

Foundations of the UML

Winter Term 07/08

– Lecture 3: Compositional MSGs –

(14.11.2007)

summarized by Aleksandar Bojinović and Leonid Pishchulin

Message Sequence Graphs

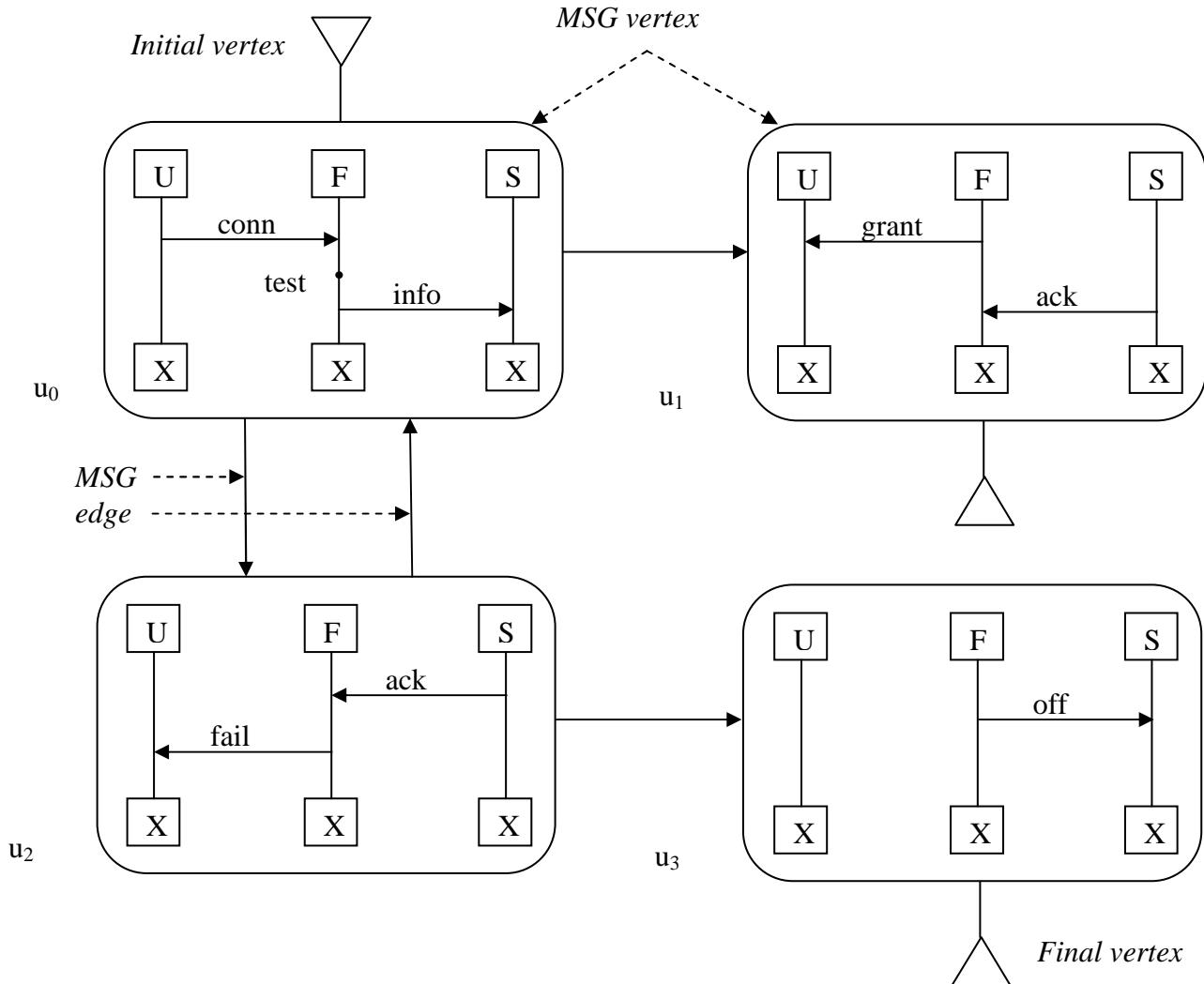


Figure 3.1 – Message Sequence Graph

Definition

Let \mathbb{M} be the set of MSCs (up to isomorphism i.e. event identities).

A **Message Sequence Graph (MSG)** G is a tuple $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$
- $v_0 \in V$ is *starting* (or *initial*) vertex
- $F \subseteq V$ is a set of *final vertices*
- $\lambda: V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Note:

1. An MSG is an NFA without input alphabet where states are MSCs
2. Every MSC is an MSG
3. Generalization towards a *set* of initial vertices is straightforward

Concatenation of MSCs

Let $M_i = (P_i, E_i, C_i, l_i, m_i, \prec_i)$, $i \in \{1, 2\}$, be an MSC with $E_1 \cap E_2 = \emptyset$

The **concatenation** of M_1 and M_2 is the MSC

$M_1 \bullet M_2 = (P, E, C, l, m, \prec)$ with:

$$P = P_1 \cup P_2, E = E_1 \cup E_2, C = C_1 \cup C_2 \text{ (with } E? = E_1? \cup E_2? \text{ etc.)}$$

$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases} \quad m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

