, k−
1}

25 10

35

Sei d (k)
ij die Länge eines kürzesten Pfades von i nach j über Knoten in der

Menge {0, 1, . . . , k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

d (k)
ij =

 W (i , j) für k = 0

min
(
d (k−1)

ij , d (k−1)
ik + d (k−1)

kj

)
für k > 0

I Top-down Abhängigkeit: d (k)
ij hängt von d (k−1)

ij ab.
I Bottom-up Berechnung: d (0)

ij , d (1)
ij , d (2)

ij , . . . usw.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden.

Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:

1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob
diese DP ermöglicht.

I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.

I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.

4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.
Rekonstruiere die Lösung.

Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.

Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Dynamische Programmierung

Dynamische Programmierung
I Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt

verschiedene Lösungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lösung mit minimalen Kosten (bzw.
maximalem Wert).

Dynamischer Programmierung kann man i. d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Lösung, und stelle fest ob

diese DP ermöglicht.
I Teilprobleme sind (teilweise) überlappend
I Rekursive Abhängigkeit zwischen den Teilproblemen.

2. Stelle die Rekursionsgleichung (top-down) für den Wert der Lösung
auf.

3. Löse Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Lösung die Argumente der Lösung.

Rekonstruiere die Lösung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), . . .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31

Dynamische Programmierung Anwendungen

Übersicht

1 Motivation

2 Dynamische Programmierung
Rekursionsgleichungen

3 Anwendungen
Ketten von Matrixmultiplikationen
Das Rucksackproblem
Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (I)

Matrixmultiplikation
C = A · B mit A ∈ IRi×j , B ∈ IRj×k , C ∈ IRi×k .

I Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

I Komplexität: i ·j ·k Fließkomma-Multiplikationen.

I Betrachte nun die Multiplikation mehrerer Matrizen:
M = A1·A2· . . . ·An

I Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

I Solche Ketten lassen sich wegen der Assoziativität der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3), so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3, dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3),

so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3, dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3), so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3, dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3), so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3,

dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3), so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3, dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Motivation (II)

Beispiel
Sei A1 ∈ IR10×100, A2 ∈ IR100×5, A3 ∈ IR5×50.

I Berechnen wir A1·(A2·A3), so muss man
10·100·50 + 100·5·50 = 50 000 + 25 000 = 75 000 mal multiplizieren.

I Berechnen wir aber (A1·A2)·A3, dann ergeben sich
10·100·5 + 10·5·50 = 5000 + 2500 = 7500 Multiplikationen.

Problem
Finde für eine Kette von Matrizen A1,A2, . . . ,An, mit Dimensionen
d0 × d1, d1 × d2, . . . , dn−1 × dn, eine Klammerung, so dass die Anzahl der
Fließkomma-Multiplikationen minimal ist.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).
I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).
I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).
I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).

I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).
I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der möglichen Klammerungen für n Matrizen:

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

Damit erhält man die Rekursionsgleichung

P(n) =
n−1∑
k=1

P(k)·P(n − k), P(1) = 1.

I Deren Lösung liegt in Ω(2n).
I Einfach alle Möglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung für die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.
I Die Dimension einer Teilkette ist di−1 × dj .
I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].
I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.
I Die Dimension einer Teilkette ist di−1 × dj .
I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].
I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.

I Die Dimension einer Teilkette ist di−1 × dj .
I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].
I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.
I Die Dimension einer Teilkette ist di−1 × dj .

I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].
I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.
I Die Dimension einer Teilkette ist di−1 × dj .
I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].

I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Rekursionsgleichung

(A1· . . . ·Ak)︸ ︷︷ ︸
k Matrizen

· (Ak+1· . . . ·An)︸ ︷︷ ︸
n−k Matrizen

m[i , j] sei die minimale Anzahl Multiplikationen für die Teilkette Ai · . . . ·Aj .

I Offenbar ist m[i , i] = 0 für alle 0 < i 6 n.
I Die Dimension einer Teilkette ist di−1 × dj .
I Teilen bei Position k ergibt: m[i , j] = m[i , k] + di−1·dk ·dj + m[k+1, j].
I Wir suchen dabei das optimale k, also:

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (I)

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

I Wie bei Fibonacci wird z. B. das Teilproblem m[0, 1] mehrfach
verwendet: von m[0, 2],m[0, 3], . . . ,m[0, n].

