Ubersicht

Datenstrukturen und Algorithmen

@ Algorithmische Geometrie
@ Winkelbestimmung
@ Schnitt zweier Strecken

Vorlesung 21: Algorithmische Geometrie

Joost-Pieter Katoen

@ Schnitt eines beliebigen Streckenpaares
@ Ordnen von Strecken
@ Sweepline

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/dsall2/

; © Konvexe Hiille
6. Juli 2012
RWTH
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 2/33
Ubersicht Einfiihrung

@ Algorithmische Geometrie
© Winkelbestimmung
@ Schnitt zweier Strecken

v

Allgemein: Geometrische Probleme im n-dimensionale Raum IR".

Z.B. Schneiden sich zwei Geraden? etc.

v

v

Wir betrachten hier Probleme im zweidimensionalen Raum, also
n=2.

Dazu nutzen wir Konzepte aus der Linearen Algebra.

v

v

Anwendungen: Computergraphik, CAD, Robotertechnik, usw.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 3/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 4/33

http://www-i2.informatik.rwth-aachen.de/i2/dsal12/

Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie

Mathematische Hilfsmittel Geometrische Interpretation
Vektor, Skalarprodukt, Betrag, Determinante
X
X1 2
. n . S .2 — . _ Xl - SN
» Vektor (im IR", insbesondere n =2): x = | : | = LQ]. y > | det(%, 7)|
Xn 3
» Skalarprodukt (Dot Product) von X und y: x|
n ‘ .
XY= Xiyi=xy1+ Xy
i=1
» Es gilt: X - y = |X||y| cos(). (,,Lange der Projektion").
» Betrag (Linge) von X: [X| = VX - X = \/x% + x5.
» Die Flache (allgemein: Volumen) des durch X und y aufgespannten
» Determinante fir [X, y] = [Xl yl] =: A Parallelogramms ist gerade der Absolutwert der Determinanten.
oL 2 e Oder: Die Determinante liefert eine vorzeichenbehaftete Flache.
det A = det(X,) = x1)2 — xay1.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 5/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 6/33
Algorithmische Geometrie Algorithmische Geometrie
Winkelbestimmung (1) Winkelbestimmung (1)
Liegt ein Vektor y links oder rechts von einem gegeben Vektor X? Liegt ein Vektor y links oder rechts von einem gegeben Vektor X?
X2 X2
A A
) X X

> X1 > X1

» Wir betrachten zunachst .

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie

Algorithmische Geometrie

Winkelbestimmung (1) Winkelbestimmung (1)
Problem

Liegt ein Vektor y links oder rechts von einem gegeben Vektor X?

Liegt ein Vektor y links oder rechts von einem gegeben Vektor X?

X2 X2
y

Z

N

X1
X1

;Xl

;Xl
zZ.y < 0@

» Wir betrachten zunachst y. 5

» Wir betrachten zunachst y.

» Konstruiere Z, den zu X im mathematisch positiven Sinn

» Konstruiere Z, den zu X im mathematisch positiven Sinn
(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.

(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.

» Projeziere y auf Z. Da y rechts von X liegt und damit von Z wegzeigt,
ist Z-y negativ.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33

Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (1) Winkelbestimmung (11)

Liegt ein Vektor y links oder rechts von einem gegeben Vektor X?

Algorithmische Geometrie

Wie berechnet sich aber Z aus X7

X2

(—0.5,0.9) Z
(0.9,0.5)
X

X1

» Wir betrachten zunachst _)7 » Flr)_(’ — (X1,X2) ist Z gerade (_X2| Xl)-
» Konstruiere Z, den zu X im mathematisch positiven Sinn

(Gegenuhrzeigersinn) um 90 Grad gedrehten Vektor.

» Projeziere y auf Z. Da y rechts von X liegt und damit von Z wegzeigt,
ist Z-y negativ.