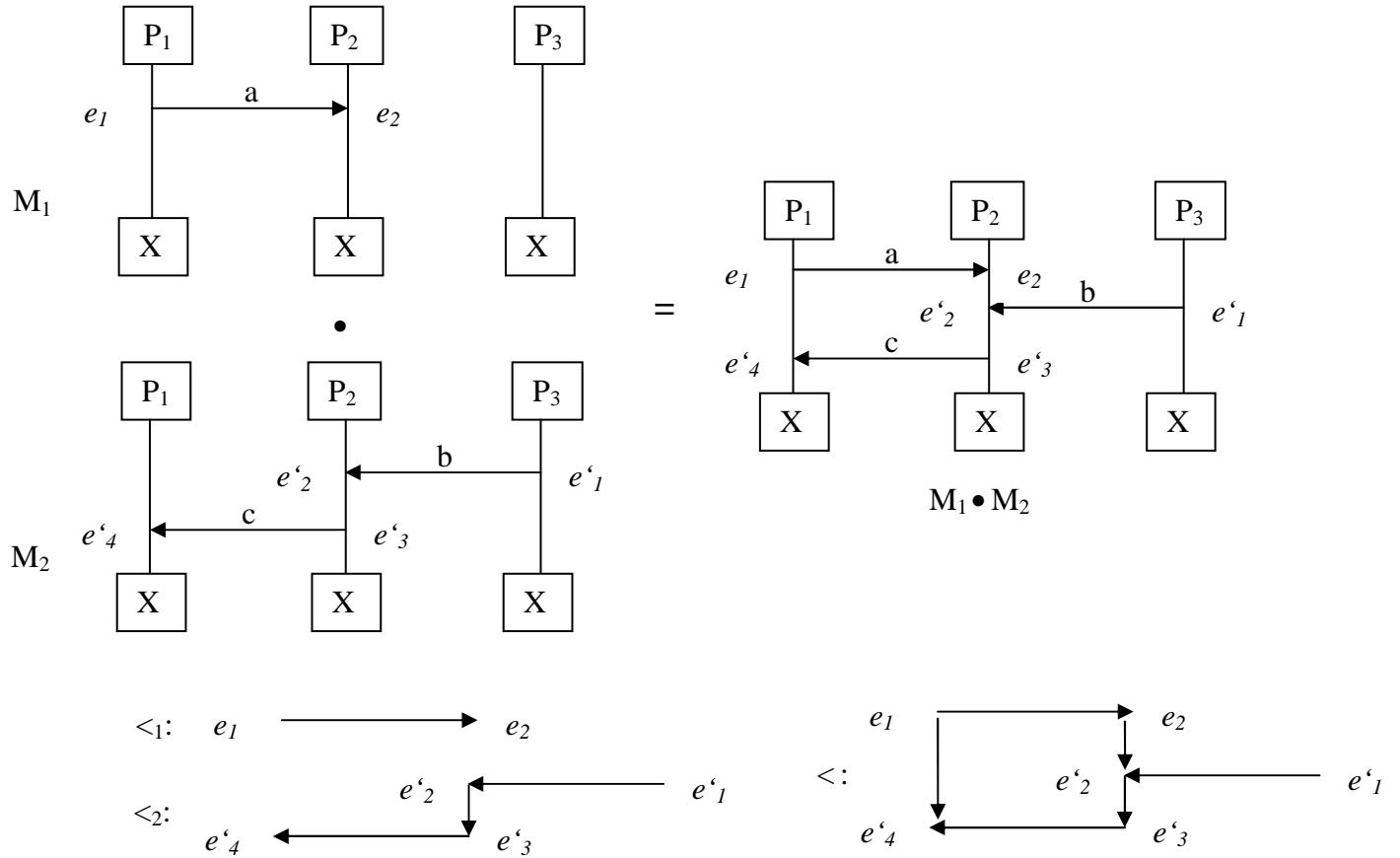
$$\prec = \prec_1 \cup \prec_2 \cup \{(e_1, e') \mid e \in E_1 \cap E_p, e' \in E_2 \cap E_p\}$$

same process

Note:

- Events are ordered process-wise, events at p in M_1 precede events at p in M_2
- Thus: some processes may proceed to M_2 before others!
- \neq : first complete M_1 , then execute M_2

Example



Note:

e_1 and e'_1 are not ordered in $M_1 \bullet M_2$

e.g. $e_1 e_2 e'_1 e'_2 \dots \in \text{Lin}(M_1 \bullet M_2)$

$e'_1 e_1 e_2 e'_2 \dots \in \text{Lin}(M_1 \bullet M_2)$

Figure 3.2 – Example from the previous class

Language of an MSG

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

A **path** Π of G is a finite sequence

$$\Pi = u_0 u_1 \dots u_n \quad \text{with} \quad u_i \in V, 0 \leq i \leq n$$

$$u_i \rightarrow u_{i+1}, 0 \leq i \leq n$$

The **MSC of a path** $\Pi = u_0 u_1 \dots u_n$ is:

$$M(\Pi) = \lambda(u_0) \bullet \lambda(u_1) \bullet \dots \bullet \lambda(u_n) = \prod_{i=0}^n \lambda(u_i)$$

MSC concatenation

Path $\Pi = u_0 u_1 \dots u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$

The (**MSC**) **language** of MSC G is defined by:

$$L(G) = \{M(\Pi) \mid \Pi \text{ is accepting path of } G\}$$

The **word language** of MSG G is $\text{Lin}(L(G))$ where

$$\text{Lin}(\{M_1, \dots, M_k\}) = \bigcup_{i=1}^k \text{Lin}(M_i)$$

Expressiveness

- The decision problem “MSG G has a race” is undecidable
- MSGs may represent infinite-state systems
- State space of an MSG may not be CF
- State space of an MSG is context-sensitive
- The decision problem: for MSGs G1 and G2, do we have $L(G1) \cap L(G2) = \emptyset$ is undecidable.
- **Corollary** : the decision problem for MSG G and DFA A, do we have $\text{Lin}(L(G)) \cap L(A) = \emptyset$ is *undecidable*.

Local Choice Property

Example 1:

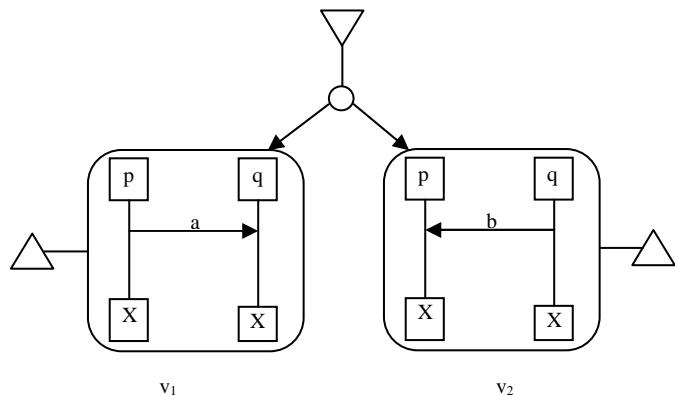


Figure 3.3 – Local choice property example

Inconsistency if p behaves according to V_1 and q behaves according to V_2

⇒ possible distributed realization may yield a *deadlock* (this may be made more precise in next two lectures)

