
Software Modeling and Verification
Lehrstuhl für Informatik2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML
Winter Term07/08

– Lecture number 2: Message Sequence Graphs –
(2007-11-05)

summarized byThomas BilleandTim Kosse

1 Preliminaries from lecture 1

Sequence Diagramms.Sequence diagrams specify the interaction patterns between the system components
and are a popular elicitation technique for requirements engineering.

Communication Action. Let P be finite set of≥ 2 sequential processes andC be a finite set of message
contentsa, b, c ∈ C then communication actionsp, q ∈ P , p 6= q, a ∈ C are

p ! q (a) ”p sends a message to q”
p ? q (a) ”p receives a message sent by q”

Partial Order. For E a set of events, a partial orderoverE is a relation< ⊇ E × E such that

• < is irreflexive, i.e¬(e < e) ∀ e ∈ E

• < is transitive :e < e′ ∧ e′ < e′′ impliese < e′′

• < is acyclic :e < e′ ∧ e′ < e is forbidden

Hasse Diagram. Let (E, <) be a poset. The Hasse diagram(E, ⋖) is defined bye ⋖ e′ iff e < e′ and
¬(∃e′′. e < e′′ < e′)

Linearization. Let (E, <) be a poset. A linearization(E, <) is a total order⊏ such thate < e′ implies
e ⊏ e′.
A linearization is a topological sort of the Hasse diagram of(E, <).

Example: E ={ e1, e2, . . . ,en}

Hasse diagram:

< = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4), (e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)}

e1

e2

e3 e4 e5 e6

Linearizations:e1e2e3e4e5e6, e1e3e2e4e5e6, e1e3e4e2e5e6, e1e3e4e5e2e6, e1e3e4e5e6e2, e2e1e3e4e5e6

2 Message Sequence Graphs

2.1 Message sequence charts

Message sequence charts are a

• Scenario-based language

• Primary use: requirement specification

• Visual Language:

P1 P2

a

b

• The notation is standardised by the ITU

• Adopted by the UML (sequence diagrams)

• Widely used in industrial practice

• ‘Easy‘ to comprehend ?

Definition 1 (Message Sequence Chart). A message sequence chart (MSC) is defined by the tupleM = (P ,
E, C, l, m, <) with :

• P , a finite set of processes {P1, P2, . . . ,Pn}

• E, a finite set of eventsE =
⊎

p∈P Ep = E?

⊎

E!

⊎

Eloc

︸ ︷︷ ︸

partitioning of E

• l: E → Act, a labelling function

l(e) =







p!q(a) if e ∈ Ep ∩ E!, p 6= q, a ∈ C

p?q(a) if e ∈ Ep ∩ E?, p 6= q, a ∈ C

p(a) if e ∈ Ep ∩ Eloc, a ∈ C

• m: E! → E?, a bijection (”matching function”) satisfying :

m(e) = e′ ∧ l(e) = p!q(a) (p 6= q, a ∈ C)

implies l(e′) = q?p(a)

• < ⊆ E × E is a partial order (”visual order”)

<=
⋃

p∈P

<p

︸ ︷︷ ︸

<p is a total order ”top-to-bottom” order on process p

∪ {(e, m(e))|e ∈ E!}
︸ ︷︷ ︸

communication order <c

So we have 3 type of events (send, receive, local), a couple ofmessages. The labelling basically tells you
which kind of action happens at each event.
Which send events correspond to which receive events is defined by the matching functionm(e). A process
is not allowed to send a message to itself. The partial order is an order on the events. It is the combination
of the order for all vertical lines (processes) and the horizontal lines (communication).

Definition 2 (FiFo Property). A MSCM = (P , E, C, l, m, <) has the First-Out (FiFo) property whenever
for all e, e′ ∈ E! we have

e < e′ ∧ l(e) = p!q(a) ∧ l(e′) = p!q(b)

implies m(e) < m(e′)

Take two send events(e, e′) from P1 to P2 and supposee does happen beforee′, then the receive eventm(e)
must happen before the receive event of the second messagem(e′). A message may not ”overtake” another.