> y7 dagegen liegt links von X, daher ist Z-)7’ positiv.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie

Winkelbestimmung (11) Winkelbestimmung (1)
Wie berechnet sich aber Z aus X? Wie berechnet sich aber Z aus X?
X2
Z
y
X
X1
» Fir X = (x1, x2) ist Z gerade (—x2, x1). » Fir X = (x1, x2) ist Z gerade (—x2, x1).
> Insgesamt ist damit Z- ¥ = z1y1 + 22y> = —x0y1 + X1y > Insgesamt ist damit Z- y = z1y1 + z0y» = —xoy1 + x1y2 = det(X, y).
Joost-Pieter Katoen Datenstrukturen und Algorithmen ES
Algorithmische Geometrie Algorithmische Geometrie
Winkelbestimmung (11) Winkelbestimmung (1)
Wie berechnet sich aber Z aus X? Wie berechnet sich aber Z aus X?
X2
X - ///
Yy
X
X1
» Fir X = (x1, x2) ist Z gerade (—x2, x1). » Fir X = (x1, x2) ist Z gerade (—x2, x1).
> Insgesamt ist damit Z -y = z1y1 + zy» = —xoy1 + x1y2 = det(X, y). > Insgesamt ist damit Z -y = z1y1 + zy» = —xoy1 + x1y2 = det(X, y).

» Ist det(X, y) = 0, dann sind X und y parallel (bzw. antiparallel).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/33

Algorithmische Geometrie Algorithmische Geometrie

Strecken

Punkt, Strecke, Polygon

» Punkte aus dem IR?: p = [Zj = (p1, p2)-

» Der Punkt (0,0) heiBt Ursprung.

» Mit dem Vektor Jpq = g — p kommt man dann von p nach q.

» Die (ungerichtete) Strecke pq ist die Menge alle Punkte zwischen den
beiden Endpunkten p und q (Konvexkombination):
pa={(1—a)-p+a-q|0<a<l}={p+a-d|0<a<l}

> Fasst man ﬁ als gerichtete Strecke auf, so ist Jpq die Richtung.

» Eine Streckenzug ist eine Folge von Punkten (p1, ..., Pn), die durch
Strecken miteinander verbunden sind: p1p2, P2P3. - - -, Pn_1Pn-

» Ein Polygon mit den Ecken py, ..., pn hat als Rand gerade den
geschlossenen Streckenzug (p1,-..,Pn, P1).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/33

Algorithmische Geometrie Algorithmische Geometrie

Schnitt zweier Strecken

Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?
\
P S
» Wir sind nicht an der Position des Schnittpunktes interessiert.

> Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziiglich rs.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Algorithmische Geometrie

Winkelbestimmung (111)

Problem

Algorithmische Geometrie

Gegeben der Streckenzug (p, q,r). Wird bei q nach links oder rechts
abgebogen? Oder: Ist der Winkel £pqr > 180° oder < 180°?

X2

Apqr = 180°+«
X1

- P
Wir verwenden wieder die Determinante.
Dazu berechnen wir 3 =dpq =q—pund b=dg =r—q.
det(3, b) > 0, falls der Knick nach links geht (£pqr > 180°, a > 0).
Wenn r auf (der Verlangerung von) pq liegt, dann ist det(d, b) =0
(4£pgr = 0° oder = 180°).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 10/33

vV VvV VvVYy

Algorithmische Geometrie Algorithmische Geometrie

Schnitt zweier Strecken

Problem

Gegeben zwei Strecken pq und ¥s. Schneiden sich diese?

» Wir sind nicht an der Position des Schnittpunktes interessiert.

> Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziiglich rs.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33

Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie Algorithmische Geometrie
Schnitt zweier Strecken Schnitt zweier Strecken
Problem Problem
Gegeben zwei Strecken pq und ¥s. Schneiden sich diese? Gegeben zwei Strecken pq und rs. Schneiden sich diese?
»pqr > 0"
r q r 9
~pgs < 0“ .rsq > 0"
p s P . rsp<0"S
» Wir sind nicht an der Position des Schnittpunktes interessiert. » Wir sind nicht an der Position des Schnittpunktes interessiert.
> Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten > Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziiglich rs. von pq liegen. Ebenso fiir p und q beziiglich rs.
Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33
Algorithmische Geometrie Algorithmische Geometrie
Schnitt zweier Strecken Schnitt zweier Strecken — Algorithmus (1)
1 float det(float a[2], float b[2]) {
Problem > return al0]*b[1] - a[1]l*b[0];
Gegeben zwei Strecken pq und ¥s. Schneiden sich diese? 3}
5 // Richtung des Knicks zwischen pq und qr?
.pqr = 0“ q 6 float direction(float p[2], float q[2], float r[2]) {
. 7 float a[2] = {ql[0]-p[0], q[1]l-p[11}; // g-p
= s float b[2] = {r[0]-q[0], r[1]1-ql[1l1}; // 7—q
9 return det(a,b);
P S 10 }