Problem: subsequent behavior is determined by distinct processes

Example 2:

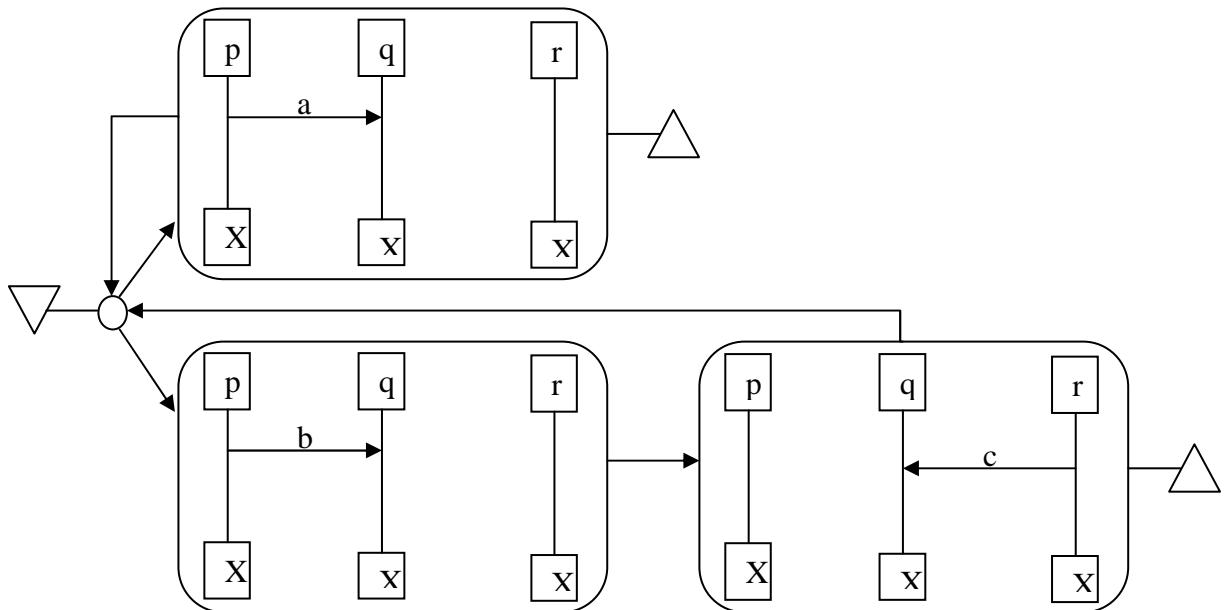
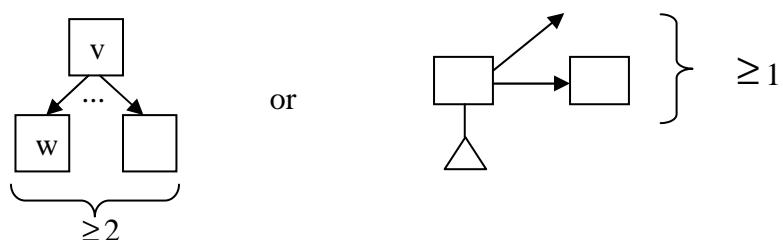


Figure 3.4 - Local choice property example

Local Choice Property

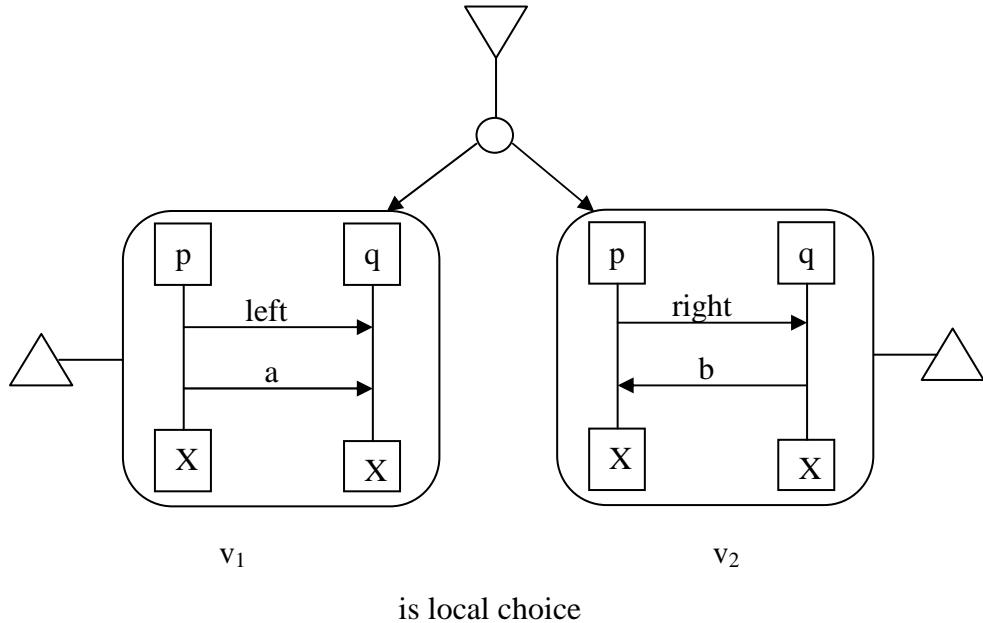
- e is a minimal event wrt. $<$ if $\neg (\exists e', e' < e)$
- p is active in MSC M if $E_p \neq \emptyset$, p is active in path $v_1 v_2 \dots v_n$ in MSG G if $\exists v_i, p$ is active in $\lambda(v_i)$ $0 \leq i \leq n$
- **Definition:** MSG $G = (V, \rightarrow, v_0, F, \lambda)$ is *local choice* if:
 1. \exists active $p, \forall \Pi \in \text{Paths}(v_0), \Pi$ has a single minimal event e with $e \in E_p$
 2. \forall branching vertex $v \in V$



\exists active p , $\forall \Pi \in \text{Paths}(w)$, and $v \rightarrow w$, Π has a single minimal event e with $e \in E_p$

Intuition: Along every path from an initial or branching vertex there is a single process deciding how to proceed which can inform the other processes how to proceed.