Example for an MSC with FiFo property:

P1 P2

a

FiFo
e m(e)

b
e' m(e')

with l(e) = P1!P2(a)
l(e′) = P1!P2(b)
e < e′ ⇒ m(e) < m(e′)

Example for an MSC without FiFo property:

P1 P2

a
non-FiFo

e
m(e')b

e'
m(e)

Note: We assume an MSC to possess the FiFo property unless stated otherwise.

2.1.1 Linearizations

Lin(M) = set of linearizations of MSC M

Lemma 1. There is a one-to-one correspondence between MSCs and theirsets of linearizations.

In other words,Lin(M) uniquely characteristicsM .

2.1.2 Visual Order vs. Possible (Causal) Order

P1 P2 P
�

a

e2 e1

b

e3 e4

e6 e5

c

If b takes much shorter thana, thenc might arrive atP1 beforea.

Formally:

<P 1 = { (eb, e2) } is possible

6= visual order

So how and when are those situations possible?

2.1.3 Races

Let M = (P , E, C, l, m, <) be an MSC.

Definition 3 (≪). Let≪ ⊆ E × E be defined by:

e ≪ e′ iff e′ = m(e)
or e <P e′ ande or e′ ∈ E!

or e, e′ ∈ eP ∩ e? andm−1(e) <q m−1(e)
≪ is the ”interpreted / possible order”

We saye is much smaller (≪) thane′ if and only if e′ is the corresponding receive event to the send evente

or the evente happens beforee′ on the same process P and at leaste or e′ is a send event
or if we have two receive events on the same process and the corresponding send events happen on another
processq with m−1(e) <q m−1(e′) .

Example (cf. previous MSC) :(e2 ≪ e1, e3 ≪ e4, e5 ≪ e6, e1 ≪ e3, e4 ≪ e5)

MSCM contains a raceif for somee, e′ ∈ E?

e <P e′ but¬(e ≪∗ e′) (≪∗ is the reflexive and transitive closure of≪)

We check whether MSCM has a race by computing≪∗ and compare to<P . This is possbile via the
Floyd-Warshall Algorithm inO(|E|3), but as a special case here it is onlyO(|E|2).

2.1.4 Computing≪∗ with Warshall’s Alorithm

MSCM has a raceif <*≪∗ or equivalently:

∃e, e′ ∈ E? (e <P e′ ande <≮∗ e′)

⇒ protocol implementation based on<P may cause problems, e.g. unspecified reception, deadlock, or
using information from wrong message.

Algorithm: compute ≪∗

︸ ︷︷ ︸

Warshall’s algorithm

and compare with <

Warshall’s algorithm: input R ⊆ X × X

output R∗

Idea:

considerR andR∗ as directed graphs
there is an edge x⇒ y in R∗

iff
there is a (possibly empty) path

x = x0 → x1 → x2 → · · · → xn = y in R

(our case:R =≪ ,R∗ =≪∗)

2.1.5 Warshalls’s Algorithm

Assume the vertices are numbered {1, 2, . . . , n} forj ∈ {1, . . . n}. Define relation
j
⇒ as follows:

x
j
⇒ y iff ∃ path inR from x to y such that all vertices on the path (6= x, y) have a smaller number thanj.

Then:

x ⇒ y iff x
n+1
⇒ y (1)

x
1
⇒ y iff x = y (2)

x
y+1
⇒ z iff x

y
⇒ z or x

y
⇒ y

y
⇒ z (3)

Algorithm: Determine the relations
1
⇒,

2
⇒, . . . ,

n
⇒,

n,m
⇒ iteratively using properties(1) + (2).

Store
i
⇒ in a boolean matrix C.

Postcondition:C[x, y] = true iff (x, y) ∈ R∗

Precondition:∀x, y ∈ X C[x, y] = false

Warshall’s Algorithm see Algorithm 1.