I Es gibt für alle 1 6 i < j 6 n ein Teilproblem, also insgesamt nur(n
2
)
∈ Θ(n2) Teilprobleme.

I Wählen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i , j], dann lässt sich m[i , j] in Θ(n) berechnen, da die Werte m[i , k]
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (I)

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

I Wie bei Fibonacci wird z. B. das Teilproblem m[0, 1] mehrfach
verwendet: von m[0, 2],m[0, 3], . . . ,m[0, n].

I Es gibt für alle 1 6 i < j 6 n ein Teilproblem, also insgesamt nur(n
2
)
∈ Θ(n2) Teilprobleme.

I Wählen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i , j], dann lässt sich m[i , j] in Θ(n) berechnen, da die Werte m[i , k]
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (I)

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

I Wie bei Fibonacci wird z. B. das Teilproblem m[0, 1] mehrfach
verwendet: von m[0, 2],m[0, 3], . . . ,m[0, n].

I Es gibt für alle 1 6 i < j 6 n ein Teilproblem, also insgesamt nur(n
2
)
∈ Θ(n2) Teilprobleme.

I Wählen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i , j], dann lässt sich m[i , j] in Θ(n) berechnen, da die Werte m[i , k]
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (I)

m[i , j] =

{
0 für i = j ,
mini6k<j(m[i , k] + m[k+1, j] + di−1·dk ·dj) für i < j .

I Wie bei Fibonacci wird z. B. das Teilproblem m[0, 1] mehrfach
verwendet: von m[0, 2],m[0, 3], . . . ,m[0, n].

I Es gibt für alle 1 6 i < j 6 n ein Teilproblem, also insgesamt nur(n
2
)
∈ Θ(n2) Teilprobleme.

I Wählen wir eine geschickte Berechnungsreihenfolge und speichern alle
m[i , j], dann lässt sich m[i , j] in Θ(n) berechnen, da die Werte m[i , k]
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (II)

[1, 1] [1, 2] [1, 3] [1, 4]

[2, 2] [2, 3] [2, 4]

[3, 3] [3, 4]

[4, 4]m[i , j] = min
i6k<j

(m[i , k] + m[k+1, j] + di−1·dk ·dj)

I Damit ist eine Zeitkomplexität von Θ(n3) bei einem Platzbedarf von
Θ(n2) möglich.

I Erinnerung: Die naive Variante hätte Ω(2n) Zeit, allerdings bei nur
Θ(1) Platzbedarf, benötigt (Time-Memory-Tradeoff).

I In der Regel ist es nun eine große Zeitersparnis, zunächst die optimale
Klammerung zu finden, statt unüberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (II)

[1, 1] [1, 2] [1, 3] [1, 4]

[2, 2] [2, 3] [2, 4]

[3, 3] [3, 4]

[4, 4]m[i , j] = min
i6k<j

(m[i , k] + m[k+1, j] + di−1·dk ·dj)

I Damit ist eine Zeitkomplexität von Θ(n3) bei einem Platzbedarf von
Θ(n2) möglich.

I Erinnerung: Die naive Variante hätte Ω(2n) Zeit, allerdings bei nur
Θ(1) Platzbedarf, benötigt (Time-Memory-Tradeoff).

I In der Regel ist es nun eine große Zeitersparnis, zunächst die optimale
Klammerung zu finden, statt unüberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (II)

[1, 1] [1, 2] [1, 3] [1, 4]

[2, 2] [2, 3] [2, 4]

[3, 3] [3, 4]

[4, 4]m[i , j] = min
i6k<j

(m[i , k] + m[k+1, j] + di−1·dk ·dj)

I Damit ist eine Zeitkomplexität von Θ(n3) bei einem Platzbedarf von
Θ(n2) möglich.

I Erinnerung: Die naive Variante hätte Ω(2n) Zeit, allerdings bei nur
Θ(1) Platzbedarf, benötigt (Time-Memory-Tradeoff).