12 // Vorbedingung: = liegt auf (der Verldngerung wvon) pgq.
» Wir sind nicht an der Position des Schnittpunktes interessiert. 13 // Teste, ob z auch zwischen p und q liegt.
14 bool onSegment(float p[2], float q[2], float x[2]) {
15 float topright[2] = {max(p[0],q[0]1), max(p[1],ql11)};
6 float botleft[2] = {min(p[0],q[0]), min(p[1],ql11)};

> Idee: Wir testen, ob die Endpunkte r und s auf verschiedenen Seiten
von pq liegen. Ebenso fiir p und q beziiglich rs.

=

» Sonderfall: det = 0. Der Endpunkt, etwa x, liegt also auf der v/ Tetuz‘”[o(;w“eft <= 19: Eg] ;;g?%%ﬁ): o (1]
- I — 18 return (x <= topright X <= topright
Verlangerung von pq (bzw. 7). _ _ 10 (botleft[0] <= x[0])&&(botleft[1] <= x[1]);

Es bleibt zu priifen, ob x auch zwischen p und q liegt. 2}

Joost-Pieter Katoen Datenstrukturen und Algorithmen 11/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 12/33

Algorithmische Geometrie Algorithmische Geometrie

Schnitt zweier Strecken — Algorithmus (11)

1 // Testet, ob pq und rs sich schneiden

2 bool segIntersect(float p[2], float q[2],

3 float r[2], float s[2]) {

4 float d1 = direction(p,q,r), d2 = direction(p,q,s);

s // liegt r bzw. s auf pq?

6 if (d1 == 0 && onSegment(p,q,r)) return true;

7 if (d2 == 0 && onSegment(p,q,s)) return true;

8 // v und s auf der selben Sette won pq?

o if ((d1 > 0 & d2 > 0) || (d1 < 0 && d2 < 0)) return false;

1 float d3 = direction(r,s,p), d4 = direction(r,s,q);

12 // liegt p bzw. q auf 7rs?

13 if (d3 == 0 && onSegment(r,s,p)) return true;

14 if (d4 == 0 && onSegment(r,s,q)) return true;

15 // p und q auf der selben Seite won rs?

16 if ((d3 > 0 && d4 > 0) || (d3 < 0 && d4 < 0)) return false;
17 return true;

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 13/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares

e b d

\

/ C
f d

Problem

Gegeben seinen n Strecken. Gibt es einen Schnitt zwischen zwei dieser
Strecken? Lisst sich die Frage schneller als O(n?) beantworten?

» Wir lassen keine vertikalen Strecken zu.

» Es schneiden sich nicht mehr als zwei Strecken im selben Punkt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 15/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares
Ubersicht

@ Schnitt eines beliebigen Streckenpaares
@ Ordnen von Strecken
@ Sweepline

Joost-Pieter Katoen Datenstrukturen und Algorithmen 14/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Ordnen von Strecken

» e >, f; sowie f mit a nicht
vergleichbar bei r (usw.).

/ »b>sa e>s;a b>se.
\C >b>1_ta,e>1_-a,e>tb.

f (Der Schnitt vertauscht die

Reihenfolge von e und b).

Vergleichbarkeit

Zwei Strecken s; und s, heiBen vergleichbar an der Stelle r, wenn beide die
vertikale Linie mit x;-Koordinate = r schneiden.

» Wenn s; an der Stelle r (iber s, liegt schreiben wir s; >, s,
sonst sp >, 51, bzw. 51 =, 5.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Wie ordnet man Strecken? (1)

e b d
~
T
f a
r

> Fiir beliebige r: Gar nicht Allerdings:

» Beobachtung 1: Die Ordnung kann sich nur dndern, wenn eine
Strecke hinzukommt (vergleichbar wird) bzw. herausfallt, oder wenn
sich zwei Strecken schneiden.

» Beobachtung 2: Fiir den linken Endpunkt einer hinzukommenden
Strecke lasst sich mit der Determinante bestimmen, ob er iiber oder
unter einer an dieser Stelle vergleichbaren Strecke liegt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 17/33
Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Sweepline-Algorithmen

Ein Sweepline-Algorithmus verwaltet gewdhnlich zwei Datenmengen:
Sweepline-Status:
Gibt die Beziehung zwischen den von der Sweepline geschnittenen
Objekten an.
Ereignisliste:
Eine Liste, in der die Ereignispunkte sortiert aufgelistet sind.
Nur an diesen halt die Sweepline an, da sich der Status nur an solchen
andern kann.

