

Foundations of the UML

Winter Term 07/08

– Lecture number 2: Message Sequence Graphs –

(2007-11-05)
summarized by *Thomas Bille and Tim Kosse*

1 Preliminaries from lecture 1

Sequence Diagramms. *Sequence diagrams specify the interaction patterns between the system components and are a popular elicitation technique for requirements engineering.*

Communication Action. *Let P be finite set of ≥ 2 sequential processes and \mathbb{C} be a finite set of message contents $a, b, c \in \mathbb{C}$ then communication actions $p, q \in P, p \neq q, a \in \mathbb{C}$ are*

$$\begin{array}{ll} p ! q (a) & \text{"p sends a message to q"} \\ p ? q (a) & \text{"p receives a message sent by q"} \end{array}$$

Partial Order. *For E a set of events, a partial order over E is a relation $\subset \supseteq E \times E$ such that*

- \subset is irreflexive, i.e. $\neg(e \subset e) \forall e \in E$
- \subset is transitive: $e \subset e' \wedge e' \subset e''$ implies $e \subset e''$
- \subset is acyclic: $e \subset e' \wedge e' \subset e$ is forbidden

Hasse Diagram. *Let (E, \subset) be a poset. The Hasse diagram (E, \preccurlyeq) is defined by $e \preccurlyeq e'$ iff $e \subset e'$ and $\neg(\exists e'' \in E. e \subset e'' \subset e')$*

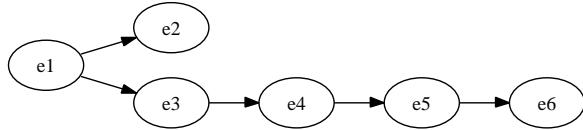
Linearization. *Let (E, \subset) be a poset. A linearization (E, \preccurlyeq) is a total order \sqsubseteq such that $e \subset e'$ implies $e \sqsubseteq e'$.*

A linearization is a topological sort of the Hasse diagram of (E, \subset) .

Example: $E = \{e_1, e_2, \dots, e_6\}$

Hasse diagram:

$$\subset = \{(e_1, e_2), (e_1, e_3), (e_3, e_4), (e_4, e_5), (e_5, e_6), (e_1, e_4), (e_3, e_5), (e_1, e_5), (e_1, e_6), (e_3, e_6), (e_4, e_6)\}$$



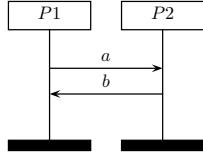
Linearizations: $e_1e_2e_3e_4e_5e_6, e_1e_3e_2e_4e_5e_6, e_1e_3e_4e_2e_5e_6, e_1e_3e_4e_5e_2e_6, e_1e_3e_4e_5e_6e_2, \cancel{e_2e_1e_3e_4e_5e_6}$

2 Message Sequence Graphs

2.1 Message sequence charts

Message sequence charts are a

- Scenario-based language
- Primary use: requirement specification
- Visual Language:



- The notation is standardised by the ITU
- Adopted by the UML (sequence diagrams)
- Widely used in industrial practice
- ‘Easy‘ to comprehend ?

Definition 1 (Message Sequence Chart). *A message sequence chart (MSC) is defined by the tuple $M = (P, E, \mathbb{C}, l, m, <)$ with :*

- P , a finite set of processes $\{P_1, P_2, \dots, P_n\}$
- E , a finite set of events $E = \biguplus_{p \in P} E_p = E_? \biguplus \underbrace{E_! \biguplus E_{loc}}_{\text{partitioning of } E}$
- $l: E \rightarrow \text{Act}$, a labelling function

$$l(e) = \begin{cases} p!q(a) & \text{if } e \in E_p \cap E_!, p \neq q, a \in \mathbb{C} \\ p?q(a) & \text{if } e \in E_p \cap E_?, p \neq q, a \in \mathbb{C} \\ p(a) & \text{if } e \in E_p \cap E_{loc}, a \in \mathbb{C} \end{cases}$$

- $m: E_! \rightarrow E_?$, a bijection ("matching function") satisfying :

$$m(e) = e' \wedge l(e) = p!q(a) \quad (p \neq q, a \in \mathbb{C})$$

implies $l(e') = q?p(a)$

- $< \subseteq E \times E$ is a partial order ("visual order")

$$<= \underbrace{\bigcup_{p \in P} <_p}_{<_p \text{ is a total order "top-to-bottom" order on process } p} \cup \underbrace{\{(e, m(e)) | e \in E_!\}}_{\text{communication order } <_c}$$

So we have 3 type of events (send, receive, local), a couple of messages. The labelling basically tells you which kind of action happens at each event.

