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Message Sequence Graphs

 
 

   Figure 3.1 – Message Sequence Graph
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Definition 
Let  be the set of MSCs (up to isomorphism i.e. event identities). 

A Message Sequence Graph (MSG) G is a tuple G = (V, →, v0, F, λ) with: 

• (V, →) is a digraph with finite set V of vertices and → ⊆  V×V 

• v0 ∈V is starting (or initial ) vertex 

• F∈  V is a set of final vertices 

• λ: V →  associates to each vertex v ∈V, an MSC λ(v) 

Note: 

1. An MSG is an NFA without input alphabet where states are MSCs 

2. Every  MSC is an MSG 

3. Generalization towards a set of initial vertices is straightforward 

 

Concatenation of MSCs 
Let Mi = (Pi, Ei, Ci, li, mi, <i), i ∈{1,2}, be an MSC with E1 ∩ E2 = ∅  

The concatenation of M1 and M2 is the MSC  

M1• M2 = (P, E, C, l, m, <) with: 

P = P1∪ P2, E = E1∪ E2, C = C1∪ C2  (with E? = E1?∪ E2? etc.) 

 

 

 

< = <1 ∪ <2 ∪  {(e1, e’)| e∈E1 ∩ Ep, e’ ∈E2∩ Ep} 

       

     same process 

Note: 

• Events are ordered process-wise, events at p in M1 precede events at p in M2 

• Thus: some processes may proceed to M2 before others! 

• ≠: first complete M1, then execute M2 

l1(e)     if e ∈ E1 

l2(e)     if e ∈ E2 
l(e) =  m1(e)   if e ∈ E1 

m2(e)   if e ∈ E2 
m(e) 

=  
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Example 
 

 
 

       Figure 3.2 – Example from the previous class

Language of an MSG 
Let G = (V, →, v0, F, λ) be an MSG. 

A path Π of G is a finite sequence  

Π = u0 u1 … un       with     ui ∈V, 0 ≤ i ≤  n 

    ui → ui+1, 0 ≤ i ≤  n 

 

P1 P2 P3

X X X 

M2 
c 

e‘4 e‘3 

b 
e‘2 e‘1 

a 

P1 P2 P3 

X X X 

M1 

e1 e2 

•  = 

P1 P2 P3

X X X 

c 
e‘4 e‘3 

b 
e‘2 e‘1 

a 
e1 e2 

M1• M2 

<2: 

<1: e1 e2 
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e‘2 e‘1 < : 

Note: 
e1 and e‘1 are not ordered in M1• M2 

 
e.g.  e1 e2 e‘1 e‘2 … ∈Lin(M 1• M2) 
 
        e‘1 e1 e2 e‘2 … ∈Lin(M 1• M2) 
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The MSC of a path    Π = u0 u1 … un     is: 

M(Π) = λ(u0) • λ(u1) • …• λ(un) = )(
0

∏
=

n

i
iuλ  

  MSC concatenation 

Path Π = u0 u1 … un is accepting if: u0 = v0 and un ∈F 

The (MSC) language of MSC G is defined by: 

L(G) = {M(Π)| Π is accepting path of G} 

The word language of MSG G is Lin(L(G)) where 

Lin({M 1,…, Mk}) = U
k

i
iMLin

1

)(
=

 

Expressiveness 
• The decision problem “MSG G has a race” is undecidable 

• MSGs may represent infinite-state systems 

• State space of an MSG may not be CF 

• State space of an MSG is context-sensitive 

• The decision problem: for MSGs G1 and G2, do we have L(G1) ∩  L(G2) = ∅  is 

undecidable. 

• Corollary : the decision problem for MSG G and DFA A, do we have Lin(L(G)) 

∩  L(A) = ∅  is undecidable.  