> Je nach Anwendung kann die Ereignisliste schon im voraus bestimmt
(und sortiert) werden (statische Ereignisliste), oder aber sie entsteht
erst beim Durchlauf (dynamische Ereignisliste).

» Dynamische Ereignisliste kdnnen z. B. mit bindren Suchbdumen
effizient implementiert werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 19/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Wie ordnet man Strecken? (Il)

> Insbesondere lasst sich so ein Endpunkt, und damit die Strecke, in
eine gegebenen Ordnung von Strecken einsortieren.

» Halt man die Ordnung in einem balanciertem Binarbaum vor (Details
spater), dann benétigt man bei n Strecken ©(nlog n) Operationen.

Das fiihrt zur Idee der Sweepline:

» Wir wandern von links nach rechts (iber die Ebene und fligen die
Strecken unserer Ordnung hinzu, bzw. entfernen sie beim Passieren
der jeweiligen Endpunkte.

> So kdnnen wir fiir jede Position die Ordnung angeben, solange wir
Schnitte erkennen.

» Da sich schneidende Linien immer zunachst in der Ordnung
benachbart sind, brauchen wir nun, fiir eine hinzukommende oder
verlassende Strecke, nur die beiden benachbarten Strecken direkt
ober- und unterhalb unseres Endpunktes auf etwaige Schnitte testen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/33
Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Sweepline
Fiir den Schnitt eines beliebigen Streckenpaares heiBt das:

Sweepline-Status:
= Die Ordnung der Strecken an der aktuellen Position der Sweepline.

> In die Ordnung missen hinzukommende Strecken eingefiigt
werden, verlassende Strecken geldscht werden.

> AuBerdem bendtigen wir Operationen, um die direkt Gber und
unter einer Strecke liegende Strecke zu erhalten, da (nur)
zwischen solchen auf Schnitt geprift wird.

» Etwa RBTs implementieren diesen dynamischen, sortierten ADT.

» ,Unter" und ,Uber" entspricht dem Nachfolger (bstSucc) und
dem Vorgénger (analog: bstPred).

Ereignisliste:
» Ereignispunkte sind alle Endpunkte der Strecken.
Diese sind bereits im Vorfeld bekannt.
» Dazu kommen — beim Durchlauf — ggf. gefundene Schnittpunkte,
da sich die Ordnung der beteiligten Linien vertauscht.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 20/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares Algorithmische Geometrie

Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — Beispiel Schnitt eines beliebigen Streckenpaares — Beispiel

VA
i

O T D
L D

» Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen

» Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Datenstrukturen und Algorithmen 21/33 Joost-Pieter Katoen

Datenstrukturen und Algorithmen 21/33

Algorithmische Geometrie

Schnitt eines beliebigen Streckenpaares Algorithmische Geometrie

Schnitt eines beliebigen Streckenpaares
Schnitt eines beliebigen Streckenpaares — Beispiel

e

Schnitt eines beliebigen Streckenpaares — Beispiel

<

O o v QO

» Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Joost-Pieter Katoen

» Im Algorithmus brechen wir ab, sobald der erste Schnitt gefunden ist.
» Hier muss jedoch die Ordnung der beiden Linien am Schnittpunkt
getauscht werden (mit einer speziellen ADT-Operation).

Datenstrukturen und Algorithmen 21/33 Joost-Pieter Katoen

Datenstrukturen und Algorithmen 21/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt, beliebiges Streckenpaar — Algorithmus (1)

1 typedef float[2] Point; // wir schreiben Point fir float[2]

3 // Wir ubergeben die n Strecken in einem Array wvon Punkten:
4 // Point linept[2#n]; wobei linept[0]-linept[1],
5 // linept[2]-linept[3], ..., linept[2%(n-1)]-linept[2*(n-1)+1]

7// 1. Tausche ggf. [2*t1] und [2%i+1], so dass [2*i] links ist.
8 // 2. Sortiere die Punkte won links nach rechts; vergleiche x
9 // bei gleichem x;. Tausche nun aber nicht die Punkte, sondern
10 // bestimme die Permutation (tausche auf einem Index-Array).

11 int[2#n] sortLeftRight(Point &points[2*n]) { ... selbst ... }

13 // Schnitt lines[i]-lines[i+1] und lines[j]-lines[j+1]?