Which send events correspond to which receive events is defined by the matching function $m(e)$. A process is not allowed to send a message to itself. The partial order is an order on the events. It is the combination of the order for all vertical lines (processes) and the horizontal lines (communication).

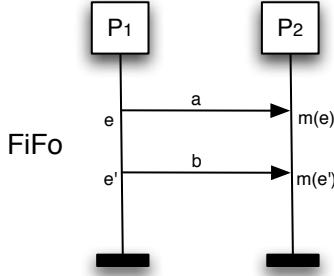
Definition 2 (FiFo Property). A MSC $M = (P, E, \mathbb{C}, l, m, <)$ has the First-Out (FiFo) property whenever for all $e, e' \in E_!$ we have

$$e < e' \wedge l(e) = p!q(a) \wedge l(e') = p!q(b)$$

implies $m(e) < m(e')$

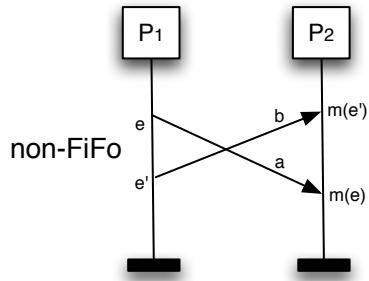
Take two send events (e, e') from P_1 to P_2 and suppose e does happen before e' , then the receive event $m(e)$ must happen before the receive event of the second message $m(e')$. A message may not "overtake" another.

Example for an MSC with FiFo property:



with $l(e) = P_1!P_2(a)$
 $l(e') = P_1!P_2(b)$
 $e < e' \Rightarrow m(e) < m(e')$

Example for an MSC without FiFo property:



Note: We assume an MSC to possess the FiFo property unless stated otherwise.

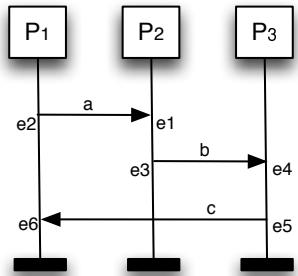
2.1.1 Linearizations

$Lin(M)$ = set of linearizations of MSC M

Lemma 1. *There is a one-to-one correspondence between MSCs and their sets of linearizations.*

In other words, $Lin(M)$ uniquely characterizes M .

2.1.2 Visual Order vs. Possible (Causal) Order



If b takes much shorter than a , then c might arrive at P_1 before a .

Formally:

$$\begin{aligned} <_{P_1} = \{ (e_b, e_2) \} \text{ is possible} \\ &\neq \text{visual order} \end{aligned}$$

So how and when are those situations possible?

2.1.3 Races

Let $M = (P, E, \mathbb{C}, l, m, <)$ be an MSC.

Definition 3 (\ll). Let $\ll \subseteq E \times E$ be defined by:

$$\begin{aligned} e \ll e' &\quad \text{iff} \quad e' = m(e) \\ &\quad \text{or} \quad e <_P e' \text{ and } e \text{ or } e' \in E_! \\ &\quad \text{or} \quad e, e' \in e_P \cap e_? \text{ and } m^{-1}(e) <_q m^{-1}(e') \end{aligned} \quad \ll \text{ is the "interpreted/possible order"}$$

We say e is much smaller (\ll) than e' if and only if e' is the corresponding receive event to the send event e or the event e happens before e' on the same process P and at least e or e' is a send event or if we have two receive events on the same process and the corresponding send events happen on another process q with $m^{-1}(e) <_q m^{-1}(e')$.

Example (cf. previous MSC) : $(e_2 \ll e_1, e_3 \ll e_4, e_5 \ll e_6, e_1 \ll e_3, e_4 \ll e_5)$

MSC M contains a race if for some $e, e' \in E_?$

$$e <_P e' \text{ but } \neg(e \ll^* e') \quad (\ll^* \text{ is the reflexive and transitive closure of } \ll)$$

We check whether MSC M has a race by computing \ll^* and compare to $<_P$. This is possible via the Floyd-Warshall Algorithm in $O(|E|^3)$, but as a special case here it is only $O(|E|^2)$.

