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1 Preliminaries from lecture 1
Sequence DiagrammsSequence diagrams specify the interaction patterns bettheesystem components
and are a popular elicitation technique for requirementgi@eering.

Communication Action. Let P be finite set of> 2 sequential processes afitibe a finite set of message
contentss, b, ¢ € C then_communication actions q € P,p # q,a € C are

p!q(a) "p sends a message to q”
p?q(a) "p receives a message sent by "

Partial Order. For E a set of events, a partial ordever F is a relation< O E x E such that

o < isirreflexive,ie-(e <e)Vee FE
e < istransitive e < ¢ A e’ < e’ impliese < e”

e <isacyclic:e < e A€ < eis forbidden

Hasse Diagram. Let (E, <) be a poset. The Hasse diagraift, <) is defined by < ¢’ iff e < ¢’ and
-(Fe". e< e <€)

Linearization. Let(E, <) be a poset. A linearizatiofF, <) is a total orderC such thate < ¢’ implies
eC €.
A linearization is a topological sort of the Hasse diagram( Bf <).

Example: E ={e1, €2, ...,en}

Hasse diagram:

<= {(615 62)7 (615 63)7 (635 64)7 (645 65)7 (655 66)7 (617 64)7 (637 65)5 (617 65)5 (617 66)5 (637 66)5 (647 66)}



Linearizationseeseseseseg, €1€3€2€4€5€6, €1€3€4€265€6, €1€3€46562€6, €1C3C4E5C6E, ErETE3E1E5EE

2 Message Sequence Graphs

2.1 Message sequence charts

Message sequence charts are a

e Scenario-based language
e Primary use: requirement specification

e Visual Language:

The notation is standardised by the ITU

Adopted by the UML (sequence diagrams)

Widely used in industrial practice

‘Easy’ to comprehend ?
Definition 1 (Message Sequence Char) message sequence chart (MSC) is defined by the dptq P,
E,C,1,m, <) with:

e P, afinite set of processe®{, Ps, ..., P}

e E, afinite set of event® = Lﬂpep E,=E, L—Ij E L—Ij Eioe

partitioning of E
e [ F — Act, alabelling function
plga) feec E,NE,p#qacC

a) fee E,NE:yp#q,aeC
ifee EyNEpe,aeC



e m: Fy — E>, abijection ("matching function”) satisfying :

m(e) =€’ Al(e) = plg(a) (p # ¢,a € C)
implies 1(e") = q?p(a)

e < C FE x FEis apartial order ("visual order”)

<= U <» U {(e,;m(e))e € E\}
peEP

~——
<p is a total order "top-to-bottom” order on process p

communication order <.

So we have 3 type of events (send, receive, local), a coupteesbages. The labelling basically tells you
which kind of action happens at each event.

Which send events correspond to which receive events isatkfip the matching functiom(e). A process

is not allowed to send a message to itself. The partial osdaniorder on the events. It is the combination
of the order for all vertical lines (processes) and the laoial lines (communication).

Definition 2 (FiFo Property) AMSCM = (P, E, C, I, m, <) has the First-Out (FiFo) property whenever
forall e, ¢ € E\, we have

e<e Alle)=plgla) A I(e) = plg(b)
implies m(e) < m(e’)

Take two send events, ') from P; to P, and suppose does happen beforé, then the receive event(e)
must happen before the receive event of the second messgafe A message may not "overtake” another.

Example for an MSC with FiFo property:

P1 P2
a | -
e I m(e)
FiFo
b >
e' >1m(e')

with l(e) = Pl!PQ(a)
1(6/) = P1'P2(b)
e<e =mle) <m(e)



Example for an MSC without FiFo property:

P1 P2

o b m(e')
non-FiFo a

¢ m(e)

Note: We assume an MSC to possess the FiFo property unlésd stherwise.

2.1.1 Linearizations

Lin(M) = set of linearizations of MSC M
Lemma 1. There is a one-to-one correspondence between MSCs and#igiof linearizations.

In other words Lin (M) uniquely characteristica/ .
2.1.2 Visual Order vs. Possible (Causal) Order

Ty

a | -
e2 7 let

b
e3 e4

- C
<<

- o

If b takes much shorter than thenc might arrive atP; beforea.