 

Local Choice Property 
Example 1: 

 
Figure 3.3 – Local choice property example 

v1 v2 

b 

p 

  X 

q 

  X 

a 

p 

X 

q 

X 



Lecture 3: Compositional MSGs  5 

 

Inconsistency if p behaves according to V1 and q behaves according to V2 

� possible distributed realization may yield a deadlock (this may be made more 

precise in next two lectures) 

Problem: subsequent behavior is determined by distinct processes 

 
Example 2: 
 

 
 

Figure 3.4 - Local choice property example
 

Local Choice Property 
• e is a minimal event wrt. < if ¬ (∃ e‘, e‘ < e) 

• p is active in MSC M if Ep ≠ ∅ , p is active in path v1 v2 … vn in MSG G if 

∃  vi, p is active in λ(vi)        0 ≤ i ≤  n 

• Definition: MSG G = (V, →, v0, F, λ) is local choice if: 

1. ∃ active p, ∀  Π ∈ Paths(v0), Π has a single minimal event e with e ∈Ep 

2. ∀  branching vertex v∈V 
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∃ active p, ∀  Π ∈ Paths(w), and v → w, Π has a single minimal event e with e 

∈Ep 

Intuition: Along every path from an initial or branching vertex there is a single process 

deciding how to proceed which can inform the other processes how to proceed. 

 

Example 

 
Figure 3.5 – Local choice property 
 

 
 

How can non-local choices be resolved? Refine your MSG and add control messages (cf. 

above example). 
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Checking whether an MSG is local choice can be done 

in polynomial time. 
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Consider the following example, proposed by Yannakakis: 
 

 
 
This can be seen as follows: 

• e1 and e2 = m(e1) must reside in same Mi 

• e3 < e2 and e1  < e4 thus 

e3, e4 ∉M j, j < i or j > i 

• by similar reasoning: e5, e6 ∈M i etc. 

Problem: compulsory matching between send and receive events in the same MSG 

vertex (i.e. send and receive m(e)) 

 

Compositional MSGs 
 

Solution: drop restriction that e and m(e) belong to the same MSC (= allow for 

incomplete message transfer) 

Definition: M = (P, E, C, l, m, <) is a compositional MSC, where P, E, C and l are as 

before, and 

• m: E! → E? is a partial, injective function (not a bijection!) such that (as before):  

m(e) = e’ ∧  l(e) = p!q(a)  →   l(e’) = q?p(a) 

• < = U
Pp

p
∈

< ∪ {( e,m(e)) | e ∈dom(m)} (dom(m) – domain of m, “m(e) is defined”) 

Note: an MSC is a CMSC where m is total and bijective.
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CMSC Example 
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Figure 3.6 – CMSC example 
 
Definition:  A compositional MSG (CMSG) is a MSG ),,,,( 0 λFvVG →=  with 

→V:λ , where  is the set of CMSCs and 0,, vV →  and F are as 

before. 
 
Thus, in CMSG we allow vertices to be labeled with compositional message sequence 
charts (CMSCs). 
 

Concatenation of CMSCs 
Let ∈<= ),,,,,( iiiiiii mlCEPM  and { } ∅=∈  E ,2,1 21IEi . 

Then ),,,,,( 21212121 <=⋅ mlCCEEPPMM UUU  with: 

• )()( 1 elel =  if 1Ee∈ , )()( 2 elel =  otherwise 

• ?!: EEm →  satisfies: 

1. m extends 1m  and 2m . In other words if e is in the domain of im  

)( imdome∈ , where { }2,1∈i  then )()( emem i= . 

2. m matches unmatched send events in 1M  with unmatched receive events in 

2M  according to order on processes, matching them (events) from top to 
bottom.  
(In other words, if we consider the k-th unmatched send in 1M  then it will be 
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matched with the k-th unmatched receive in 2M , where of course the message 
content is the same and the sender and the receiver match.) 

3. 21 MM ⋅  satisfies the FIFO condition, when restricted to match events. 

• { } { })(|))(,(',|)',( 2121 mdomeemeEEeEEeee pp
Pp

pp ∈∈∈









<<=<

∈

UIIUUU  

 

Examples 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 – Example of CMSC concatenation 
 
In the example shown in the figure above ( 
Figure 3.7) the process p in the CMSC 1M  is first sending message a and later message c 

to the process q. In CMSC 2M  message a can be received by process q, as it is matched 
with the same message sent before by process p. However, messages b and c do not 
match. Message b cannot be matched as process p has not sent this message before, and 
message c cannot be matched as process q does not expect to receive this message from 
process p. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 – Example of CMSC concatenation 
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Figure 3.8 violates the FIFO property. First process p from CMSC 1M  sends message a 

to the process q in 1e . This message can be received by q in CMSC 2M  as early as 6e . 