Example



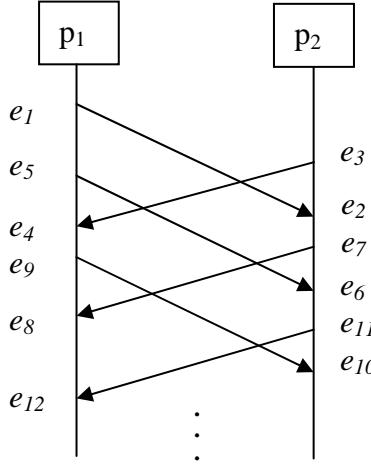
is local choice

Figure 3.5 – Local choice property

Checking whether an MSG is local choice can be done in polynomial time.

How can non-local choices be resolved? Refine your MSG and add control messages (cf. above example).

Consider the following example, proposed by Yannakakis:



This MSC *cannot* be decomposed as $M_1 \bullet M_2 \bullet \dots \bullet M_n$ (n>1)

This can be seen as follows:

- e_1 and $e_2 = m(e_1)$ must reside in same M_i
- $e_3 < e_2$ and $e_1 < e_4$ thus $\left. \begin{array}{l} e_3, e_4 \notin M_j, j < i \text{ or } j > i \end{array} \right\} \Rightarrow e_3, e_4 \in M_i$
- by similar reasoning: $e_5, e_6 \in M_i$ etc.

Problem: compulsory matching between send and receive events in the *same* MSG vertex (i.e. send and receive $m(e)$)

Compositional MSGs

Solution: drop restriction that e and $m(e)$ belong to the same MSC (= allow for incomplete message transfer)

Definition: $M = (P, E, C, l, m, <)$ is a *compositional MSC*, where P, E, C and l are as before, and

- $m: E_! \rightarrow E_?$ is a partial, injective function (*not a bijection!*) such that (as before):

$$m(e) = e' \wedge l(e) = p!q(a) \rightarrow l(e') = q?p(a)$$
- $< = \bigcup_{p \in P} <_p \cup \{(e, m(e)) \mid e \in \text{dom}(m)\}$ ($\text{dom}(m)$ – domain of m , “ $m(e)$ is defined”)

Note: an MSC is a CMSC where m is total and bijective.

CMSC Example

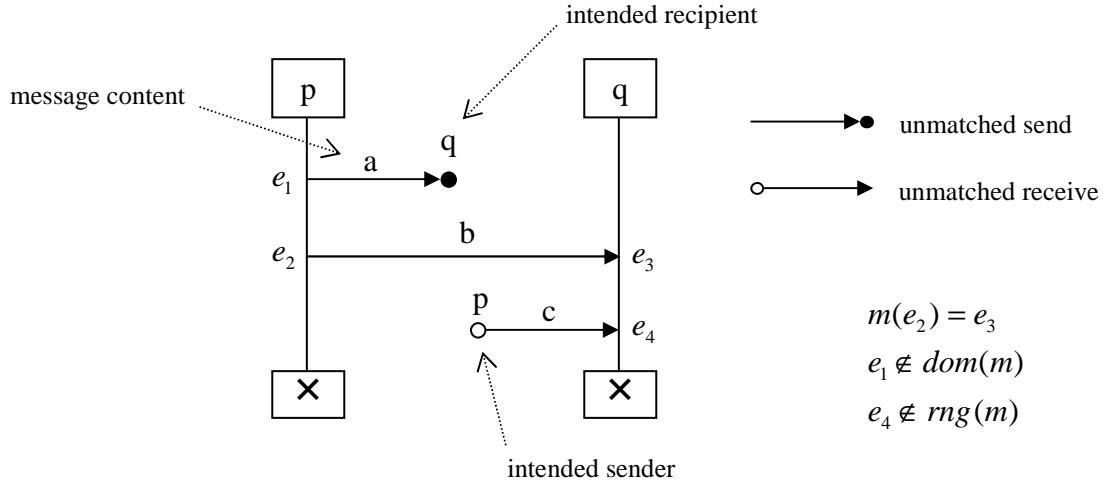


Figure 3.6 – CMSC example

Definition: A compositional MSG (CMSC) is a MSG $G = (V, \rightarrow, v_0, F, \lambda)$ with $\lambda: V \rightarrow \mathbb{CM}$, where \mathbb{CM} is the set of CMSCs and V, \rightarrow, v_0 and F are as before.

Thus, in CMSC we allow vertices to be labeled with compositional message sequence charts (CMSCs).

Concatenation of CMSCs

Let $M_i = (P_i, E_i, C_i, l_i, m_i, <_i) \in \mathbb{CM}$ and $i \in \{1, 2\}$, $E_1 \cap E_2 = \emptyset$.

Then $M_1 \cdot M_2 = (P_1 \cup P_2, E_1 \cup E_2, C_1 \cup C_2, l, m, <)$ with:

- $l(e) = l_1(e)$ if $e \in E_1$, $l(e) = l_2(e)$ otherwise
- $m: E_1 \rightarrow E_2$ satisfies:
 1. m extends m_1 and m_2 . In other words if e is in the domain of m_i $e \in \text{dom}(m_i)$, where $i \in \{1, 2\}$ then $m(e) = m_i(e)$.
 2. m matches unmatched send events in M_1 with unmatched receive events in M_2 according to order on processes, matching them (events) from top to bottom.

(In other words, if we consider the k -th unmatched send in M_1 then it will be

matched with the k -th unmatched receive in M_2 , where of course the message content is the same and the sender and the receiver match.)

3. $M_1 \cdot M_2$ satisfies the FIFO condition, when restricted to match events.