Formally:

<p1 = { (ep,e2) } is possible

2 visual order

So how and when are those situations possible?

2.1.3 Races

LetM = (P, E,C, 1, m, <) be an MSC.



Definition 3 («). Let« C E x E be defined by:
ege iff € =mfle)

or e<pe andeore € F) < is the "interpreted / possible order”

or e e €epNerandm=1(e) <, m~1(e)
We saye is much smaller«) thane’ if and only if ¢’ is the corresponding receive event to the send event
or the event happens before on the same process P and at least ¢’ is a send event
or if we have two receive events on the same process and thesponding send events happen on another
processy with m=1(e) <, m~*(e’) .
Example (cf. previous MSC)(e2 < e1, e3 < €4, €5 K €6, €1 K €3, €4 <K €5)
MSC M contains a rac# for somee, e’ € E-»

e <p e but—(e <* ¢') («* is the reflexive and transitive closure<f)

We check whether MS@/ has a race by computing* and compare te<p. This is possbile via the
Floyd-Warshall Algorithm inD(| E|?), but as a special case here it is o6y E|?).

2.1.4 Computing<* with Warshall's Alorithm

MSC M has aracé <Z<* or equivalently:
Jde, e’ € E» (e <p € ande <¢* ¢’)

= protocol implementation based enp may cause problems, e.g. unspecified reception, deadlock, o
using information from wrong message.

Algorithm:  compute <*  and compare with <
~—_—————

Warshall's algorithm

Warshall's algorithm: input R C X x X
output R*

Idea:

considerR andR* as directed graphs
thereis an edge s yin R*
iff
there is a (possibly empty) path
T=29g > T > xyg— - — Ty, =yINR
(ourcaseR =< ,R* =<*)



2.1.5 Warshalls's Algorithm

Assume the vertices are numbered {1, 2, ..., n}far {1, ... n}. Define relation as follows:

x 2 y iff 3 path inR from z to y such that all vertices on the pat# (¢, y) have a smaller number than

Then:

x=y Iff :vn2+>1y

x:1>y iff =1y

+1 .
tS 2 iff a2 zoradyd

n,m

Algorithm: Determine the relationd, =, ..., &, =2 iteratively using propertie€l) + (2).

Store= in a boolean matrix C.
PostconditionC'[z, y] = true iff (z,y) € R*
Precondition¥z, y € X C|x,y] = false

Warshall's Algorithm see Algorithm 1.

Correctness: Aftej iterationsz A y iff Clx, y].
Proof: by induction on j

Time complexity:O(n?) wheren = | X |

2.1.6 Warshalls's Algorithm Efficiency Improvement [Aluret.al '96]
Exploit that for<:

e < isacyclic, and

o the number of predecessorseof F under< is at most two
Note: e is an immediate predecessoreif:
e<e and—(Fe" #e, ek <€)

For body of the algorithm see Algorithm 2.

(1)
(@)
3)



Algorithm 1 Warshall's Algorithm

1. for z := 1 ton do /* Initialization */
2. fory:=1tondo

3 Clz,y] :=(x=yor(z,y) € R)
——
Ly

4: /* loop invariant; */

5: [* after the j-th iteration of outermost */
6 [*loopitholdsClz,y] iff 2% y*/
7. od

8: od

9: for y :=1ton do

10: forxz:=1tondo

11 if C[z,y] then

12: for z:=1tondo

13: if Cly, z] then

14: Clz, z] = true
15: fi
16: od
17: fi
18: od
19: od

Algorithm 2 Tailored Warshall’'s Algorithm
1. fore:=1ton do
2:  for ¢’ := e — 1 downtol do
3: if C[e’, e] then
4 /* This part is executed fafe, e) only if ¢’ is an immediate predecessor of e, ignnerioops <
2 x n = timecomplezity(O(n?)) */

5 fore” :=1toe’ —1do
6: if Cle”,e'] then

7: Cle”,e] =true

8: fi

9: od

10: fi

11: od

12: od




2.2 Sets of MSCs

M SC specifies a singlscenario

but we typically need a setf scenarios
e and additionally an ordering relation between them, e.g.