Process p sends message c to the process q in 4e . This message can be received by q in 

5e . Sending of the message b is straightforward. Now, we also have the following order 

of events in 1M : 423221 ,, eeeeee →→→ , in 2M : 65 ee →  and from concatenation of 

two CMSCs: 53 ee → . All of this results in the CMSC shown in the figure above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 – Example of CMSC concatenation 
 
Going from top to bottom, we match first 1e  with '2e  and then 2e  with '1e . The resulting 
CMSC is shown in the Figure 3.9 and it is cyclic.  
 

Associativity 
 
There are two CMSCs M  and 'M  as shown in the figure below. 
 

  
 
If we try to calculate the concatenation of the expression ')( MMM ⋅⋅  then we will get 
the CMSC as shown in the Figure 3.10. 
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')( MMM ⋅⋅ : 

 
 

 Figure 3.10 – Resulting CMSC 

 
In an other case, if we try to evaluate the expression )'( MMM ⋅⋅ , we will get the CMSC 
as shown in the Figure 3.11. That CMSC violates FIFO property and therefore is 
undefined. 
 

)'( MMM ⋅⋅ : 

 
 

 Figure 3.11 – Resulting CMSC 

 
Conclusion: Concatenation of CMSCs is not associative. 

 
Language of a CMSG 
Let ),,,,( 0 λFvVG →=  be a CMSG. 

• A path π  of G is a finite sequence nuuu K10=π  with Vui ∈  and 1+→ ii uu . 

• The CMSC of a path nuuu K10=π  is: 

( )( ) ∏
=

=⋅⋅⋅=
n

i
in uuuuuM

0
321 )()()()()()( λλλλλπ KK  

Note: Symbol ‘�’ denotes CMSC concatenation, which is left-associative. 

• Path nuuu K10=π  is accepting if 00 vu =  and Fun ∈ . 

• The (MSC) language of CMSG G is defined by: 
{ }GMMGL  ofpath  acceptingan  is |)()( ππ ∈=  

Note: We consider all the accepting paths of MSCs only. 

• G is safe if for every accepting path π  of G, )(πM  is an MSC. In other words, 
there are no accepting paths for unmatched sends and receives. 

 

q 

� 

p 

� 

a 

a 

q 

� 

p 

� 

a 

a 



Lecture 3: Compositional MSGs  12 

Consider again 
As seen before, we could not decompose the example Yannakakis proposed in a 
concatenation of MSCs. However, the proposed example can be modeled in terms of 
CMSG as shown in the Figure 3.12. 
 

 
Figure 3.12 – CMSG for the Yannakakis’ MSC 

Some properties of CMSGs 
• CMSGs are strictly more expressive than MSGs. 
• There are subclasses of CMSGs that are equally expressive to MSGs, the so-

called locally safe CMSGs. 
• If there is a path π  of CMSG G such that ∈)(πM  then we call it a safe path. 

• The decision problem “does G have at least one safe, accepting path?” is 
undecidable. 

• The decision problem “is CMSG safe?” is decidable in polynomial time. 
 

Existence of safe paths 
The decision problem: 
 Input:   CMSG G 
 Output: Yes, if G has a safe, accepting path 
   No, otherwise 
is undecidable. 
 
Proof: Reduction from the Post’s Correspondence Problem (PCP). 

• Let PCP (u, w) over alphabet Σ  with muuuU ,,, 21 K=  and mwwwW ,,, 21 K= , 

where *, Σ∈ii wu , i.e. instance ( ) ( )mm wuwu ,,,, 11 K . 