- $\cdot \quad <= \left(\bigcup_{p \in P} <_{p1} \cup <_{p2} \right) \cup \{(e, e') \mid e \in E_1 \cap E_p, e' \in E_2 \cap E_p\} \cup \{(e, m(e)) \mid e \in \text{dom}(m)\}$

Examples

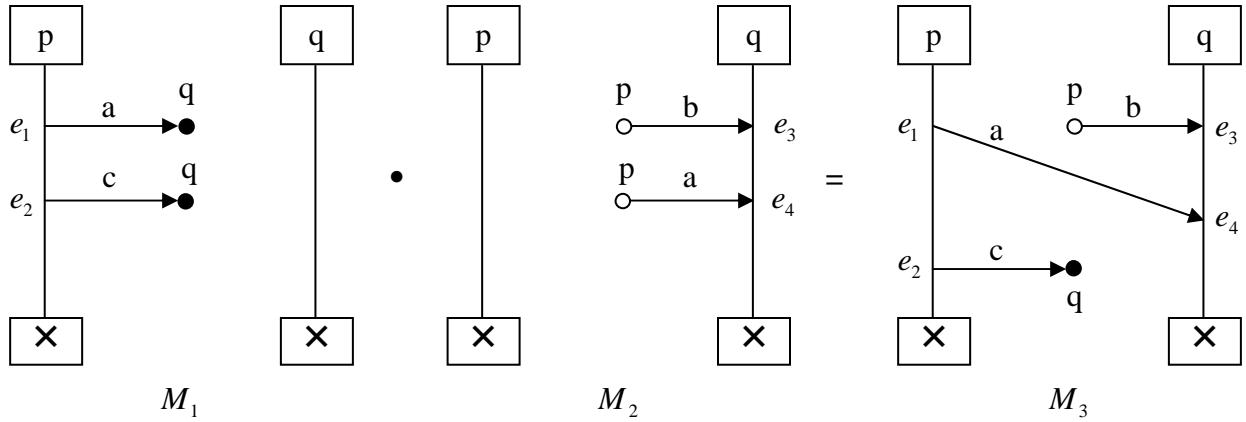


Figure 3.7 – Example of CMSC concatenation

In the example shown in the figure above (

Figure 3.7) the process p in the CMSC M_1 is first sending message a and later message c to the process q . In CMSC M_2 , message a can be received by process q , as it is matched with the same message sent before by process p . However, messages b and c do not match. Message b cannot be matched as process p has not sent this message before, and message c cannot be matched as process q does not expect to receive this message from process p .

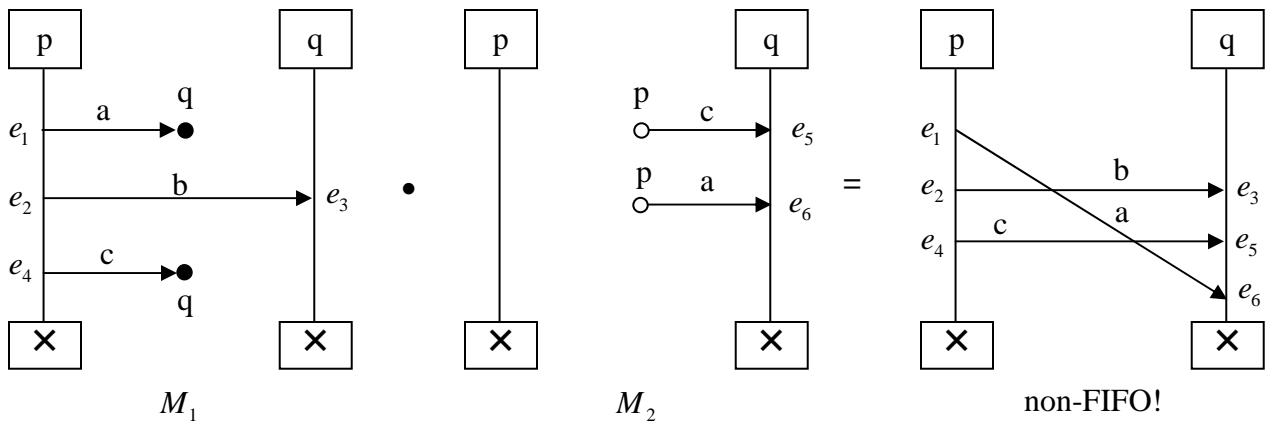


Figure 3.8 – Example of CMSC concatenation

The resulting CMSC shown in

Figure 3.8 violates the FIFO property. First process p from CMSC M_1 sends message a to the process q in e_1 . This message can be received by q in CMSC M_2 as early as e_6 . Process p sends message c to the process q in e_4 . This message can be received by q in e_5 . Sending of the message b is straightforward. Now, we also have the following order of events in M_1 : $e_1 \rightarrow e_2, e_2 \rightarrow e_3, e_2 \rightarrow e_4$, in M_2 : $e_5 \rightarrow e_6$ and from concatenation of two CMSCs: $e_3 \rightarrow e_5$. All of this results in the CMSC shown in the figure above.

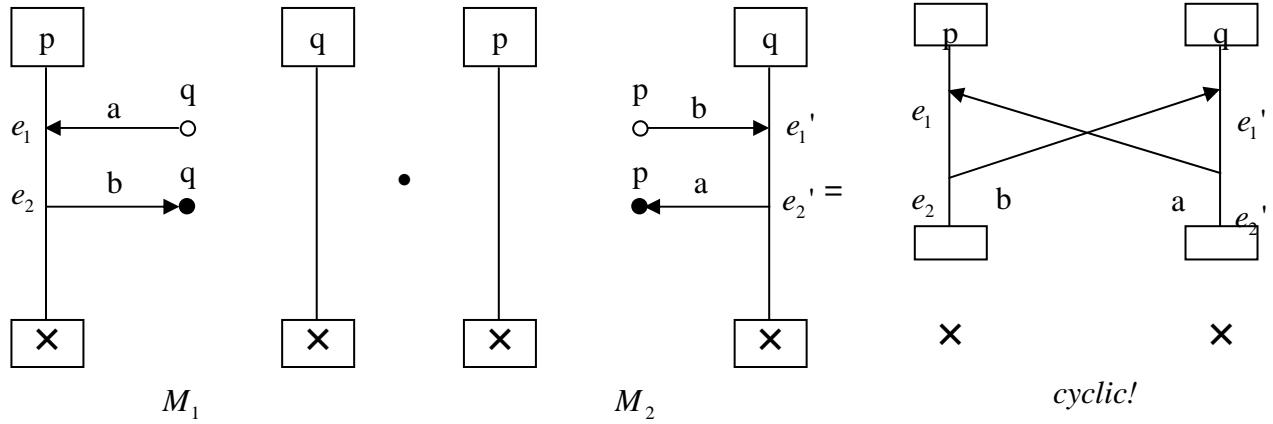
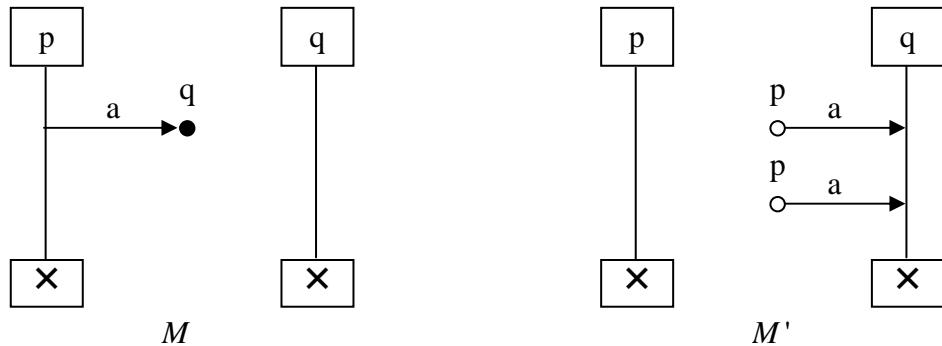