2.1.4 Computing \ll^* with Warshall's Alorithm

MSC M has a race if $< \not\subseteq \ll^*$ or equivalently:

$$\exists e, e' \in E_? (e <_P e' \text{ and } e \ll^* e')$$

\Rightarrow protocol implementation based on $<_P$ may cause problems, e.g. unspecified reception, deadlock, or using information from wrong message.

Algorithm: $\underbrace{\text{compute } \ll^*}_{\text{Warshall's algorithm}}$ and compare with $<$

Warshall's algorithm: $\begin{array}{ll} \text{input} & R \subseteq X \times X \\ \text{output} & R^* \end{array}$

Idea:

consider R and R^* as directed graphs
 there is an edge $x \Rightarrow y$ in R^*
 iff
 there is a (possibly empty) path
 $x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots \rightarrow x_n = y$ in R
 (our case: $R = \ll, R^* = \ll^*$)

2.1.5 Warshall's Algorithm

Assume the vertices are numbered $\{1, 2, \dots, n\}$ for $j \in \{1, \dots, n\}$. Define relation $\overset{j}{\Rightarrow}$ as follows:
 $x \overset{j}{\Rightarrow} y$ iff \exists path in R from x to y such that all vertices on the path ($\neq x, y$) have a smaller number than j .

Then:

$$x \Rightarrow y \quad \text{iff} \quad x \overset{n+1}{\Rightarrow} y \quad (1)$$

$$x \overset{1}{\Rightarrow} y \quad \text{iff} \quad x = y \quad (2)$$

$$x \overset{y+1}{\Rightarrow} z \quad \text{iff} \quad x \overset{y}{\Rightarrow} z \text{ or } x \overset{y}{\Rightarrow} y \overset{y}{\Rightarrow} z \quad (3)$$

Algorithm: Determine the relations $\overset{1}{\Rightarrow}, \overset{2}{\Rightarrow}, \dots, \overset{n}{\Rightarrow}, \overset{n+1}{\Rightarrow}$ iteratively using properties (1) + (2).

Store $\overset{j}{\Rightarrow}$ in a boolean matrix C .

Postcondition: $C[x, y] = \text{true}$ iff $(x, y) \in R^*$

Precondition: $\forall x, y \in X \ C[x, y] = \text{false}$

Warshall's Algorithm see Algorithm 1.

Correctness: After j iterations $x \overset{j+1}{\Rightarrow} y$ iff $C[x, y]$.

Proof: by induction on j

Time complexity: $O(n^3)$ where $n = |X|$

2.1.6 Warshall's Algorithm Efficiency Improvement [Aluret.al '96]

Exploit that for \ll :

- \ll is acyclic, and
- the number of predecessors of $e \in E$ under \ll is at most two

Note: e is an immediate predecessor of e' if:
 $e \ll e'$ and $\neg(\exists e'' \neq e, e' e \ll e'' \ll e')$

For body of the algorithm see Algorithm 2.

Algorithm 1 Warshall's Algorithm

```
1: for  $x := 1$  to  $n$  do /* Initialization */
2:   for  $y := 1$  to  $n$  do
3:      $C[x, y] := (x = y \text{ or } \underbrace{(x, y) \in R}_{x \leq y})$ 
4:     /* loop invariant: */
5:     /* after the j-th iteration of outermost */
6:     /* loop it holds  $C[x, y]$  iff  $x \xrightarrow{j+1} y$  */
7:   od
8: od
9: for  $y := 1$  to  $n$  do
10:   for  $x := 1$  to  $n$  do
11:     if  $C[x, y]$  then
12:       for  $z := 1$  to  $n$  do
13:         if  $C[y, z]$  then
14:            $C[x, z] = \text{true}$ 
15:         fi
16:       od
17:     fi
18:   od
19: od
```