I In der Regel ist es nun eine große Zeitersparnis, zunächst die optimale
Klammerung zu finden, statt unüberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen –
Bottom-Up-Lösung (II)

[1, 1] [1, 2] [1, 3] [1, 4]

[2, 2] [2, 3] [2, 4]

[3, 3] [3, 4]

[4, 4]m[i , j] = min
i6k<j

(m[i , k] + m[k+1, j] + di−1·dk ·dj)

I Damit ist eine Zeitkomplexität von Θ(n3) bei einem Platzbedarf von
Θ(n2) möglich.

I Erinnerung: Die naive Variante hätte Ω(2n) Zeit, allerdings bei nur
Θ(1) Platzbedarf, benötigt (Time-Memory-Tradeoff).

I In der Regel ist es nun eine große Zeitersparnis, zunächst die optimale
Klammerung zu finden, statt unüberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Algorithmus
1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=di für i=0...n
2 int matMultOrder(int dim[n+1], int n) {
3 int m[n,n]; // hier 0-basiert!
4 for (int i = 0; i < n; i++)
5 m[i,i] = 0; // Diagonale
6 for (int i = n-1; i >= 0; i--) // Zeilen
7 for (int j = i+1; j < n; j++) { // Spalten
8 int curMin = +inf;
9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,
11 m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }
13 m[i,j] = curMin;
14 }
15 return m[0,n-1];
16 }

I Zur einfacheren Rekonstruktion der Lösung werden wir in einer
zweiten Matrix jeweils den Index k mit dem Minimum speichern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Algorithmus
1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=di für i=0...n
2 int matMultOrder(int dim[n+1], int n) {
3 int m[n,n]; // hier 0-basiert!
4 for (int i = 0; i < n; i++)
5 m[i,i] = 0; // Diagonale
6 for (int i = n-1; i >= 0; i--) // Zeilen
7 for (int j = i+1; j < n; j++) { // Spalten
8 int curMin = +inf;
9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,
11 m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }
13 m[i,j] = curMin;
14 }
15 return m[0,n-1];
16 }

I Zur einfacheren Rekonstruktion der Lösung werden wir in einer
zweiten Matrix jeweils den Index k mit dem Minimum speichern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0

0 1200 700 1400

1

0 400 650

2

0 10 000

3

0




0 0 0
1 2

2



I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0

1200 700 1400

1 0

400 650

2 0

10 000

3 0




0 0 0
1 2

2



I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0

1200 700 1400

1 0

400 650

2 0 10 000
3 0




0 0 0
1 2

2

 i = 2, j = 3
A2A3

0 + 0 + 40·10·25
(k=2): A2·A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0

1200 700 1400

1 0 400

650

2 0 10 000
3 0




0 0 0

1

2

2

 i = 1, j = 2
A1A2

0 + 0 + 1·40·10
(k=1): A1·A2

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0

1200 700 1400

1 0 400 650
2 0 10 000
3 0




0 0 0

1 2
2

 i = 1, j = 3
A1A2A3

0 + 10 000 + 1·40·25,
(k=1): A1·(A2A3)

400 + 0 + 1·10·25
(k=2): (A1A2)·A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200

700 1400

1 0 400 650
2 0 10 000
3 0




0

0 0

1 2
2

 i = 0, j = 1
A0A1

0 + 0 + 30·1·40
(k=0): A0·A1

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700

1400

1 0 400 650
2 0 10 000
3 0




0 0

0

1 2
2

 i = 0, j = 2
A0A1A2

0 + 400 + 30·1·10,
(k=0): A0·(A1A2)

1200 + 0 + 30·40·10
(k=1): (A0A1)·A2

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2

 i = 0, j = 3
A0A1A2A3

0 + 650 + 30·1·25,
(k=0): A0·(A1A2A3)

1200 + 10 000 + 30·40·25,
(k=1): (A0A1)·(A2A3)

700 + 0 + 30·10·25
(k=2): (A0A1A2)·A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.

