Dynamische Programmierung

Datenstrukturen und Algorithmen

Vorlesung 20: Dynamische Programmierung (K15)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/dsall2/

3. Juli 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/31
Dynamische Programmierung Motivation
Ubersicht
© Motivation
Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/31

Dynamische Programmierung

Ubersicht

© Motivation

© Dynamische Programmierung
o Rekursionsgleichungen

© Anwendungen
o Ketten von Matrixmultiplikationen
@ Das Rucksackproblem
@ Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/31

Dynamische Programmierung Motivation

Erinnerung: Fibonacci

Fib(0) =0, Fib(1)=1, Fib(n) = Fib(n—1) + Fib(n—2)

o e e &R
®@ 0000 0O
@O

Rekursionsbaum

» Wir wollen z. B. Fib(3) nicht standig neu berechnen.
> Idee: Speichere einmal berechnete Werte.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/31

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Memoization

Memoization

> Bei jedem Funktionsaufruf liberpriife, ob das Ergebnis bereits
berechnet wurde (im Cache ist).

> Ist das nicht der Fall, berechne den Wert und speichere zusatzlich das
Ergebnis.

1 int fibDP(int n) {

> if (n < 2) return n;

3 int f1 = getCache(n-1), f2 = getCache(n-2);

4 if (f1 == -1) f1 = £ibDP(n-1); // nicht gefunden
5 if (f2 == -1) £2 = fibDP(n-2);

6 int fib = f1 + £2;

7 setCache(n, fib);

g return fib;

9

3

Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/31

Dynamische Programmierung Dynamische Programmierung

Ubersicht

@ Dynamische Programmierung
@ Rekursionsgleichungen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/31

Dynamische Programmierung Motivation

Memoization — Dynamische Programmierung

» Memoization hilft, wenn die Teilprobleme iiberlappen.

Bessere Zeit-Komplexitat: ©(n) statt ©(2"), aber
(4) » der Platzbedarf wichst dabei auf ©(n).

» Durch Auswertung von unten-nach-oben
(Bottom-Up) kann sogar sichergestellt werden,

92% dass alle benotigten Werte bereits berechnet sind.
» Eine weitere Verbesserung ergibt sich, indem man
@@ erkennt, dass hier jeweils nur die zwei letzten

Abhangigkeitsgraph Werte bendtigt werden (in-place).

= Auf diesen Grundideen basiert die ‘ Dynamische Programmierung|.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/31

Dynamische Programmierung Dynamische Programmierung

Rekursionsgleichungen: Floyd-Warshall

Sei d,-(jk) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0,1,..., k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

W(i,j) fiir k =0

d%) —
Y min (d,S-kil), d,-(kkfl) + d,(gl-(*l)> fur k >0

(k=1)

» Top-down Abhéangigkeit: d hangt von d; ab.

y y

» Bottom-up Berechnung: d,-(jo), d,-(jl), d,-(j2), ... usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Rekursionsgleichungen: Floyd-Warshall

Sei d,-(jk) die Lange eines kiirzesten Pfades von i nach j iiber Knoten in der
Menge {0, 1, ..., k}.
Rekursionsgleichung die dem Algorithmus zur Grunde liegt:

W(i,J) fur k=0
dif) = k—1 k—1 k—1
y min (df"Y, d{ D + df V) fir k>0
» Top-down Abhangigkeit: d,-(jk) hangt von d,-(jkfl) ab.
» Bottom-up Berechnung: d,-(jo), d,-(jl), d,-(-2), ... USW.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/31

Ubersicht

© Anwendungen
o Ketten von Matrixmultiplikationen
@ Das Rucksackproblem
o Longest Common Subsequence (LCS)

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/31

Dynamische Programmierung

Dynamische Programmierung

Dynamische Programmierung

> Die meisten DP-Probleme sind Optimierungsprobleme, d. h. es gibt
verschiedene Losungen, die mit einer Kostenfunktion bewertet
werden. Gesucht ist jeweils eine Lésung mit minimalen Kosten (bzw.
maximalem Wert).
Dynamischer Programmierung kann man i.d. R. in vier Teile gliedern:
1. Charakterisiere die Struktur einer optimalen Losung, und stelle fest ob
diese DP ermoglicht.
» Teilprobleme sind (teilweise) tiberlappend
» Rekursive Abhangigkeit zwischen den Teilproblemen.
2. Stelle die Rekursionsgleichung (top-down) fiir den Wert der Losung
auf.
3. Lose Rekursionsgleichung bottom-up.
4. Bestimme aus dem Wert der Losung die Argumente der Losung.
Rekonstruiere die Losung.
Weitere Bsp: Fibonacci, CYK (Cock-Younger-Kasami)-Algorithmus (VL
FOSAP), Floyd(-Warshall), ...