Correctness: Afterj iterationsx
j+1
⇒ y iff C[x, y].

Proof: by induction on j

Time complexity:O(n3) wheren = |X |

2.1.6 Warshalls’s Algorithm Efficiency Improvement [Aluret.al ’96]

Exploit that for≪:

• ≪ is acyclic, and

• the number of predecessors ofe ∈ E under≪ is at most two
Note:e is an immediate predecessor ofe′ if:
e ≪ e′ and¬(∃e′′ 6= e, e′ e ≪ e′′ ≪ e′)

For body of the algorithm see Algorithm 2.

Algorithm 1 Warshall’s Algorithm
1: for x := 1 to n do /* Initialization */
2: for y := 1 to n do
3: C[x, y] := (x = y or (x, y) ∈ R

︸ ︷︷ ︸

x≪y

)

4: /* loop invariant: */
5: /* after the j-th iteration of outermost */

6: /* loop it holdsC[x, y] iff x
j+1
⇒ y */

7: od
8: od
9: for y := 1 to n do

10: for x := 1 to n do
11: if C[x, y] then
12: for z := 1 to n do
13: if C[y, z] then
14: C[x, z] = true
15: fi
16: od
17: fi
18: od
19: od

Algorithm 2 Tailored Warshall’s Algorithm
1: for e := 1 to n do
2: for e′ := e − 1 downto1 do
3: if C[e′, e] then
4: /* This part is executed for(e, e′) only if e′ is an immediate predecessor of e, i.e.#innerloops ≤

2 × n ⇒ timecomplexity(O(n2)) */
5: for e′′ := 1 to e′ − 1 do
6: if C[e′′, e′] then
7: C[e′′, e] = true
8: fi
9: od

10: fi
11: od
12: od

2.2 Sets of MSCs

• MSC specifies a singlescenario

• but we typically need a setof scenarios

• and additionally an ordering relation between them, e.g.

– after scenario 1, scenario 2 occurs

– after scenario 1, scenario 2 or 3 occurs

– scenario 1 occurs repeatingly

• So we need :

– alternative composition,

– sequential composition (=concatenation),

– iteration of MSCs

This yieldsMessage Sequence Graphs

• Alternatives are ensembles of MSCs and high-level MSCs (MSC’96)

�
F S

��
connect

test

info

U F S

U1

grant

ack

MSG Vertex

U F S

U3

fail

ack

U F S

U4

off

edge

initial vertex

final vertex

U0 · U2 · U0 · U1 = λ(U0) · λ(U2) · λ(U0) · λ(U1)

Definition 4 (Message Sequence Graph). LetM be the set of MSCs. (up to isomorphism i.e. event identities).
A Message Sequence Graph(MSG)G is a tupleG = (V,→, vo, F, λ) with:

• (V,→) is a digraph with a finite set V of vertices and→⊆ V × V the set of edges.

• v0 ∈ V is the starting (or initial) vertex

• F ⊆ V is a set of final vertices

• λ : V → M associates to each vertexv ∈ V an MSCλ(v)

Note:

• An MSG is an NFA without input alphabet where states are MSCs

• Every MSC is an MSG

2.2.1 Concatenation of MSCs

Let Mi = (Pi, Ei, Ci, li, mi, <i) with i ∈ {1, 2} be an MSC withE1 ∩ E2 = 0.

The (weak) concatenationof M1 andM2 is the MSCM1 · M2 = (P , E, C, l, m, <) with

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2

with E? = E1? ∪ E2?, E! = E1! ∪ E2!, Eloc = Eloc? ∪ Eloc?. And

l(e) =

{

l1(e) if e ∈ E1

l2(e) if e ∈ E2

m(e) =

{

m1(e) if e ∈ E1

m2(e) if e ∈ E2

<=<1 ∪ <2 ∪{(e, e′)|E1 ∩ EP , e′ ∈ E2 ∩ EP } whereP is the same process both times.