Figure 3.9 – Example of CMSC concatenation

Going from top to bottom, we match first e_1 with e_2' and then e_2 with e_1' . The resulting CMSC is shown in the Figure 3.9 and it is cyclic.

Associativity

There are two CMSCs M and M' as shown in the figure below.



If we try to calculate the concatenation of the expression $(M \cdot M) \cdot M'$ then we will get the CMSC as shown in the Figure 3.10.

$(M \cdot M) \cdot M'$:

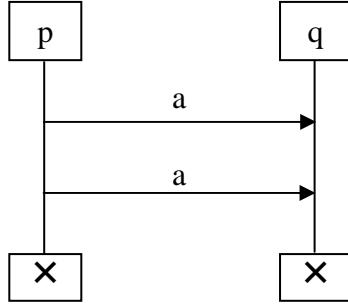


Figure 3.10 – Resulting CMSC

In an other case, if we try to evaluate the expression $M \cdot (M \cdot M')$, we will get the CMSC as shown in the Figure 3.11. That CMSC violates FIFO property and therefore is undefined.

$M \cdot (M \cdot M')$:

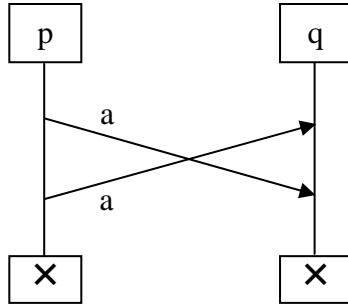


Figure 3.11 – Resulting CMSC

Conclusion: Concatenation of CMSCs is not associative.

Language of a CMSG

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be a CMSG.

- A path π of G is a finite sequence $\pi = u_0 u_1 \dots u_n$ with $u_i \in V$ and $u_i \rightarrow u_{i+1}$.
- The CMSC of a path $\pi = u_0 u_1 \dots u_n$ is:

$$M(\pi) = (\dots (\lambda(u_1) \cdot \lambda(u_2)) \cdot \lambda(u_3) \dots) \cdot \lambda(u_n) = \prod_{i=0}^n \lambda(u_i)$$

Note: Symbol ‘ \cdot ’ denotes CMSC concatenation, which is left-associative.

- Path $\pi = u_0 u_1 \dots u_n$ is *accepting* if $u_0 = v_0$ and $u_n \in F$.
- The (MSC) language of CMSG G is defined by:

$$L(G) = \{M(\pi) \in M \mid \pi \text{ is an accepting path of } G\}$$

Note: We consider all the accepting paths of MSCs only.
- G is *safe* if for every accepting path π of G , $M(\pi)$ is an MSC. In other words, there are no accepting paths for unmatched sends and receives.

Consider again

As seen before, we could not decompose the example Yannakakis proposed in a concatenation of MSCs. However, the proposed example can be modeled in terms of CMSG as shown in the Figure 3.12.

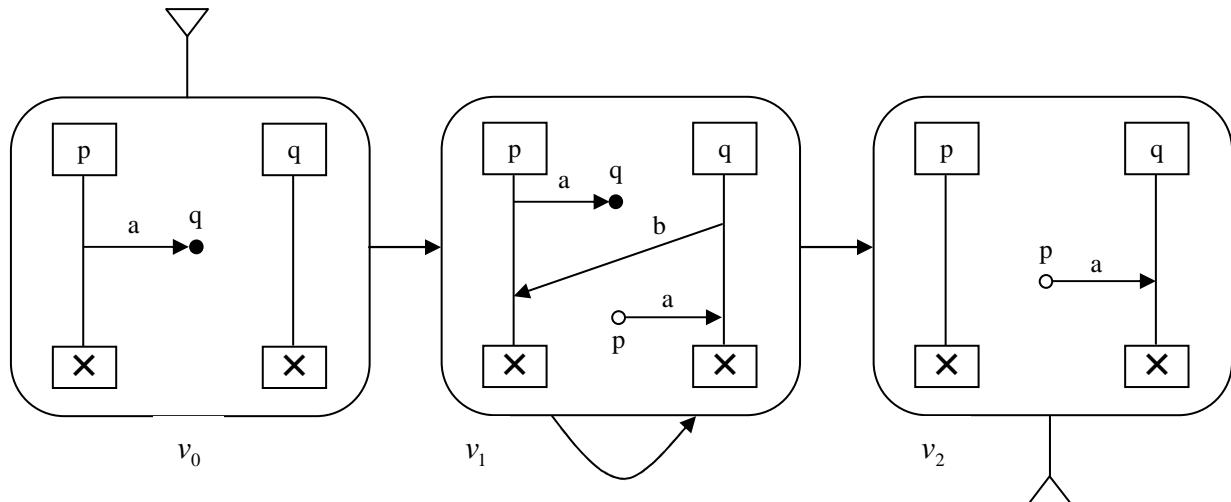


Figure 3.12 – CMSG for the Yannakakis' MSC

Some properties of CMSGs

- CMSGs are strictly more expressive than MSGs.
- There are subclasses of CMSGs that are equally expressive to MSGs, the so-called *locally safe* CMSGs.
- If there is a path π of CMSG G such that $M(\pi) \in \mathbb{M}$ then we call it a *safe* path.
- The decision problem “does G have at least one safe, accepting path?” is *undecidable*.
- The decision problem “is CMSG safe?” is *decidable* in polynomial time.