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/31
Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Motivation (1)

Matrixmultiplikation
C=A-Bmit Ac R, Be RI*¥ Ce R
» Die Anzahl der Spalten in Matrix A muss dabei gleich der Anzahl der
Zeilen in B sein.

» Komplexitat: i-j-k FlieBkomma-Multiplikationen.

> Betrachte nun die Multiplikation mehrerer Matrizen:
M= A1-Ar-...- A,

» Wir gehen davon aus, dass die Matrizen jeweils miteinander
kompatibel sind.

> Solche Ketten lassen sich wegen der Assoziativitat der
Matrixmultiplikation in beliebiger Reihenfolge berechnen / klammern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Motivation (I1)

Sei Al c IRIOXIOO A2 c]R100><5 A3 c]R,SXSO.
» Berechnen wir A;-(Az-A3), so muss man
10-100-50 + 100-5-50 = 50 000 + 25000 = 75000 mal multiplizieren.

» Berechnen wir aber (A;-A2)-As, dann ergeben sich
10-100-5 + 10-5-50 = 5000 + 2500 = 7500 Multiplikationen.

Finde fiir eine Kette von Matrizen A1, Ay, ..., A,, mit Dimensionen
do X di, di X do, ..., dp_1 X d,, eine Klammerung, so dass die Anzahl der
FlieBkomma-Multiplikationen minimal ist.

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen

Sei P(n) die Anzahl der moglichen Klammerungen fiir n Matrizen:

(Ao A (Akprs .. An)

k Matrizen n—k Matrizen

Damit erhalt man die Rekursionsgleichung
P(n)=>_P(k)-P(n—k), P(1)=1.
» Deren Losung liegt in ©(2").
» Einfach alle Moglichkeiten auszuprobieren ist keine Option.

Idee: Stelle nach dem selben Prinzip eine Rekursionsgleichung fiir die
minimale Anzahl an Multiplikationen auf.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/31 Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/31
Dynamische Programmierung Anwendungen Dynamische Programmierung Anwendungen

Rekursionsgleichung Ketten von Matrixmultiplikationen —

Bottom-Up-Ldsung (1)

(Ar .. A (Arst ... An)

k Matrizen n—k Matrizen

o 0 fiar i = J,
mli, j] =

m[i, j] sei die minimale Anzahl Multiplikationen fiir die Teilkette A;-...-A;. minjck<;(mli, k] + mlk+1,j] + di_1-di-d;) fiir i < ji.

> Offenbar ist m[i, /] = 0 fir alle 0 </ < n. » Wie bei Fibonacci wird z. B. das Teilproblem m[0, 1] mehrfach

» Die Dimension einer Teilkette ist di_1 x dj. verwendet: von m[0, 2], m[0, 3], ..., m[0, n].

» Teilen bei Position k ergibt: m[i, j] = m[i, k] + di—1-di-d; + m[k+1, j].
» Wir suchen dabei das optimale k, also:

g0 fiir i = J,
mli, j] =
BTN minjerei(mli, K] + mlk41,J] + dioy-diedy) fir i < .

> Es gibt fiir alle 1 < i < j < n ein Teilproblem, also insgesamt nur
(5) € ©(n?) Teilprobleme.

» Wahlen wir eine geschickte Berechnungsreihenfolge und speichern alle
mli, j], dann lasst sich m[i, j] in ©(n) berechnen, da die Werte m|[i, k|
und m[k+1, j] bereits bekannt sind.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/31 Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/31

Dynamische Programmierung Anwendungen
Ketten von Matrixmultiplikationen —

Bottom-Up-Losung (1) P
1,1] - [1,2] = [1,3] — [1,4]
t f
[2,2] = [2,3]]—~ [2.4]
t f
[3.3] - [3.4]
e . t
mli,j] = min (mli, k] + mk+1,j] + di—1-dic-dj) [4, 4]
» Damit ist eine Zeitkomplexitit von ©(n®) bei einem Platzbedarf von
O(n?) méglich.
» Erinnerung: Die naive Variante hatte Q(2") Zeit, allerdings bei nur
©(1) Platzbedarf, benétigt (Time-Memory- Tradeoff).