I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2


0 + 650 + 30·1·25,
(k=0): A0·(A1A2A3)

1200 + 10 000 + 30·40·25,
(k=1): (A0A1)·(A2A3)

700 + 0 + 30·10·25
(k=2): (A0A1A2)·A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.
I Rekonstruktion: A0

·((

A1

·

A2

)·

A3

)

ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2

 i = 0, j = 3
A0A1A2A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.
I Rekonstruktion: A0·(

(

A1

·

A2

)·

A3) ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2

 i = 1, j = 3
A1A2A3

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.
I Rekonstruktion: A0·((A1

·

A2)·A3) ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2

 i = 1, j = 2
A1A2

I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.
I Rekonstruktion: A0·((A1·A2)·A3) ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen – Beispiel
Beispiel
Sei A0 ∈ IR30×1, A1 ∈ IR1×40, A2 ∈ IR40×10, A3 ∈ IR10×25.

m[i,j] = min(m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
dim[] = {30, 1, 40, 10, 25};

0 1 2 3

0 0 1200 700 1400
1 0 400 650
2 0 10 000
3 0




0 0 0
1 2

2



I ((A0A1)A2)A3 benötigt 20 700 Multiplikationen.
I Rekonstruktion: A0·((A1·A2)·A3) ist optimal – 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (I)
Das Rucksackproblem (0-1 Knapsack)

Gegeben sei ein Rucksack, mit maximaler Tragkraft M, sowie n
Gegenstände, die sowohl ein Gewicht als auch einen Wert haben.
Nehme möglichst viel Wert mit, ohne den Rucksack zu überladen.

$4 12 kg

$2 2 kg

$1 1 kg

$2 1 kg

$10 4 kg

?
15 kg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,

I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },

I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,

I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.

I S ⊆ G mit cmax =
∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (II)

Gegeben:
I Maximale Tragkraft M,
I n Gegenstände: G = { 0, . . . , n−1 },
I Gewichte: wi ∈ IN0 für i ∈ G ,
I Wert: ci ∈ IN0 für i ∈ G (bzw. Kosten).

Gesucht:
I Der maximale Wert cmax.
I S ⊆ G mit cmax =

∑
i∈S

ci unter der Nebenbedingung
∑
i∈S

wi 6 M.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.

I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:

I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks
mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.

Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.
Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (I)

Wir wollen das Problem mittels Dynamischer Programmierung lösen.
I Wir bestimmen zunächst cmax:
I Angenommen wir kennen den maximalen Wert c ′max des Rucksacks

mit Tragkraft M ′, bei dem nur die ersten n−1 Gegenstände
berücksichtigt werden.

I Für cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: wn−1, Wert: cn−1) mitgenommen wird.

Betrachten wir beide Fälle:
Ohne: cmax wäre dann gleich c ′max für M ′ = M.
Mit: cmax wäre dann gleich c ′max + cn−1 für M ′ = M − wn−1.

Falls M ′ < 0, dann setzen wir c ′max = −∞ („geht nicht“).

⇒ Wähle den Fall mit dem größeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (II)

Sei also C [i , j] der maximale Wert des Rucksacks mit Tragkraft j , wenn
man nur die Gegenstände { 0, . . . , i − 1 } berücksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

C [i , j] =


max(C [i−1, j], ci−1 + C [i−1, j−wi−1])
−∞ für j < 0
0 für i = 0, j > 0

I Dann ist cmax = C [n,M].
I Diese Rekursionsgleichung lösen wir nun bottom-up, indem wir die

Rucksäcke mit allen möglichen Gewichten { 0, . . . ,M } berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (II)

Sei also C [i , j] der maximale Wert des Rucksacks mit Tragkraft j , wenn
man nur die Gegenstände { 0, . . . , i − 1 } berücksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

C [i , j] =


max(C [i−1, j], ci−1 + C [i−1, j−wi−1])
−∞ für j < 0
0 für i = 0, j > 0

I Dann ist cmax = C [n,M].
I Diese Rekursionsgleichung lösen wir nun bottom-up, indem wir die

Rucksäcke mit allen möglichen Gewichten { 0, . . . ,M } berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (II)

Sei also C [i , j] der maximale Wert des Rucksacks mit Tragkraft j , wenn
man nur die Gegenstände { 0, . . . , i − 1 } berücksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

C [i , j] =


max(C [i−1, j], ci−1 + C [i−1, j−wi−1])
−∞ für j < 0
0 für i = 0, j > 0

I Dann ist cmax = C [n,M].