— after scenario 1, scenario 2 occurs
— after scenario 1, scenario 2 or 3 occurs
— scenario 1 occurs repeatingly

So we need :

— alternative composition,
— sequential composition (=concatenation),
— iteration of MSCs

This yieldsMessage Sequence Graphs

e Alternatives are ensembles of MSCs and high-level MSCs (M&C



initial vertex Y '\"39 Ve~r‘tex
3 A
U F S U F S
connect _ ack
—>
test
info g grant
Uo ; ; U1 ; ¢ ¢
B “ J . A J
----- edge
\4
U F S U F S
il off o
—>
g ack
Us ; ; ; U4 ; L L

L- final vertex

Uo-Us Uy~ Uy = ANUp) - AUs) - M(Us) - MUY)

Definition 4 (Message Sequence GraphgtM be the set of MSCs. (up toisomorphismi.e. eventidentities)
A Message Sequence GraitiSG)G is a tupleG = (V, —, v,, F, A) with:

e (V,—) is adigraph with a finite set V of vertices ardC V' x V the set of edges.
e yy € Visthe starting (or initial) vertex
e I C V is aset of final vertices

e )\ :V — Massociates to each vertexc V an MSCA(v)

Note:



e An MSG is an NFA without input alphabet where states are MSCs

e Every MSC is an MSG

2.2.1 Concatenation of MSCs

Let M; = (P“ E;, C;, l;, m;, <i) with i € {1, 2} be an MSC withE; N E5 = 0.

The (weak) concatenatiaf M; andMs is the MSCM; - My = (P, E, C, [, m, <) with

P=PUP, E=FE UE, C=CLUCy
with E; = E172 U Eg7, By = E11 U Eay, Ejoe = Ejoe? U Ejper. And

. I (6) if e € Fr
l(e) N {12(6) if e € By

mfe) =

mi (6) ifee Eq
mo (6) if e € Eo

<=<1 U<y U{(e,e)|E1 N Ep, ¢ € E;N Ep} whereP is the same process both times.

Note:

e Events are ordered process-wise: Evenjsiatif; precede events atin M,
e Thus: some processes may proceedipbefore others.

o +£: first completelM; then executé/,. (Strong concatenatids covered in Assignment 1, Excercise
4)

Some examples of concatenation :



P1 P2 Ps

\4

el e2

M1
P1 P2 Ps
a |-
el 'e‘z b
° _— e2' [ etl'
P4 P2 P3 ou [ > 63
b L ; ;
eo [ et'
c M1 e M2
M2 e4' ed'
<{ e1—>e2 el €2
<:
[ et e2‘v<—
<o !
¢ A\ \4
e4 ed' e4 < e3'

Note: e; ande’ are not ordered id/; - My, e.g.
e1,ea, €, ey, -+ € Lin(My - M)
e}, e1, e, €5, -+ € Lin(My - M)
2.2.2 Language of an MSG

LetG = (V,—,v,, F, \) be an MSG.
A pathr of GG is a finite sequence

T = Ug, UL, .-, Uy, Withu; € V0 < i <mnandu; — u;41,0<i<n



The MSC of a pathr = ug, u1, ..., u, IS:

M(m) = Muo) - AMu1) - ...--- Muy,) , where- is the MSC concatenation operator
=] Mw)
=0
The pathr = ug, uy, . .., u, is accepting ifug = vo andu,, € F

The (MSC) language of MSG' is defined by :
L(G) = {M (r) | = is an accepting path @¥}

The word language of MSG is Lin(L(G)) where:
Lin({My, ..., My}) = UL, Lin(M;)

2.2.3 Racesin MSGs
Recall: MSCM has arace ik ¢ <*
or equivalentlyLin(E, <) ¢ Lin(E, <*)

or equivalentlyLin(E, <) C Lin(E, <*)
(sinceLin(E, <) C Lin(E, <*))

Definition 5 (Races in MSGsS)MSGG has arace ifLin(G, <) C Lin(G, <*) [Musholl, Peled '99]
Theorem 1 (without proof) The decision problem "MS@&' has a race” is undecidable.

Proof. Reduction from Post’s correspondence problem (PCP). Ehaigation is not easy, however we will
see a similar - though simpler - proof later on for a diffeneratblem. O

Example of an MSG that has a race:

Y

\4

\4




Each individua; MSC is race-free, but their concatenatsamai.