> In der Regel ist es nun eine groBe Zeitersparnis, zunachst die optimale
Klammerung zu finden, statt uniiberlegt zu multiplizieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/31
Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Beispiel

Sei Ag € R3%L, A; € RV, A, € R¥X10 4, ¢ R10X2S.
m[i,j] = min(ml[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);

dim[] = {30, i, 40, 10, 25};

0 1 2 3
of 0 1200 700 1400 0 00
1 0 400 650 1 2
2 0 10000 2
3 0

> ((ApA1)A2)As bendtigt 20 700 Multiplikationen.
» Rekonstruktion: Ag-((A1-A2)-As3) ist optimal — 1400 Multiplikationen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/31

Dynamische Programmierung Anwendungen

Ketten von Matrixmultiplikationen — Algorithmus

1 // Eingabe: Die Dimensionen der Matrizen: dim[i]=d; fir i=0...n
2 int matMultOrder (int dim[n+1], int n) {
3 int m[n,nl; // hier O-basiert!

4 for (int 1 = 0; i < n; i++)

5 m[i,i] = 0; // Diagonale

¢ for (int i = n-1; i >= 0; i--) // Zeilen

7 for (int j = i+1l; j < n; j++) { // Spalten
8 int curMin = +inf;

9 for (int k = i; k < j-1; k++) {

10 curMin = min(curMin,

11 m[i,k] + m[k+1,j] + dim[i]*dim[k+1]*dim[j+1]);
12 }

13 m[i,j] = curMin;

14 }

15 return m[0,n-1];

16 }

» Zur einfacheren Rekonstruktion der Losung werden wir in einer
zweiten Matrix jeweils den Index k mit dem Minimum speichern.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (1)

Das Rucksackproblem (0-1 Knapsack)

Gegeben sei ein Rucksack, mit maximaler Tragkraft M, sowie n
Gegenstande, die sowohl ein Gewicht als auch einen Wert haben.
Nehme méglichst viel Wert mit, ohne den Rucksack zu iiberladen.

== !

f?

B

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem (I1)

Gegeben:
» Maximale Tragkraft M,
» n Gegenstande: G ={0,...,n—1},
» Gewichte: w; € INg fiir i € G,
Wert: ¢; € INg fiir i € G (bzw. Kosten).

v

Gesucht:
» Der maximale Wert ¢max.
> S C G mit ¢pax :Z ¢; unter der Nebenbedingung Z w; < M.

ieS ieS
Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/31
Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekursionsgleichung (1)

Sei also C[i,j] der maximale Wert des Rucksacks mit Tragkraft j, wenn
man nur die Gegenstande {0, ..., i — 1} beriicksichtigt.

Es ergibt sich folgende Rekursionsgleichung:

max(C[i—1,/], ci—1 + C[i—1, j—w;_1])
Clij]=1{ — fiir j <0
0 firi=0,j>0

» Dann ist cmax = C[n, M|.

> Diese Rekursionsgleichung I6sen wir nun bottom-up, indem wir die
Rucksacke mit allen méglichen Gewichten {0, ..., M} berechnen,
wenn wir jeweils einen weiteren Gegenstand hinzunehmen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/31

Das Rucksackproblem — Rekursionsgleichung (1)

Wir wollen das Problem mittels Dynamischer Programmierung I6sen.

» Wir bestimmen zunachst ¢pax:

» Angenommen wir kennen den maximalen Wert ¢/, des Rucksacks

mit Tragkraft M’, bei dem nur die ersten n—1 Gegenstande
beriicksichtigt werden.

> Fir cmax stellt sich also die Frage, ob der n-te Gegenstand
(Gewicht: w,_1, Wert: ¢,_1) mitgenommen wird.