Algorithm 2 Tailored Warshall's Algorithm

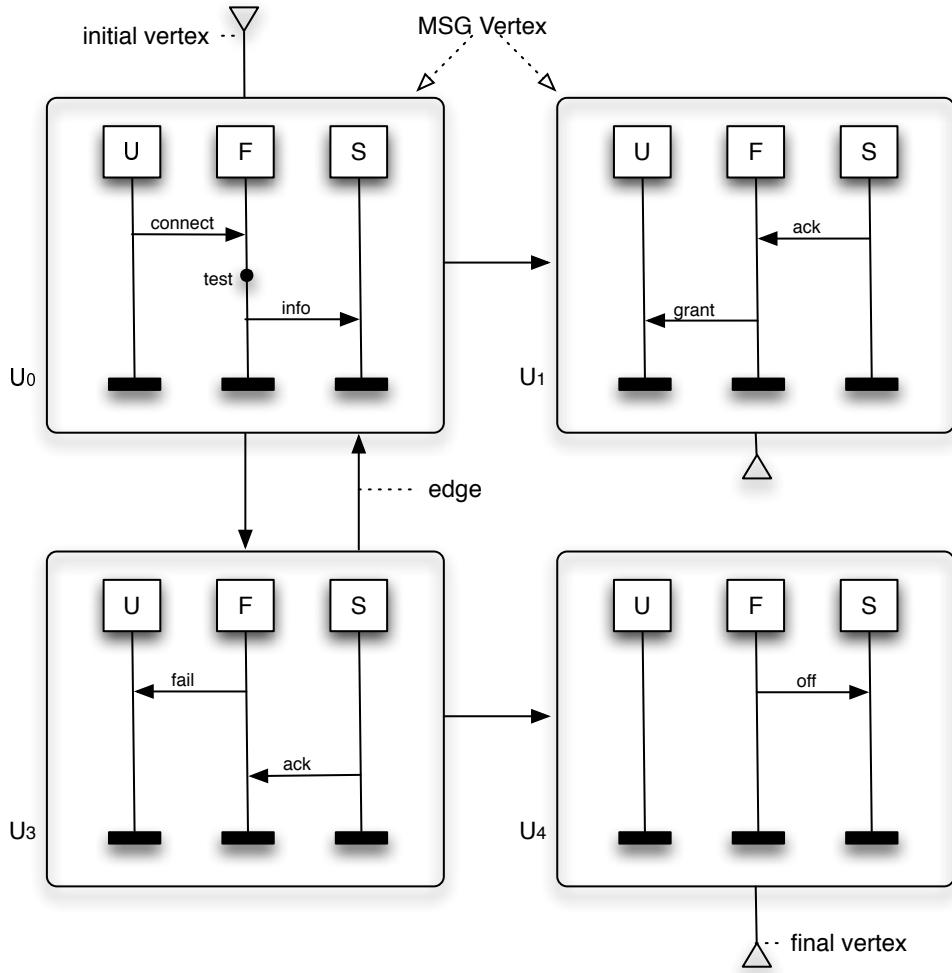
```
1: for  $e := 1$  to  $n$  do
2:   for  $e' := e - 1$  downto 1 do
3:     if  $C[e', e]$  then
4:       /* This part is executed for  $(e, e')$  only if  $e'$  is an immediate predecessor of  $e$ , i.e.  $\#\text{innerloops} \leq 2 \times n \Rightarrow \text{timecomplexity}(O(n^2))$  */
5:       for  $e'' := 1$  to  $e' - 1$  do
6:         if  $C[e'', e']$  then
7:            $C[e'', e] = \text{true}$ 
8:         fi
9:       od
10:      fi
11:    od
12: od
```

2.2 Sets of MSCs

- *MSC* specifies a single scenario
- but we typically need a set of scenarios
- and additionally an ordering relation between them, e.g.
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs repeatedly
- So we need :
 - alternative composition,
 - sequential composition (=concatenation),
 - iteration of MSCs

This yields **Message Sequence Graphs**

- Alternatives are ensembles of MSCs and high-level MSCs (MSC'96)



$$U_0 \cdot U_2 \cdot U_0 \cdot U_1 = \lambda(U_0) \cdot \lambda(U_2) \cdot \lambda(U_0) \cdot \lambda(U_1)$$

Definition 4 (Message Sequence Graph). Let \mathbb{M} be the set of MSCs. (up to isomorphism i.e. event identities). A Message Sequence Graph (MSG) G is a tuple $G = (V, \rightarrow, v_o, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with a finite set V of vertices and $\rightarrow \subseteq V \times V$ the set of edges.
- $v_0 \in V$ is the starting (or initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$ an MSC $\lambda(v)$

Note:

- An MSG is an NFA without input alphabet where states are MSCs
- Every MSC is an MSG

2.2.1 Concatenation of MSCs

Let $M_i = (P_i, E_i, \mathbb{C}_i, l_i, m_i, <_i)$ with $i \in \{1, 2\}$ be an MSC with $E_1 \cap E_2 = 0$.