14 bool Intersect(Point lines[], int i, int j) {

15 if (i == -1 || j == -1) // Strecke i oder j nicht gefunden

16 return false;

17 return seglntersect(lines([i],lines[i+1],lines([j],lines[j+1]);

18 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 22/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares — ADT
Wie kann man aber binare Suchbidume fiir Strecken mit zwei Endpunkten
verwenden? — Erinnerung:

1 void bstIns(Tree t, Node node) // Fige node in den Baum t ein

2 // Suche freten Platz [...]
3 if (node.key < root.key) {
4 root = root.left;

5 } else {

6 root = root.right;

7 }

8

// [...] Einfiugen [...]

» Wir missen einen geeigneten Vergleich verwenden.

» Im Algorithmus haben wir Strecken iiber ihren linken Endpunkt
eindeutig identifiziert.

» Wir speichern also als Schliissel nur den Index des linken Endpunktes.

1 void Tree::Insert(Point linp([], int i) // [...]
if (direction(linp[root.key+1], linp[root.key]l, linp[il) < 0)
3 /7 [...]

N

Joost-Pieter Katoen Datenstrukturen und Algorithmen 24/33

Schnitt, beliebiges Streckenpaar — Algorithmus (1)

1 bool anyIntersect(Point linept[2*n], int n) {

2 int sortMap[2+#n] = sortLeftRight(linept);

3

4 Tree order; // speichere linken Endpunkt als Reprdsentant
5 for (int i = 0; i < 2%n; i++) { // Sweepline

6 int line = sortMap[il; // Originalindez des i-ten Punktes
7 if (line mod 2 == 0) { // linker Endpunkt

8 order.Insert(linept, line);

9 int above = order.Pred(line), below = order.Succ(line);
10 if (Intersect(linept, line, above)) return true;

11 if (Intersect(linept, line, below)) return true;

12 } else { // rechter Endpunkt

13 line--; // Reprdsentant ist aber der linke Punkt

14 int above = order.Pred(line), below = order.Succ(line);
15 if (Intersect(linept, above, below)) return true;

16 order.Delete(linept, line);

17 }

18}

19 return false;

20 }

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/33

Algorithmische Geometrie Schnitt eines beliebigen Streckenpaares

Schnitt eines beliebigen Streckenpaares —
Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitat, zu bestimmen op sich zwei beliebige
Strecken aus einer Menge von n Strecken schneiden, ist O(nlogn).

Beweis.

» Der Test, ob sich zwei Strecken schneiden geht in O(1).

» Zum Sortieren der Ereignispunkte kdnnen wir auf bekannte
Sortierverfahren mit O(nlog n) zuriickgreifen.

» Wir iterieren liber die 2-n Endpunkte, wobei wir O(log n)-Operationen
der RBTs verwenden. Somit: O(nlog n).

= Im Worst-Case bendtigt anyIntersect O(nlogn) Zeit.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 25/33

Ubersicht Polygone

nicht einfach nicht konvex konvex, einfach

einfach

Ein Polygon heiBt einfach, wenn es sich nicht selbst schneidet.

© Konvexe Hiille
Ein Polygon heiBt konvex, wenn jede Verbindung (Konvexkombination)
zweier Punkte des Polygons nie auBerhalb des Polygons liegt.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 26/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 27/33
Konvexe Hiille Konvexe Hiille — Graham-Scan — ldee

> Wir ziehen ein Gummiband Punkt fiir Punkt weiter.
» Ausgehend von einem ausgezeichnetem Punkt, der auf der Hiille liegt:
» Der Punkt mit der geringsten x,-Koordinate, bei Mehrdeutigkeiten
auBerdem geringsten x;-Koordinate, ist geeignet.
> Von diesem ausgehend sortiere die Punkte, diesmal nach
zunehmendem Winkel (mittels Determinante).

» Das entspricht einer rotierenden Sweepline.

Dann gilt:
Konvexe Hiille

Die konvexe Hiille einer Menge @ von Punkten ist das kleinste konvexe
Polygon P, fiir das sich jeder Punkt in @ entweder auf dem Rand von P
oder in seinem Inneren befindet.