Betrachten wir beide Falle:
Ohne: cmax ware dann gleich ¢/ ,, fir M' = M.
Mit: cmax ware dann gleich ¢/, + cp—1 fur M = M — w,,_1.
o

Falls M’ < 0, dann setzen wir ¢, = —oo (,, geht nicht").

max

= Wahle den Fall mit dem gréBeren Wert.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 21/31
Dynamische Programmierung Anwendungen

Das Rucksackproblem — Algorithmus

1 // Eingabe: Gewichte w[i], Werte c[i], Tragkraft M
2 int knapDP(int w[n], int c[n], int n, int M) {
3 int C[n+1,M+1];

4 for (int j = 0; j <= M; j++)

5 c[0,j] = 0;

6 for (dint 1 = 1; i <= n; i++)

7 for (int j = 0; j <= M; j++)

8 if (wli-1] <= j) {

9 Cli,jl = max(C[i-1,j], cl[i-11 + Cl[i-1,j-w[i-111);

10 } else {

1 Cli,j] = Ccli-1,jl; // passt nicht
12 }

13 return C[n,M];

14}

» Zeitkomplexitat: ©(n-M), Platzkomplexitat: ©(n-M).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/31

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Beispiel

Joost-Pieter Katoen

Dynamische Programmierung Anwendungen

Das Rucksackproblem — Rekonstruktion
Offen ist noch die Frage, welche Gegenstiande (S C G) nun eigentlich
mitgenommen werden miissen, um Cmax zU erreichen.
» Falls C[i,j] = C[i — 1,,] ist, dann wurde der Gegenstand nicht
mitgenommen (auch bei ¢; = 0).
» Ausgehend von C[n, M] kann man somit (mit Hilfe der w;) die
Menge S rekonstruieren (in ©(n)).

w HIN=R 2 OB N AL G RN =R 252 S O R M =115

Datenstrukturen und Algorithmen

24/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — einige Begriffe

Teilsequenz
Sei A= (a1,...,am) eine Sequenz. Die Sequenz A; = (aj, ..., aj) ist
eine Teilsequenz von A wobei /i < ib < ... < i, und jj € {1,..., m}.

Eine Teilsequenz von A entsteht aus A indem Elemente weggelassen
werden.

bedb und aa sind Teilsequenzen von A = abcbdab.

Gemeinsame Teilsequenz

Sequenz C ist eine gemeinsame Teilsequenz von A und B wenn C sowohl
von A als auch von B eine Teilsequenz ist.

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/31

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0o 0 0 0O0OOO OO OO0 O0O0 0 0 O
o o0 2 22 2 22 2 22 2 2 2 22
0o 0 2 2 2 2 2 2 2 2 2 2 4 4 6 6
0 2 2 4 4 4 4 4 4 4 4 4 4 6 6 8
0 2 3 45 5 5 5 5 5 5 5 5 6 7 8
0 2 3 410 12 13 14 15 15 15 15 15 15 15 15
Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/31

Longest Common Subsequence — einige Begriffe

Problem der langsten gemeinsamen Teilsequenz

Gegeben die zwei Sequenzen A = (ay, ..., am) und B = (b, ..., by),
bestimme deren langsten gemeinsamen Teilsequenz (longest common
subsequence), LCS(A, B).

Beispiel

bca ist eine gemeinsame Teilsequenz von A = abcbdab und B = bdcaba,
aber keine LCS.

bcba ist eine LCS von A = abcbdab und B = bdcaba.
bdab ist auch eine LCS von A = abcbdab und B = bdcaba.

Naiver Ansatz: betrachte alle Teilsequenzen von A, und liberpriife, welche
auch eine Teilsequenz von B sind, und bewahre die langste gefundene
Teilsequenz. Zeitkomplexitat ©(2") da es 2™ Teilsequenzen von A gibt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (1)

Sei Aj = (a1,...,a;) der i-te Prafix von A= (a1,...,am) fir 0 < i< m.

Lemma (Optimale Teilstruktur)

1. Enden zwei Sequenzen mit dem selben Zeichen a,, = by, dann ist
dieses Zeichen auch Teil der LCS:

LCS(Am, Bn) = (LCS(Am—1, Bn_1), am).