Note:

• Events are ordered process-wise: Events atp in M1 precede events atp in M2

• Thus: some processes may proceed toM2 before others.

• 6=: first completeM1 then executeM2. (Strong concatenationis covered in Assignment 1, Excercise
4.)

Some examples of concatenation :

�1 �2 �3
a

M1

P1 P2 P3

c

b

M2

e1 e2

e4' e3'

e2' e1'

=

P1 P2 P3

c

b

M1

e4' e3'

e2' e1'

a

e1 e2

M2

<1 : e1 e2

e4' e3'

e2' e1'
<2 :

< :

e1 e2

e4' e3'

e2'

Note:e1 ande′1 are not ordered inM1 · M2, e.g.

e1, e2, e
′
1, e

′
2, · · · ∈ Lin(M1 · M2)

e′1, e1, e2, e
′
2, · · · ∈ Lin(M1 · M2)

2.2.2 Language of an MSG

Let G = (V,→, vo, F, λ) be an MSG.
A pathπ of G is a finite sequence

π = u0, u1, . . . , un with ui ∈ V, 0 ≤ i ≤ n andui → ui+1, 0 ≤ i ≤ n

The MSC of a pathπ = u0, u1, . . . , un is:

M(π) = λ(u0) · λ(u1) · . . . · · ·λ(un) , where· is the MSC concatenation operator

=

n∏

i=0

λ(ui)

The pathπ = u0, u1, . . . , un is accepting ifu0 = v0 andun ∈ F

The (MSC) language of MSGG is defined by :
L(G) = {M(π) | π is an accepting path ofG}

The word language of MSGG is Lin(L(G)) where:
Lin({M1, . . . , Mk}) =

⋃k

i=1 Lin(Mi)

2.2.3 Races in MSGs

Recall: MSCM has a race if<*≪∗

or equivalentlyLin(E, <) * Lin(E, ≪∗)
or equivalentlyLin(E, <) ⊂ Lin(E, ≪∗)
(sinceLin(E, <) ⊆ Lin(E, ≪∗))

Definition 5 (Races in MSGs). MSGG has a race ifLin(G, <) ⊆ Lin(G, ≪∗) [Musholl, Peled ’99]

Theorem 1(without proof). The decision problem ”MSGG has a race” is undecidable.

Proof. Reduction from Post’s correspondence problem (PCP). This reduction is not easy, however we will
see a similar - though simpler - proof later on for a differentproblem.

Example of an MSG that has a race:

1 2 3

a

1 2 3

c

b

Each individua; MSC is race-free, but their concatenation is not.

3 Expressiveness of MSGs

Three facts about the expressiveness of MSGs.

3.1 MSGs may represent infinite-state systems

Definition 6 (States of MSCs). Thestateof an MSC with event setE is E′ ⊆ E, such thate ∈ E′ ∧ e′ <

eimpliese′ ∈ E′. In other words,E′ is downward-closed wrt.<.

Definition 7 (State space of MSCs). The set of states of an MSCM is thestate spaceof M .

Definition 8 (State space of MCGs). Thestate spaceof an MSGG is the union of the state spaces ofMi

with Mi ∈ L(G)

3.1.1 Example

G1

e e′

p q

G1 has an infinite state space.

A possible state is{e(1), e(2), e(3), . . .} with e(i) the occurrence ofe in thei-th iteration.

⇒ A system that realizesG would require anunboundedcommunication channel.

3.2 State space of MSG may not be context-free

G2

e1 e2

e3 e4

p1 p2 p3

The states ofG2 are of the form{ek
1 , e

l
2, e

m
3 , en

4 |k ≥ l ≥ m ≥ n}.

The corresponding language is not context-free.

3.3 The state space of an MSG is context-sensitive

Let M be an MSC with event setE with e, e′ ∈ E andw, w′ ∈ E∗. Consider the following rules:

(1) wee′w′ ∈ Lin(M) , l(e) = q?p(b) , l(e′) = p!q(a) implieswe′ew′ ∈ Lin(M). Note that the reverse
does not always hold.