• Construct a CMSG wuG ,  such that PCP (u, w) has a solution if and only if CMSG 

G has an accepting, safe path. 
• PCP is undecidable and the above statement implies: the above decision problem 

is undecidable.  
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wuG ,  Let: 

• { }4321 ,,, PPPPP =  

• { } { }mfinishC ,,2,1 KUUΣ=  

• ( ) ( ) Fmm vvvvvvvG ⋅⋅= ++ '||'|'||| 2121 KK  

• { }FvF =  

• { }mvvvV ,,, 210 K=  

• =)( ivλ CMSC over iu  

• =)'( ivλ CMSC over iw  

 
Example: 
 

{ }ba,=Σ  

abaaui =  
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Claim:  ),( wuPCP  has a solution if and only if wuG ,  has a safe, accepting path. 

 
Proof: 
“ ⇒ ” 
Let niii ,,, 21 K  be a solution of (u,w). Then consider path π  in wuG , : 

Fiiii vvvvv
nn

⋅⋅= ''
11
KKπ  is accepting and ( ) ( ) ( )F

i

ij
i

i

ij
i vvv

n

j

n

j
λλλ ⋅⋅∏∏

== 11

'  is an MSC. 

 
“ ⇐ ” 
Let Fjjii vwwvv

kn
⋅⋅= KK

11
π  be a safe, accepting path of wuG , . 

Observe: 
1. )(? 12 finishpp  occurs in Fv  ⇒  all unmatched sends in 1p  are matched by 

unmatched receives in 2p . 

⇒  Number of sends )(! 21 Kpp  is equal to number of receives )(? 12 Kpp  
⇒  n = k 

2. )(? 34 finishpp  in Fv  ⇒  all unmatched “index” message sends are matched 

π  is safe ⇒  ∈)(πM , but then: 

nn jijiji === ,,, 2211 K  

⇒  niii ,,, 21 K  is a solution of PCP(u,w). 
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Safeness of CMSGs 
The decision problem “is CMSG G safe?” is decidable in polynomial time. 
 

• Let’s consider a pair of processes ),( ji pp  

• Construct a push-down automaton ),,,(, ∆ΣΓ= QK ji  with: 

o Q a finite set of control states 
o Γ  = stack alphabet = { }⊥,1 , with 1 indicating counter and ⊥ indicating 

stack bottom 

o Ca

(a)unmatched 

? (a)unmatched 

! (a)unmatched 

∈
















=Σ for  ,  

o ( ) { }( )skippoppushQQ ,,××Γ×Σ×⊆∆  

( )popqaq ,',,, γ  means: 
On reading a and top stack is γ  in state q, change to q’ and pop γ . 

o Accept if ip  and jp  are completed and stack is non-empty or if 

unmatched )(! app ji  is matched by )(? bpp ij  with ba ≠ . 

 
Functioning of PDA jiK , : 

Phase 1: Replace vertex v  in G by a linearization of )(vλ  such that all unmatched 
receive events precede all unmatched send events of same type. (Same type means that 
the sender and receiver match and that message content matches as well). 

jiK ,  follows events in )(vλ  and continues nondeterministically to )(wλ  for some direct 

successor w of v in G. 
Phase 2: Push 1 on stack if )(! app ji  is unmatched, pop 1 if )(? app ij  is not matched. 

On occurrence of )(! app ji  move to control state Qqa ∈  and remember what message is 

not matched, ignore all events except unmatched receipts (pop!); if the stack is empty, 
compare message content of last receive: if ba ≠  � accept, otherwise ignore rest of 
events and continue further. 
 
Push-down automaton (PDA) jiK ,  accepts if and only if CMSG G is not safe with respect 

to pair ),( ji pp . 

• Checking safeness amounts to checking reachability in all PDAs jiK , . 

• Reachability of a configuration in a PDA is decidable in polynomial time; hence 
checking safeness can be done in polynomial time. 

 
Note: In above construction we have assumed (for simplicity) that each safe path is also 
well-formed (see the following heading). Without this assumption, the PDA jiK ,  needs to 

be adapted (how?). 
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Well-formed paths 
Let CMSC M be well-formed if: 

• )(? mrngE =  

• For all Eee ∈', : 

)(')()'()()(!)( mdomeelelmdomeaqpel ∈∧=∧∉∧=  implies ee p<'  

 

Path kvv K1  in CMSG G is well-formed if for all kn ≤ , ∏
=

n

c
iv

1

)(λ  is a well-formed 

CMSC. 
 

� 