3 Expressiveness of MSGs

Three facts about the expressiveness of MSGs.

3.1 MSGs may represent infinite-state systems

Definition 6 (States of MSCs) Thestateof an MSC with event sdf is £’ C E, suchthatt € F' A e’ <
eimpliese’ € E'. In other words,E’ is downward-closed wrt<.

Definition 7 (State space of MSCs)The set of states of an MS® is thestate spacef M.

Definition 8 (State space of MCGs)Thestate spacef an MSGG is the union of the state spaces/af;
with M; € L(G)

3.1.1 Example V

Gl IR

(G, has an infinite state space.
A possible state i§e(D), e 3} with e(*) the occurrence of in thei-th iteration.

= A system that realize§ would require anunboundec¢ommunication channel.



3.2 State space of MSG may not be context-free

< ey es

The states ofi» are of the form{e¥, e}, e? e} |k > 1 > m > n}.
The corresponding language is not context-free.

3.3 The state space of an MSG is context-sensitive

Let M be an MSC with event sdf with ¢, e’ € F andw,w’ € E*. Consider the following rules:

(1) wee'w' € Lin(M) , l(e) = q?p(b), I(e') = plg(a) implieswe’ew’ € Lin(M). Note that the reverse
does not always hold.

(2) wee'w' € Lin(M), l(e) =plq(a), I(e") = q?p(b) and

Z |wlpig(a) > Z lwlgzp(a)

acC acC

number of sends from p to g in w number of receipts of g from p in w
implieswe’ew’ € Lin(M).

(3) wee'w' € Lin(M), e € E,, ¢ € E;, p # q ande, ¢’ do not match like in (1) + (2) impliese’ew’ €
Lin(M)

Note: Rule (2) is a&ontext-sensitiveule of form X adY — XbaY

3.4 Context sensitivity (informal argument)

o Take MSGG and use vertex identities as vertex labels.

e K(G) = set of "accepting” vertex segeuences.



e Replace each vertexby Lin(A(v)) (interpret sequencing element wise)
o Let the resulting set b& (G)

° CIosef((G) under the permutation rules (1), (2) and (3) as describeukiptevious section.

The resulting language is context sensitive.



4 |Intersection of MSGs

Theorem 2(The emptiness problem of the intersection of MSGs is urtidite) LetG; andG, be MSGs.
The decision problemi(G1) N L(G2) = 0 is undecidable.

Proof

Reduction from Post's Correspondence Problem.

Definition 9 (Post’'s Correspondence Problem (PCP))
Input: {(u1,w1), (ug, wa), ..., (Un,wy)} With u;, w; € X* for some alphabet, 1 <=i<=n
Decision problem: Does there exist a sequence of indaxes. , i, with1 < i; < nwithl <= j <=k,

such thatuil Wiy « -+« Uj,, = Wiy Wiy -+ - Wy,

n

Example
Input: {(aba, a ),(bbb,aaa),(aab,abad), (bb, babba)}
Ul w1 Uz w2

One solution would be the index sequencé, 3, 1 with aba _bb aab aba = a babbaabab a
P I e s

uy Uq us uy w1 waq w3 w1

Theorem 3(Undecidability of PCP) Post’s Correspondence Problem is undecidable.

Definition 10 (Reduction technique)Let P, Q be decision problems. P is reducible toQ and P is
undecidable, the is undecidable.

In our case, leP=PC P and(Q the intersection problem.

Find a transformation from an instanf@uy, w1), . . ., (un, wy,)} of PCP to MSGs7,,, G, such that PCP
has a solution iffL.(G,,) N L(G,,) # 0.

Instead of a formal definition, the construction of the MSGlslve explained by an example:



For the PCP instance, let

u1 = aba
us = bbb
u3z = aab
Ug = bb

Construct,, with processe® = {P;,... P4}

Uu R 2
/ S —

us R3

U4’ R4

The corresponding languagelisG.,) = E-(3_7_, (M;-R;))* - F . InfactA\(E)- (3°7_; Mu;)-A(R;)) "
AF) . Gy, is constructed in a similar fashion. It can now be shown that :

PCP on{(u,w), ..., (un,wy)} has asolutionf f L(G,) N L(G,) # 0.