I Diese Rekursionsgleichung lösen wir nun bottom-up, indem wir die
Rucksäcke mit allen möglichen Gewichten { 0, . . . ,M } berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekursionsgleichung (II)

Sei also C [i , j] der maximale Wert des Rucksacks mit Tragkraft j , wenn
man nur die Gegenstände { 0, . . . , i − 1 } berücksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

C [i , j] =


max(C [i−1, j], ci−1 + C [i−1, j−wi−1])
−∞ für j < 0
0 für i = 0, j > 0

I Dann ist cmax = C [n,M].
I Diese Rekursionsgleichung lösen wir nun bottom-up, indem wir die

Rucksäcke mit allen möglichen Gewichten { 0, . . . ,M } berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Algorithmus

1 // Eingabe: Gewichte w[i], Werte c[i], Tragkraft M
2 int knapDP(int w[n], int c[n], int n, int M) {
3 int C[n+1,M+1];
4 for (int j = 0; j <= M; j++)
5 C[0,j] = 0;
6 for (int i = 1; i <= n; i++)
7 for (int j = 0; j <= M; j++)
8 if (w[i-1] <= j) {
9 C[i,j] = max(C[i-1,j], c[i-1] + C[i-1,j-w[i-1]]);

10 } else {
11 C[i,j] = C[i-1,j]; // passt nicht
12 }
13 return C[n,M];
14 }

I Zeitkomplexität: Θ(n·M), Platzkomplexität: Θ(n·M).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Beispiel

$4 12 kg

$2 2 kg

$1 1 kg

$2 1 kg

$10 4 kg

?
15 kg

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

2

3

4

5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

3

4

5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3

4

5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4

5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5 0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5 0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8
5 0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem – Rekonstruktion
Offen ist noch die Frage, welche Gegenstände (S ⊆ G) nun eigentlich
mitgenommen werden müssen, um cmax zu erreichen.

I Falls C [i , j] = C [i − 1, j] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ci = 0).

I Ausgehend von C [n,M] kann man somit (mit Hilfe der wi) die
Menge S rekonstruieren (in Θ(n)).

Beispiel
w[] = { 2, 12, 1, 1, 4 }, c[] = { 2, 4, 2, 1, 10 }, M = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
3 0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
4 0 2 3 4 5 5 5 5 5 5 5 5 5 6 7 8

0 2 3 4 10 12 13 14 15 15 15 15 15 15 15 15

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe
Teilsequenz
Sei A = (a1, . . . , am) eine Sequenz. Die Sequenz Aik = (ai1 , . . . , aik) ist
eine Teilsequenz von A wobei i1 < i2 < . . . < ik und ij ∈ {1, . . . ,m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.
Beispiel
bcdb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz
Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe
Teilsequenz
Sei A = (a1, . . . , am) eine Sequenz. Die Sequenz Aik = (ai1 , . . . , aik) ist
eine Teilsequenz von A wobei i1 < i2 < . . . < ik und ij ∈ {1, . . . ,m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

Beispiel
bcdb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz
Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe
Teilsequenz
Sei A = (a1, . . . , am) eine Sequenz. Die Sequenz Aik = (ai1 , . . . , aik) ist
eine Teilsequenz von A wobei i1 < i2 < . . . < ik und ij ∈ {1, . . . ,m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.
Beispiel
bcdb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz
Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe
Teilsequenz
Sei A = (a1, . . . , am) eine Sequenz. Die Sequenz Aik = (ai1 , . . . , aik) ist
eine Teilsequenz von A wobei i1 < i2 < . . . < ik und ij ∈ {1, . . . ,m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.
Beispiel
bcdb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz
Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe
Teilsequenz
Sei A = (a1, . . . , am) eine Sequenz. Die Sequenz Aik = (ai1 , . . . , aik) ist
eine Teilsequenz von A wobei i1 < i2 < . . . < ik und ij ∈ {1, . . . ,m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.
Beispiel
bcdb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz
Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe

Problem der längsten gemeinsamen Teilsequenz
Gegeben die zwei Sequenzen A = (a1, . . . , am) und B = (b1, . . . , bn),
bestimme deren längsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A,B).