The (weak) concatenation of M_1 and M_2 is the MSC $M_1 \cdot M_2 = (P, E, \mathbb{C}, l, m, <)$ with

$P = P_1 \cup P_2$ $E = E_1 \cup E_2$ $\mathbb{C} = \mathbb{C}_1 \cup \mathbb{C}_2$
 with $E? = E_1? \cup E_2?, E! = E_1! \cup E_2!, E_{loc} = E_{loc?} \cup E_{loc?}$. And

$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases}$$

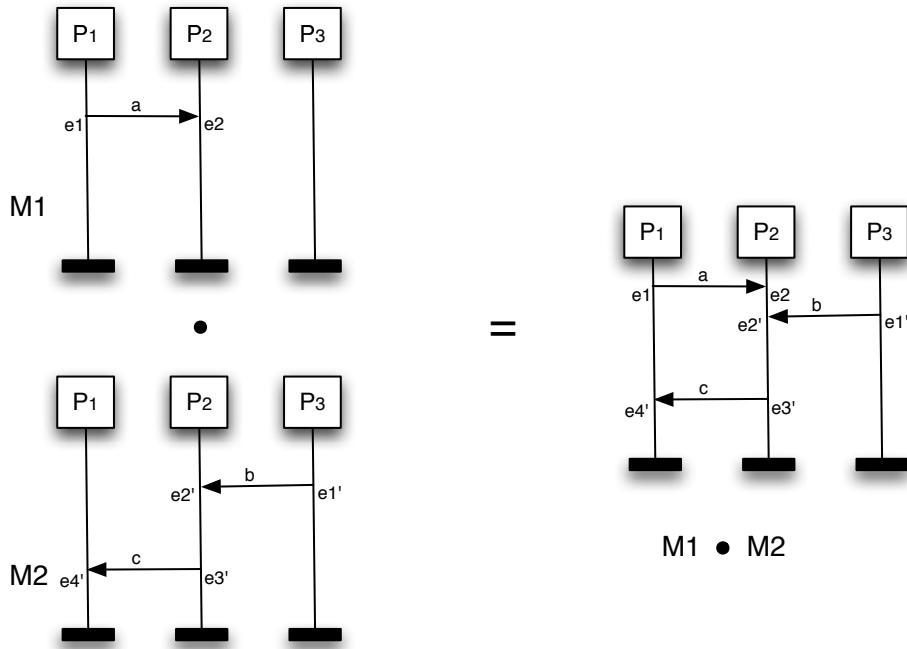
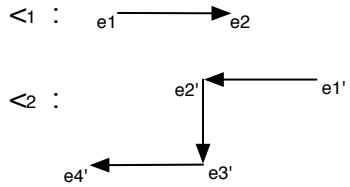
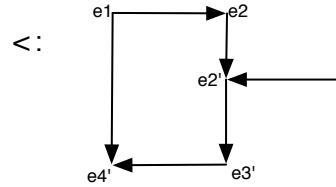
$$m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

$<= <_1 \cup <_2 \cup \{(e, e') | E_1 \cap E_P, e' \in E_2 \cap E_P\}$ where P is the same process both times.

Note:

- Events are ordered process-wise: Events at p in M_1 precede events at p in M_2
- Thus: some processes may proceed to M_2 before others.
- \neq : first complete M_1 then execute M_2 . Strong concatenation is covered in Assignment 1, Exercise 4.)

Some examples of concatenation :



Note: e_1 and e_1' are not ordered in $M_1 \cdot M_2$, e.g.

$$\begin{aligned} e_1, e_2, e_1', e_2', \dots &\in \text{Lin}(M_1 \cdot M_2) \\ e_1', e_1, e_2, e_2', \dots &\in \text{Lin}(M_1 \cdot M_2) \end{aligned}$$

2.2.2 Language of an MSG

Let $G = (V, \rightarrow, v_o, F, \lambda)$ be an MSG.
A path π of G is a finite sequence

$$\pi = u_0, u_1, \dots, u_n \text{ with } u_i \in V, 0 \leq i \leq n \text{ and } u_i \rightarrow u_{i+1}, 0 \leq i \leq n$$

The MSC of a path $\pi = u_0, u_1, \dots, u_n$ is:

$$\begin{aligned} M(\pi) &= \lambda(u_0) \cdot \lambda(u_1) \cdot \dots \cdot \lambda(u_n) \quad , \text{ where } \cdot \text{ is the MSC concatenation operator} \\ &= \prod_{i=0}^n \lambda(u_i) \end{aligned}$$