Existence of safe paths

The decision problem:

Input:	CMSG G
Output:	Yes, if G has a safe, accepting path No, otherwise

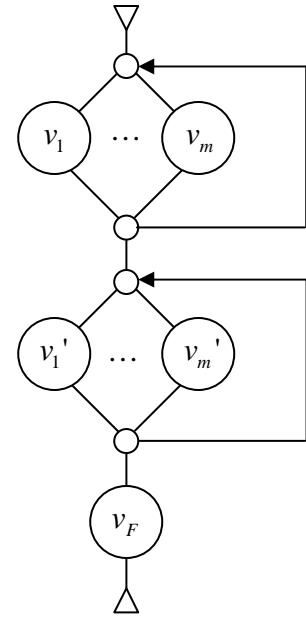
is undecidable.

Proof: Reduction from the Post's Correspondence Problem (PCP).

- Let PCP (u, w) over alphabet Σ with $U = u_1, u_2, \dots, u_m$ and $W = w_1, w_2, \dots, w_m$, where $u_i, w_i \in \Sigma^*$, i.e. instance $\langle (u_1, w_1), \dots, (u_m, w_m) \rangle$.
- Construct a CMSG $G_{u,w}$ such that PCP (u, w) has a solution if and only if CMSG G has an accepting, safe path.
- PCP is undecidable and the above statement implies: the above decision problem is undecidable.

$G_{u,w}$ Let:

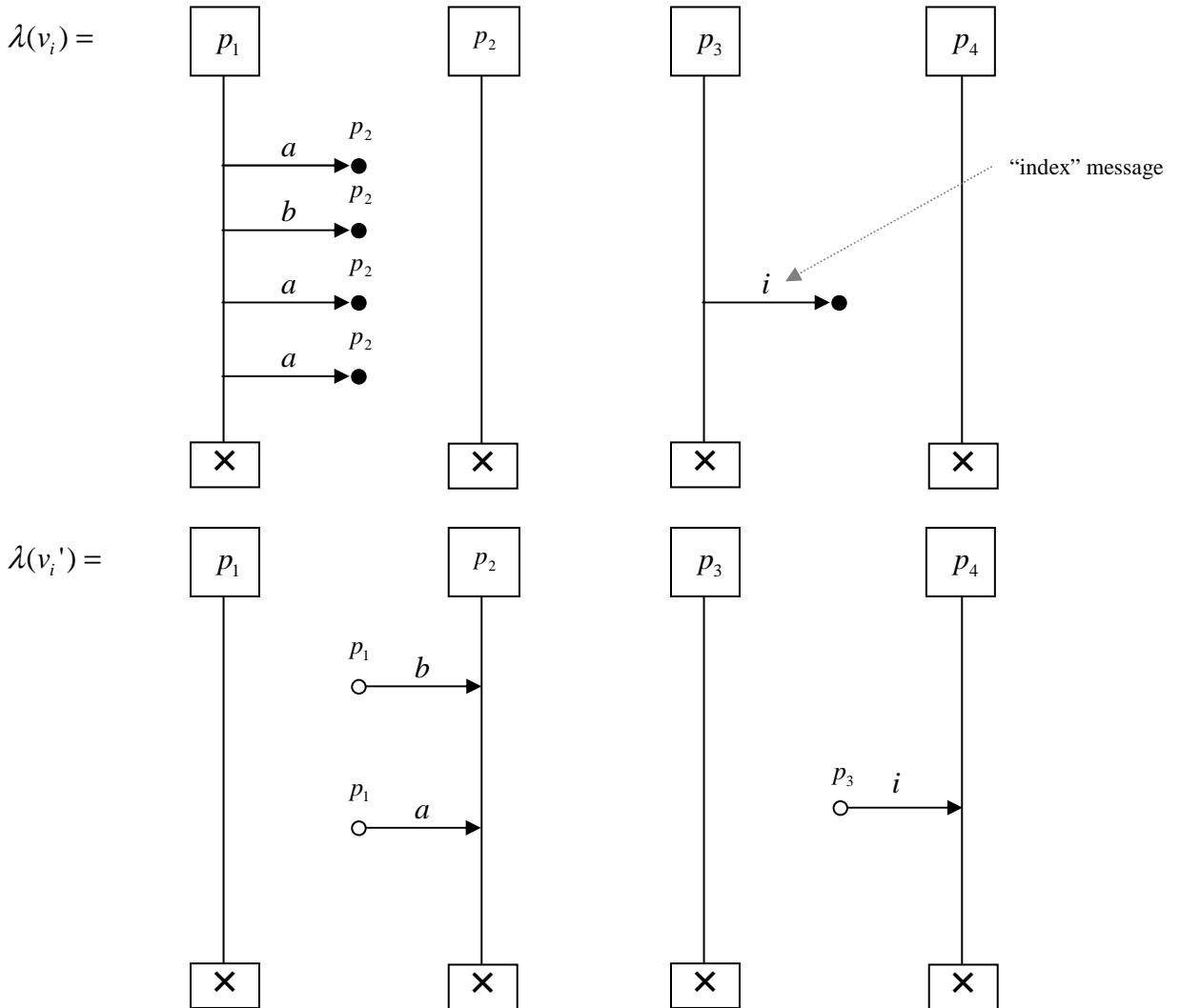
- $P = \{P_1, P_2, P_3, P_4\}$
- $C = \Sigma \cup \{\text{finish}\} \cup \{1, 2, \dots, m\}$
- $G = (v_1 \mid v_2 \mid \dots \mid v_m)^+ \cdot (v_1' \mid v_2' \mid \dots \mid v_m')^+ \cdot v_F$
- $F = \{v_F\}$
- $V_0 = \{v_1, v_2, \dots, v_m\}$
- $\lambda(v_i) = \text{CMSC over } u_i$
- $\lambda(v_i') = \text{CMSC over } w_i$