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

bcba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und überprüfe, welche
auch eine Teilsequenz von B sind, und bewahre die längste gefundene
Teilsequenz. Zeitkomplexität Θ(2m) da es 2m Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe

Problem der längsten gemeinsamen Teilsequenz
Gegeben die zwei Sequenzen A = (a1, . . . , am) und B = (b1, . . . , bn),
bestimme deren längsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A,B).

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.
bcba ist eine LCS von A = abcbdab und B = bdcaba.

bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und überprüfe, welche
auch eine Teilsequenz von B sind, und bewahre die längste gefundene
Teilsequenz. Zeitkomplexität Θ(2m) da es 2m Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe

Problem der längsten gemeinsamen Teilsequenz
Gegeben die zwei Sequenzen A = (a1, . . . , am) und B = (b1, . . . , bn),
bestimme deren längsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A,B).

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.
bcba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und überprüfe, welche
auch eine Teilsequenz von B sind, und bewahre die längste gefundene
Teilsequenz. Zeitkomplexität Θ(2m) da es 2m Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – einige Begriffe

Problem der längsten gemeinsamen Teilsequenz
Gegeben die zwei Sequenzen A = (a1, . . . , am) und B = (b1, . . . , bn),
bestimme deren längsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A,B).

Beispiel
bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.
bcba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und überprüfe, welche
auch eine Teilsequenz von B sind, und bewahre die längste gefundene
Teilsequenz. Zeitkomplexität Θ(2m) da es 2m Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (I)

Sei Ai = (a1, . . . , ai) der i-te Präfix von A = (a1, . . . , am) für 0 6 i 6 m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

2. Andernfalls gilt entweder
LCS(Am,Bn) = LCS(Am,Bn−1) oder
LCS(Am,Bn) = LCS(Am−1,Bn).

Insbesondere ist
|LCS(Am,Bn)| = max(|LCS(Am,Bn−1)|, |LCS(Am−1,Bn)|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (I)

Sei Ai = (a1, . . . , ai) der i-te Präfix von A = (a1, . . . , am) für 0 6 i 6 m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

2. Andernfalls gilt entweder
LCS(Am,Bn) = LCS(Am,Bn−1) oder
LCS(Am,Bn) = LCS(Am−1,Bn).

Insbesondere ist
|LCS(Am,Bn)| = max(|LCS(Am,Bn−1)|, |LCS(Am−1,Bn)|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (I)

Sei Ai = (a1, . . . , ai) der i-te Präfix von A = (a1, . . . , am) für 0 6 i 6 m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

2. Andernfalls gilt entweder
LCS(Am,Bn) = LCS(Am,Bn−1) oder
LCS(Am,Bn) = LCS(Am−1,Bn).

Insbesondere ist
|LCS(Am,Bn)| = max(|LCS(Am,Bn−1)|, |LCS(Am−1,Bn)|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (I)

Sei Ai = (a1, . . . , ai) der i-te Präfix von A = (a1, . . . , am) für 0 6 i 6 m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

2. Andernfalls gilt entweder
LCS(Am,Bn) = LCS(Am,Bn−1) oder
LCS(Am,Bn) = LCS(Am−1,Bn).

Insbesondere ist
|LCS(Am,Bn)| = max(|LCS(Am,Bn−1)|, |LCS(Am−1,Bn)|).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k.

Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten.

Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1.

Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).

Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis.

Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k.

Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k.

Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Eigenschaften (II)
Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen am = bn, dann:
LCS(Am,Bn) = (LCS(Am−1,Bn−1), am).

Beweis.
Sei C = LCS(Am,Bn) der Länge k. Wenn am nicht als letztes Zeichen in
C vorkommt, dann könnte man am an C anhängen, und würde eine
Teilsequenz von Am und Bn erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.
Nun ist der Präfix Ck−1 eine gemeinsame Teilsequenz von Am−1 und Bn−1
der Länge k−1. Wir zeigen Ck−1 = LCS(Am−1,Bn−1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von Am−1 und Bn−1 mit einer Länge von mindestens k. Dann würde das
Anhängen von am = bn an D zu einer gemeinsamen Teilsequenz von A
und B führen, deren Länge größer ist als k. Widerspruch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence –
Rekursiongleichung