» Entweder das Gummiband liegt weiterhin an, oder der neue Punkt
hebt das Gummiband vom vorigen Punkt weg.
Dann ist der vorige Punkt sicherlich nicht Teil der konvexen Hiille.
Uberpriife in dem Fall nun den ,neuen” vorigen Punkt (usw.).
» Betrachte jeden Punkt als Nagel, der aus einem Brett herausragt. > Bemerke, dass auch (nel_nen dem Startp_l_mkt_) der Punkt mit dem
> Die konvexe Hiille hat dann die Form, die durch ein straffes geringsten Polarwinkel sicher auf der Hillle liegt.
Gummiband gebildet wird, das alle Nagel umschlieBt. » Gleiches gilt fiir den Punkt mit groBtem Polarwinkel.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 28/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/33

Algorithmische Geometrie Konvexe Hiille Algorithmische Geometrie Konvexe Hiille

Konvexe Hiille — Graham-Scan — Beispiel Konvexe Hiille — Graham-Scan — Beispiel

P11 P9

L P1 o 1l D6
Pé . Ps P10 Ps
Pa ’
Po . Pg
. P2 e Py P4 P3
P5 e P12 P12 P11
P3 P2
e pP7 P1
P10 Po

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Konvexe Hiille — Graham-Scan — Beispiel Konvexe Hiille — Graham-Scan — Beispiel

P12 P11 P12 P11

Po Po

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33 Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Algorithmische Geometrie Konvexe Hiille

Konvexe Hiille — Graham-Scan — Beispiel

P9

P12

Po

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/33

Algorithmische Geometrie Konvexe Hiille

Graham-Scan — Korrektheit

Wenn grahamScan auf einer Punktemenge @ lauft, dann gilt bei
Terminierung, dass der Stapel hull von unten nach oben die Eckpunkte
der konvexen Hiillen von @ enthalt in der dem Uhrzeigersinn
entgegengesetzten Reihenfolge.

Beweis.

(Skizze). Die Schleifeninvariante ist: zu Beginn der i-ten Iteration besteht
der Stapel hull von unten nach oben genau aus den Eckpunkten von der
konvexen Hiille der Punktenmenge { po, - .., pi_1 }-

Wir verzichten hier auf weitere Details. O]

Joost-Pieter Katoen Datenstrukturen und Algorithmen 32/33

Algorithmische Geometrie Konvexe Hiille

Konvexe Hiille — Graham-Scan — Algorithmus

1 // gibt index der Punkte auf der Hulle zuriuck

2 int[] grahamScan(Point poly[n], int n) {

3 // Finde Index des Punktes mit minimaler x; Koordinate

4 int refPnt = findRef (poly);

5 // Sortiere Punkte nach aufstetgendem Polarwinkel bezuglich
6 // refPnt, setze dabei refPnt an Position 0. Lésche alle

7 // bis auf den dufersten, bei mehreren mit gleichem Winkel.
8
9

inverseMap = polarSort(poly, refPnt);

10 Stack hull; // Punkte, die bis jetzt auf der Hiulle sind.
1 for (int i = 0; i < m; i++) {
12 if (1> 2)

13 while (direction(polyl[hull[-2]], poly[hull[-1]],poly[i])
14 <= 0) // die oberen beiden Punkte vom Stack
15 hull.popQ);

17 hull.push(i);
18}

19 return inverseMap(hull); // macht die Umsortierung rickgdngig

Joost-Pieter Katoen Datenstrukturen und Algorithmen 31/33

Algorithmische Geometrie Konvexe Hiille

Graham-Scan — Komplexitat

Zeitkomplexitat

Die Worst-Case Zeitkomplexitdt von grahamScan fiir eine Menge mit n
Punkten ist ©(nlog n).

Beweis.

» direction € ©(1).
findRef bendtigt einen Durchlauf iiber die Punkte, also ©(n).

v

v

Sortieren: polarSort € ©(nlogn).

v

n Schleifendurchlaufe mit, von der while-Schleife abgesehen, ©(1).

v

Da im while nur Punkte von Stack genommen werden, die vorher
durch die for-Schleife hinzugefiigt wurden, kénnen alle Iterationen
der while-Schleife in der Analyse jeweils zum jeweiligen push
gerechnet werden.

Somit bleibt es bei insgesamt ©(n) fiir alle Schleifen. O

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/33

	Algorithmische Geometrie
	Winkelbestimmung
	Schnitt zweier Strecken

	Schnitt eines beliebigen Streckenpaares
	Ordnen von Strecken
	Sweepline

	Konvexe Hülle