(2) wee′w′ ∈ Lin(M) , l(e) = p!q(a) , l(e′) = q?p(b) and
∑

a∈C

|w|p!q(a)

︸ ︷︷ ︸

number of sends from p to q in w

>
∑

a∈C

|w|q?p(a)

︸ ︷︷ ︸

number of receipts of q from p in w

implieswe′ew′ ∈ Lin(M).

(3) wee′w′ ∈ Lin(M), e ∈ Ep, e′ ∈ Eq, p 6= q ande, e′ do not match like in (1) + (2) implieswe′ew′ ∈
Lin(M)

Note: Rule (2) is acontext-sensitiverule of formXabY → XbaY

3.4 Context sensitivity (informal argument)

• Take MSGG and use vertex identities as vertex labels.

• K(G) = set of ”accepting” vertex seqeuences.

• Replace each vertexv by Lin(λ(v)) (interpret sequencing element wise)

• Let the resulting set bẽK(G)

• CloseK̃(G) under the permutation rules (1), (2) and (3) as described in the previous section.

The resulting language is context sensitive.

4 Intersection of MSGs

Theorem 2(The emptiness problem of the intersection of MSGs is undecidable). LetG1 andG2 be MSGs.

The decision problemL(G1) ∩ L(G2) = ∅ is undecidable.

Proof

Reduction from Post’s Correspondence Problem.

Definition 9 (Post’s Correspondence Problem (PCP)).

Input: {(u1, w1), (u2, w2), . . . , (un, wn)} with ui, wi ∈ Σ∗ for some alphabetΣ, 1 <= i <= n

Decision problem: Does there exist a sequence of indexesi1, . . . , ik with 1 ≤ ij ≤ n with 1 <= j <= k,
such thatui1ui2 . . . uin

= wi1wi2 . . . win

Example

Input: {(aba
︸︷︷︸

u1

, a
︸︷︷︸

w1

), (bbb
︸︷︷︸

u2

, aaa
︸︷︷︸

w2

), (aab, abab), (bb, babba)}

One solution would be the index sequence1, 4, 3, 1 with aba
︸︷︷︸

u1

bb
︸︷︷︸

u4

aab
︸︷︷︸

u3

aba
︸︷︷︸

u1

= a
︸︷︷︸

w1

babba
︸ ︷︷ ︸

w4

abab
︸︷︷︸

w3

a
︸︷︷︸

w1

Theorem 3(Undecidability of PCP). Post’s Correspondence Problem is undecidable.

Definition 10 (Reduction technique). Let P , Q be decision problems. IfP is reducible toQ and P is
undecidable, thenQ is undecidable.

In our case, letP =̂PCP andQ the intersection problem.

Find a transformation from an instance{(u1, w1), . . . , (un, wn)} of PCP to MSGsGu, Gw, such that PCP
has a solution iffL(Gu) ∩ L(Gw) 6= ∅.

Instead of a formal definition, the construction of the MSGs will be explained by an example:

For the PCP instance, let

u1 = aba

u2 = bbb

u3 = aab

u4 = bb

ConstructGu with processesP = {P1, . . . P4}

p1 p2

a

b

a

p3 p4

1

p1 p2

b

b

b

p3 p4

2

p1 p2

a

a

b

p3 p4

3

p1 p2

b

b

p3 p4

4

p1 p4 p1 p4

E F

u1

u2

u3

u4

R1

R2

R3

R4

The corresponding language isL(Gu) = E ·(
∑n

j=1(Mj ·Rj))
+ ·F . Infactλ(E) ·(

∑n

j=1 λ(uj) ·λ(Rj))
+ ·

λ(F) . Gw is constructed in a similar fashion. It can now be shown that :

PCP on{(u, w), . . . , (un, wn)} has a solutioniff L(Gu) ∩ L(Gw) 6= 0.