Wir können wieder die Rekursiongleichung für den Wert, also die Länge
der LCS aufstellen: L[i , j] = |LCS(Ai ,Bj)|

L[i , j] =


0 für i = 0 oder j = 0
L[i − 1, j − 1] + 1 falls ai = bj , i , j > 0
max(L[i , j − 1], L[i − 1, j]) falls ai 6= bj , i , j > 0

I Das lässt sich direkt als Algorithmus umsetzen (Hausaufgabe).
I Dessen Laufzeit ist O(|A|·|B|), ebenso seine Platzkomplexität.
I Ähnlich dem Rucksackproblem lässt sich dann die LCS rekonstruieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence –
Rekursiongleichung

Wir können wieder die Rekursiongleichung für den Wert, also die Länge
der LCS aufstellen: L[i , j] = |LCS(Ai ,Bj)|

L[i , j] =


0 für i = 0 oder j = 0
L[i − 1, j − 1] + 1 falls ai = bj , i , j > 0
max(L[i , j − 1], L[i − 1, j]) falls ai 6= bj , i , j > 0

I Das lässt sich direkt als Algorithmus umsetzen (Hausaufgabe).

I Dessen Laufzeit ist O(|A|·|B|), ebenso seine Platzkomplexität.
I Ähnlich dem Rucksackproblem lässt sich dann die LCS rekonstruieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence –
Rekursiongleichung

Wir können wieder die Rekursiongleichung für den Wert, also die Länge
der LCS aufstellen: L[i , j] = |LCS(Ai ,Bj)|

L[i , j] =


0 für i = 0 oder j = 0
L[i − 1, j − 1] + 1 falls ai = bj , i , j > 0
max(L[i , j − 1], L[i − 1, j]) falls ai 6= bj , i , j > 0

I Das lässt sich direkt als Algorithmus umsetzen (Hausaufgabe).
I Dessen Laufzeit ist O(|A|·|B|), ebenso seine Platzkomplexität.

I Ähnlich dem Rucksackproblem lässt sich dann die LCS rekonstruieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence –
Rekursiongleichung

Wir können wieder die Rekursiongleichung für den Wert, also die Länge
der LCS aufstellen: L[i , j] = |LCS(Ai ,Bj)|

L[i , j] =


0 für i = 0 oder j = 0
L[i − 1, j − 1] + 1 falls ai = bj , i , j > 0
max(L[i , j − 1], L[i − 1, j]) falls ai 6= bj , i , j > 0

I Das lässt sich direkt als Algorithmus umsetzen (Hausaufgabe).
I Dessen Laufzeit ist O(|A|·|B|), ebenso seine Platzkomplexität.
I Ähnlich dem Rucksackproblem lässt sich dann die LCS rekonstruieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence – Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:

↖ bei ai = bj , also L[i , j] = L[i − 1, j − 1] + 1
↑ bei ai 6= bj , für L[i , j] = L[i − 1, j]
← bei ai 6= bj , für L[i , j] = L[i , j − 1] und nicht ↑

Beispiel

D 0
E 0
U 0
T 0
S 0
C 0
H 0
L 0
A 0
N 0
D 0

N
0

I
0

E
0

D
0

E
0

R
0

L
0

A
0

N
0

D
0

E
00

↑0 ↑0 ↑0 ↖1 ←1 ←1 ←1 ←1 ←1 ↖1 ←1
↑0 ↑0 ↖1 ↑1 ↖2 ←2 ←2 ←2 ←2 ←2 ↖2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2 ↑2
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↖3 ←3 ←3 ←3 ←3
↑0 ↑0 ↑1 ↑1 ↑2 ↑2 ↑3 ↖4 ←4 ←4 ←4
↖1 ←1 ↑1 ↑1 ↑2 ↑2 ↑3 ↑4 ↖5 ←5 ←5
↑1 ↑1 ↑1 ↖2 ↑2 ↑2 ↑3 ↑4 ↑5 ↖6 ←6

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

	Motivation
	Dynamische Programmierung
	Rekursionsgleichungen

	Anwendungen
	Ketten von Matrixmultiplikationen
	Das Rucksackproblem
	Longest Common Subsequence (LCS)