The path $\pi = u_0, u_1, \dots, u_n$ is accepting if $u_0 = v_0$ and $u_n \in F$

The (MSC) language of MSG G is defined by :
 $L(G) = \{M(\pi) \mid \pi \text{ is an accepting path of } G\}$

The word language of MSG G is $Lin(L(G))$ where:

$$Lin(\{M_1, \dots, M_k\}) = \bigcup_{i=1}^k Lin(M_i)$$

2.2.3 Races in MSGs

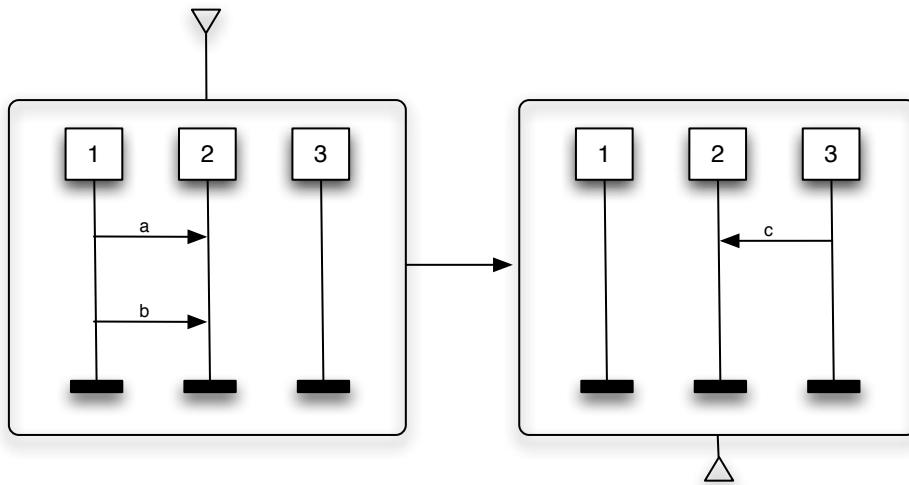
Recall: MSC M has a race if $< \not\subseteq \ll^*$
or equivalently $Lin(E, <) \not\subseteq Lin(E, \ll^*)$
or equivalently $Lin(E, <) \subset Lin(E, \ll^*)$
(since $Lin(E, <) \subseteq Lin(E, \ll^*)$)

Definition 5 (Races in MSGs). *MSG G has a race if $Lin(G, <) \subseteq Lin(G, \ll^*)$ [Musholl, Peled '99]*

Theorem 1 (without proof). *The decision problem "MSG G has a race" is undecidable.*

Proof. Reduction from Post's correspondence problem (PCP). This reduction is not easy, however we will see a similar - though simpler - proof later on for a different problem. \square

Example of an MSG that has a race:



Each individual MSC is race-free, but their concatenation is not.

3 Expressiveness of MSGs

Three facts about the expressiveness of MSGs.

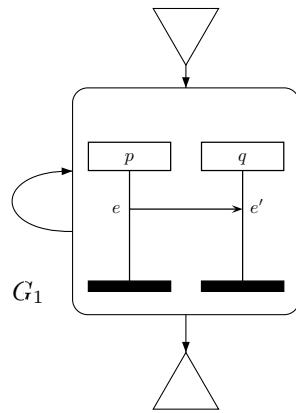
3.1 MSGs may represent infinite-state systems

Definition 6 (States of MSCs). *The state of an MSC with event set E is $E' \subseteq E$, such that $e \in E' \wedge e' < e$ implies $e' \in E'$. In other words, E' is downward-closed wrt. $<$.*

Definition 7 (State space of MSCs). *The set of states of an MSC M is the state space of M .*

Definition 8 (State space of MCGs). *The state space of an MSG G is the union of the state spaces of M_i with $M_i \in L(G)$*

3.1.1 Example

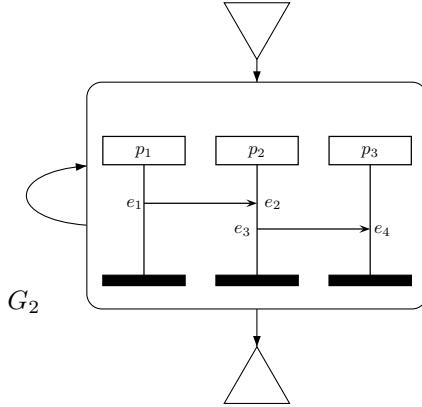


G_1 has an infinite state space.