2. Andernfalls gilt entweder
LCS(Am, Bn) = LCS(Am, Bn—1) oder
LCS(Am, Bn) = LCS(Am—1, Bp).
Insbesondere ist
|LCS(Am, Bn)| = max(|LCS(Am, Bn-1)|, |LCS(Am—1, Bn)|)-

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence —
Rekursiongleichung

Wir kénnen wieder die Rekursiongleichung fiir den Wert, also die Lange
der LCS aufstellen: L[/, j] = |[LCS(Ai, B;)|
0 firi=0oderj=0
Lli,j]l=<% L[i—1,j—-1]+1 falls a; = b;, i,j >0
max(L[i,j — 1], L[i —1,j]) falls a; # b;j, i,j >0

» Das lasst sich direkt als Algorithmus umsetzen (Hausaufgabe).

» Dessen Laufzeit ist O(|A|-|B]), ebenso seine Platzkomplexitat.

» Ahnlich dem Rucksackproblem l3sst sich dann die LCS rekonstruieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Eigenschaften (1)

Lemma (Optimale Teilstruktur)

Enden zwei Sequenzen mit dem selben Zeichen a,, = b, dann:
LCS(Am, Bn) = (LCS(Am—1, Bn—1), am).

Beweis.

Sei C = LCS(Am, By,) der Lange k. Wenn ap, nicht als letztes Zeichen in
C vorkommt, dann kénnte man a,, an C anhangen, und wiirde eine

Teilsequenz von A, und B, erhalten. Dies widerspricht der Annahme, dass
C eine LCS ist.

Nun ist der Prafix C,_; eine gemeinsame Teilsequenz von Ap,—1 und B,_;
der Lange k—1. Wir zeigen Cx_1 = LCS(Am—1, Bn-1).
Widerspruchsbeweis. Nehme an, es gibt eine gemeinsame Teilsequenz D
von A;,—1 und B,_1 mit einer Lange von mindestens k. Dann wiirde das
Anhangen von a,, = b, an D zu einer gemeinsamen Teilsequenz von A
und B fiihren, deren Lange groBer ist als k. Widerspruch.]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
. beiaj=b;, alsol[i,jj=L[i-1j—-1]+1
1 beia; #b;, furL[i,j]=L[i—1/]
< beia; # b;, furL[i,j] =L[i,j— 1] und nicht

N I E D E R L A N D E

o 0 0 0 0 0 0 0 O O O
10 10 10 N1 1 «+1 «+1+1+1RX1+1
0 10 N1 11 N2 2 <2 <2 2 <2 N2
0 41 42 92 2 92 92 2 12
0 9l 41 42 92 42 92 92 2 12
0 10 11 11 12 12 12 12 12 12 12
72 12 12 12 12 12
0 10 11 11 12 12 12 12 12 12 12
10 10 11 11 12 12 K3 3 «3 +3 <3

OZ>»rIoun-+H4cCcmO
O OO OO OOOOOOoo
_>
o
_>
o
_>
A
_>
A
_>
N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

Dynamische Programmierung Anwendungen

Longest Common Subsequence — Beispiel
Zur Verdeutlichung verwenden wir folgende Notation:
. beiaj=b;, alsol[i,j]=L[i-1j—-1]+1
1 beiaj # bj, fir L[i,j] = L[i—1,j]
< beia; # b;, fir L[i,j] = L[i,j — 1] und nicht

N I E D E R L A N D E

0o 0 0 0 0 O O O O o0 oO
170 10 10 N1 <1 +1 1 +1+1RX1+1
10 10 N1 11 N2 2 2 2 2 <2 N2
S50 41 1 92 8 12 92 42 12 92
NS0 g1 91 92 48 92 92 42 TR 92
70 Gl 41 52 92 92 12 72 2 72
70 4l 41 52 92 42 92 92 2 12
70 9l 41 42 92 42 12 92 2 42
10 10 11 11 12 12 X3 <3 <3 +3 <3
0 10 11 11 12 12 13 N4 +4 <4 4
N1 «1 11 11 12 12 13 14 X5 <5 «5
111 1 R2 12 12 13 14 15 K6 «6

OZ>rI0ndCmo
OO OO OO OODO0O0OoOOo

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/31

	Motivation
	Dynamische Programmierung
	Rekursionsgleichungen

	Anwendungen
	Ketten von Matrixmultiplikationen
	Das Rucksackproblem
	Longest Common Subsequence (LCS)