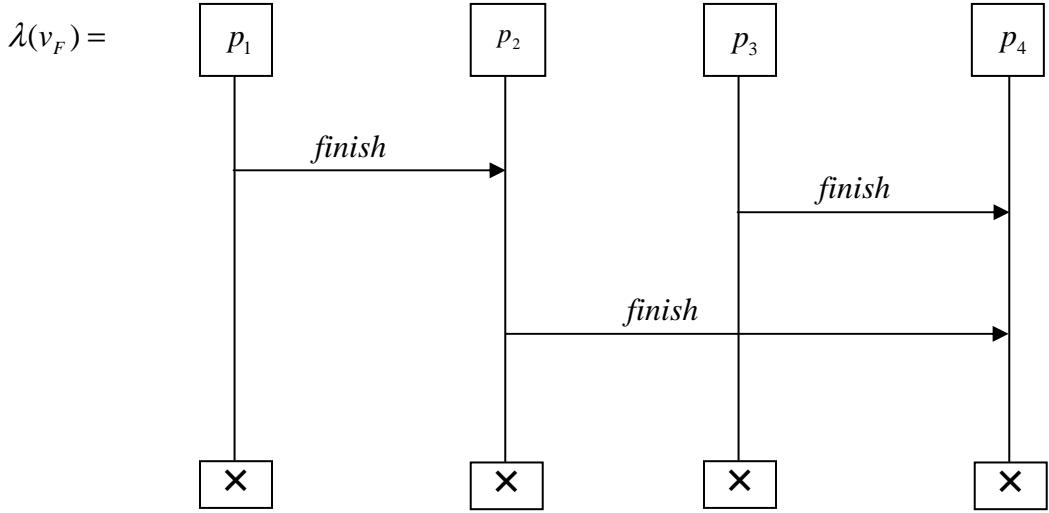


Example:

$$\Sigma = \{a, b\}$$

$$u_i = abaa$$





Claim: $PCP(u, w)$ has a solution if and only if $G_{u,w}$ has a safe, accepting path.

Proof:

“ \Rightarrow ”

Let i_1, i_2, \dots, i_n be a solution of (u, w) . Then consider path π in $G_{u,w}$:

$\pi = v_{i_1} \dots v_{i_n} \cdot v_{i_1}' \dots v_{i_n}' \cdot v_F$ is accepting and $\prod_{j=i_1}^{i_n} \lambda(v_{i_j}) \cdot \prod_{j=i_1}^{i_n} \lambda(v_{i_j}') \cdot \lambda(v_F)$ is an MSC.

“ \Leftarrow ”

Let $\pi = v_{i_1} \dots v_{i_n} \cdot w_{j_1} \dots w_{j_k} \cdot v_F$ be a safe, accepting path of $G_{u,w}$.

Observe:

1. $p_2 ? p_1(finish)$ occurs in $v_F \Rightarrow$ all unmatched sends in p_1 are matched by unmatched receives in p_2 .
 \Rightarrow Number of sends $p_1! p_2(\dots)$ is equal to number of receives $p_2 ? p_1(\dots)$
 $\Rightarrow n = k$
2. $p_4 ? p_3(finish)$ in $v_F \Rightarrow$ all unmatched “index” message sends are matched
 π is safe $\Rightarrow M(\pi) \in \mathbb{M}$, but then:

$$i_1 = j_1, i_2 = j_2, \dots, i_n = j_n$$

$\Rightarrow i_1, i_2, \dots, i_n$ is a solution of $PCP(u, w)$.

Safeness of CMSGs

The decision problem “is CMSG G safe?” is decidable in polynomial time.

- Let’s consider a pair of processes (p_i, p_j)
- Construct a push-down automaton $K_{i,j} = (Q, \Gamma, \Sigma, \Delta)$ with:
 - Q a finite set of control states
 - $\Gamma = \text{stack alphabet} = \{1, \perp\}$, with 1 indicating *counter* and \perp indicating *stack bottom*
 - $\Sigma = \begin{cases} \text{unmatched ! } (a) \\ \text{unmatched ? } (a) \end{cases}$, for $a \in C$
 - $\Delta \subseteq (Q \times \Sigma \times \Gamma) \times (Q \times \{\text{push, pop, skip}\})$
 $(q, a, \gamma, q', \text{pop})$ means:
 On reading a and top stack is γ in state q , change to q' and *pop* γ .
 - Accept if p_i and p_j are completed and stack is non-empty or if unmatched $p_i!p_j(a)$ is matched by $p_j?p_i(b)$ with $a \neq b$.

Functioning of PDA $K_{i,j}$:

Phase 1: Replace vertex v in G by a linearization of $\lambda(v)$ such that all unmatched receive events precede all unmatched send events of same type. (Same type means that the sender and receiver match and that message content matches as well).

$K_{i,j}$ follows events in $\lambda(v)$ and continues nondeterministically to $\lambda(w)$ for some direct successor w of v in G .

Phase 2: Push 1 on stack if $p_i!p_j(a)$ is unmatched, pop 1 if $p_j?p_i(a)$ is not matched.

On occurrence of $p_i!p_j(a)$ move to control state $q_a \in Q$ and remember what message is not matched, ignore all events except unmatched receipts (*pop!*); if the stack is empty, compare message content of last receive: if $a \neq b \rightarrow$ accept, otherwise ignore rest of events and continue further.

Push-down automaton (PDA) $K_{i,j}$ accepts if and only if CMSG G is not safe with respect to pair (p_i, p_j) .

- Checking safeness amounts to checking reachability in all PDAs $K_{i,j}$.
- Reachability of a configuration in a PDA is decidable in polynomial time; hence checking safeness can be done in polynomial time.

Note: In above construction we have assumed (for simplicity) that each safe path is also well-formed (see the following heading). Without this assumption, the PDA $K_{i,j}$ needs to be adapted (*how?*).

Well-formed paths

Let CMSC M be well-formed if:

- $E_\gamma = \text{rng}(m)$
- For all $e, e' \in E$:
$$l(e) = p!q(a) \wedge e \notin \text{dom}(m) \wedge l(e') = l(e) \wedge e' \in \text{dom}(m) \text{ implies } e' <_p e$$

Path $v_1 \dots v_k$ in CMSG G is well-formed if for all $n \leq k$, $\prod_{c=1}^n \lambda(v_i)$ is a well-formed CMSC.

■