A possible state is $\{e^{(1)}, e^{(2)}, e^{(3)}, \dots\}$ with $e^{(i)}$ the occurrence of e in the i -th iteration.

\Rightarrow A system that realizes G would require an *unbounded* communication channel.

3.2 State space of MSG may not be context-free



The states of G_2 are of the form $\{e_1^k, e_2^l, e_3^m, e_4^n | k \geq l \geq m \geq n\}$.

The corresponding language is not context-free.

3.3 The state space of an MSG is context-sensitive

Let M be an MSC with event set E with $e, e' \in E$ and $w, w' \in E^*$. Consider the following rules:

(1) $we'e'w' \in \text{Lin}(M)$, $l(e) = q?p(b)$, $l(e') = p!q(a)$ implies $we'ew' \in \text{Lin}(M)$. Note that the reverse does not always hold.

(2) $we'e'w' \in \text{Lin}(M)$, $l(e) = p!q(a)$, $l(e') = q?p(b)$ and

$$\underbrace{\sum_{a \in \mathcal{C}} |w|_{p!q(a)}}_{\text{number of sends from p to q in w}} > \underbrace{\sum_{a \in \mathcal{C}} |w|_{q?p(a)}}_{\text{number of receipts of q from p in w}}$$

implies $we'ew' \in \text{Lin}(M)$.

(3) $we'e'w' \in \text{Lin}(M)$, $e \in E_p$, $e' \in E_q$, $p \neq q$ and e, e' do not match like in (1) + (2) implies $we'ew' \in \text{Lin}(M)$

Note: Rule (2) is a *context-sensitive* rule of form $X\underline{ab}Y \rightarrow X\underline{ba}Y$

3.4 Context sensitivity (informal argument)

- Take MSG G and use vertex identities as vertex labels.
- $K(G) = \text{set of "accepting" vertex sequences.}$

- Replace each vertex v by $Lin(\lambda(v))$ (interpret sequencing element wise)
- Let the resulting set be $\tilde{K}(G)$
- Close $\tilde{K}(G)$ under the permutation rules (1), (2) and (3) as described in the previous section.

The resulting language is context sensitive.

4 Intersection of MSGs

Theorem 2 (The emptiness problem of the intersection of MSGs is undecidable). *Let G_1 and G_2 be MSGs. The decision problem $L(G_1) \cap L(G_2) = \emptyset$ is undecidable.*

Proof

Reduction from Post's Correspondence Problem.

Definition 9 (Post's Correspondence Problem (PCP)).

Input: $\{(u_1, w_1), (u_2, w_2), \dots, (u_n, w_n)\}$ with $u_i, w_i \in \Sigma^*$ for some alphabet Σ , $1 \leq i \leq n$

Decision problem: Does there exist a sequence of indexes i_1, \dots, i_k with $1 \leq i_j \leq n$ with $1 \leq j \leq k$, such that $u_{i_1} u_{i_2} \dots u_{i_n} = w_{i_1} w_{i_2} \dots w_{i_n}$

Example

Input: $\{(\underbrace{aba}_{u_1}, \underbrace{a}_{w_1}), (\underbrace{bbb}_{u_2}, \underbrace{aaa}_{w_2}), (aab, abab), (bb, babba)\}$

One solution would be the index sequence 1, 4, 3, 1 with $\underbrace{aba}_{u_1} \underbrace{bb}_{u_4} \underbrace{aab}_{u_3} \underbrace{aba}_{u_1} = \underbrace{a}_{w_1} \underbrace{babba}_{w_4} \underbrace{abab}_{w_3} \underbrace{a}_{w_1}$

Theorem 3 (Undecidability of PCP). *Post's Correspondence Problem is undecidable.*

Definition 10 (Reduction technique). *Let P, Q be decision problems. If P is reducible to Q and P is undecidable, then Q is undecidable.*

In our case, let $P \hat{=} \text{PCP}$ and Q the intersection problem.

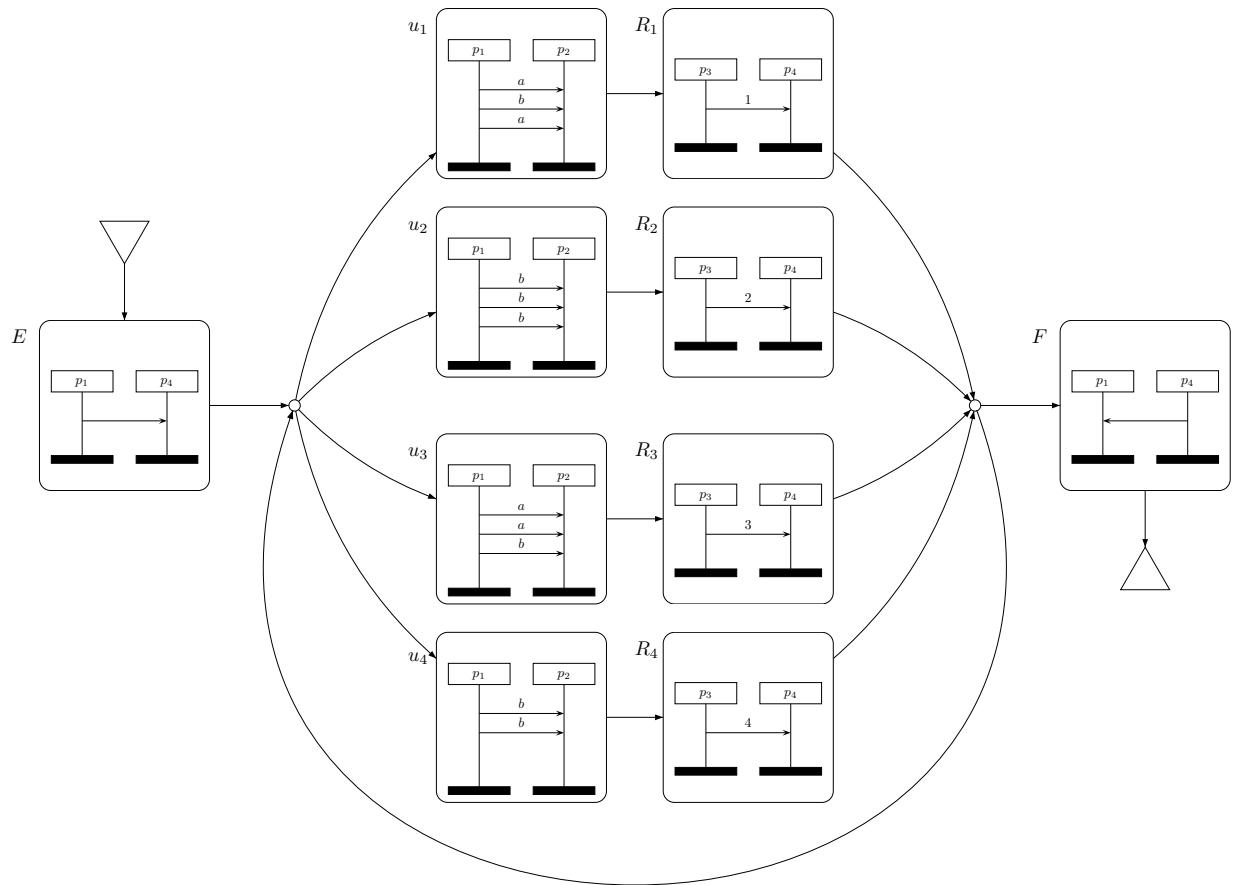
Find a transformation from an instance $\{(u_1, w_1), \dots, (u_n, w_n)\}$ of PCP to MSGs G_u, G_w , such that PCP has a solution iff $L(G_u) \cap L(G_w) \neq \emptyset$.

Instead of a formal definition, the construction of the MSGs will be explained by an example:

For the PCP instance, let

$$\begin{aligned} u_1 &= aba \\ u_2 &= bbb \\ u_3 &= aab \\ u_4 &= bb \end{aligned}$$

Construct G_u with processes $P = \{P_1, \dots, P_4\}$



The corresponding language is $L(G_u) = E \cdot (\sum_{j=1}^n (M_j \cdot R_j))^+ \cdot F$. In fact $\lambda(E) \cdot (\sum_{j=1}^n \lambda(u_j) \cdot \lambda(R_j))^+ \cdot \lambda(F)$. G_w is constructed in a similar fashion. It can now be shown that :

PCP on $\{(u, w), \dots, (u_n, w_n)\}$ has a solution iff $L(G_u) \cap L(G_w) \neq 0$.