Software Modeling and Verification Prof. Dr. Ir. J.-P. Katoen
Lehrstuhl fur Informatik 2 C. Kern
RWTH Aachen University

Foundations of the UML
Winter Term 07/08

— Lecture 3: Compositional MSGs —
(14.11.2007)
summarized byAleksandar Bojinovi andLeonid Pishchulin

Message Sequence Graphs
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Figure 3.1 -Message Sequence Graph



Definition
Let VI be the set of MSC@ip to isomorphism i.e. event identities).
A Message Sequence Graph (MSG) G is a tuples = (V, —, Vo, F, &) with:
* (V, —)is adigraph with finite set V of vertices and [J VXV
* Vo UV is starting (orinitial) vertex
* FLVis aset ofinal vertices
« )LV — M associates to each vertex%/, an MSCA(V)

1. An MSG is an NFA without input alphabet where staee MSCs
2. Every MSC is an MSG

3. Generalization towardssetof initial vertices is straightforward

Concatenation of MSCs
Let Mi = (R, E, G, l;, m, <), i LI{1,2}, be an MSC with E1n E2 =

Theconcatenation of M; and M is the MSC
Mie M, = (P, E, C, I, m, <) with:
P=RUOP, E=BEUE, C=GUGC, (Wlth E? = .U Ez?etC.)

_ l1(e) ifel E my(e) ifel E
| - 1
©) { I(e) ifel E m(e) { my(e) if el) E;
<=< 0<2 0 {(el, &) €E; n Ey € OEzn Ey)

- _ v

same process
Note:
» Events are ordered process-wise, events at p iprétede events at p in,M
* Thus: some processes may proceed {d&fore others!

o #: first complete M, then execute M
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Example

P1 P, Ps
a | e
P1 P, Ps
X X X a
€ g =) b
. = e2 [* e
1 < C ¢
e, [« €3
P: P, Ps
X X X
b
e e1
c M]_’ M2
ey ¢ e's
X X X
<l el > ez el i ez
3 ‘ < e'
. 5] e 2
o LN ey < Y e’y
e,s « €3
Note:

e, ande’; are not ordered in M M,

eg.eeeies... OLin(Mye My)

-

Ay :
ere eey ... HLin(Mie My)

Figure 3.2 -Example from the previous class
Language of an MSG
Let G = (V,—, v, F,A) be an MSG.
A path IT of G is a finite sequence
II=wu ... Ly with  wlUV,0<i<n

U— U, 0<i €n
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TheMSCof apath TIT=wu ... U is:

-
-

M) = A(00) 1) ¢ -+ M) = |jA(ui)

-
-

MSC concatenation
PathIl = w u; ... Wisaccepting if: ugp = vp and y LIF
The(MSC) language of MSC G is defined by:
L(G) = {M(II)|IT is accepting path of G}
Theword language of MSG G is Lin(L(G)) where

Lin({M 4,..., Mi}) = LkJLin(Mi)

Expressiveness
* The decision problem “MSG G has a race” is unddiela

 MSGs may represent infinite-state systems

» State space of an MSG may not be CF

» State space of an MSG is context-sensitive

* The decision problem: for MSGs G1 and G2, do weeHgG1) n L(G2) =0 is
undecidable.

* Coroallary : the decision problem for MSG G and DFA A, do wedain(L(G))
n L(A) = O isundecidable

Local Choice Property
Example 1:

Vi V2

Figure 3.3 —Local choice property example
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Inconsistency if p behaves according to,\dnd g behaves according te V
= possible distributed realization may yieldeadlock(this may be made more
precise in next two lectures)

Problem: subsequent behavior is determined by distinct pseEe

kB

Example 2:

T,

A 4
(@]

\E

Figure 3.4 -Local choice property example

Local Choice Property
e eis aminimal event wrt. <if =[{e’, e’ <e)

+ pisactivein MSC M if E# U, p is active in pathws ... v, in MSG G if
C v, p is active if(vi) 0<i<n
» Définition: MSG G = (V,—, W, F, 1) islocal choiceif:
1. Lactive p,0 IT U Paths(y), IT has a single minimal eveawith e UE,

2. 0 branching vertex MV
v /t } >1

o
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Cactive p,00 IT U Paths(w), and v» w, IT has a single minimal eveawith e

H]=N
Intuition: Along every path from an initial or branching \eettthere is a single process
deciding how to proceed which can inform the offreccesses how to proceed.

Example

/p q /p q\

left right

A 4

A 4

N x| ) \Z x| )

Vi V2

is local choice
Figure 3.5 —Local choice property

Checking whether an MSG is local choice can be dope

in polynomial time.

How can non-local choices be resolved? Refine W86 and add control messages (cf.

above example).
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Consider the following example, proposed by Yankeka

P1 P2

€1

e €3

& €

N €7
€s

€s €11
€10

€12

This MSCcannot be decomposed as;MMze ... « My, (n>1)

This can be seen as follows:
* e ande; = m(e) must reside in same;M

s & <6 ande <esthus }
e, e UM, j<iorj>i

€3, & UM;

e by similar reasoningss, es L1M; etc.
Problem: compulsory matching between send and receive gvienthe same MSG

vertex (i.e. send and receive m(e))

Compositional MSGs

Solution: drop restriction that e and m(e) belong to the esadSC (= allow for
incomplete message transfer)
Definition: M = (P, E, C|l, m, <) is acompositional MSC, where P, E, C andare as
before, and
* m E — E;is a partial, injective functiom6t a bijection) such that (as before):
m(e) =e'L I(e) = plq(a) — I(e") = q?p(a)
e <= U<p U{(e,m(e) | edom(m)} dom(m) — domain of m, “m(e) is defingd”

pOP

Note: an MSC is a CMSC wherais total and bijective.
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CMSC Example

. intended recipient

message content p I/ q
....................... N q ' — e unmatched send
S
Gr———>e o—— unmatched receive
b
€ &
S e m(e,) = &
A Odomm
~ ~ e m(m)
&, 0mg(m)

intended sender

Figure 3.6— CMSC example

Definition: A compositional MSG (CMSG) is a MS& =(V, -,v,,F, A With
A:V - CM, whereCM is the set of CMSCs and, -,v, andF are as
before.

Thus, in CMSG we allow vertices to be labeled wittmpositional message sequence
charts (CMSCs).

Concatenation of CMSCs
Let M, =(R,E,C,I,,m,<)0CM andi 0{12}, E,NE, =0 .
ThenM, M, =(RUPR,,E,UE,,C,UC,,I,m,<) with:
 lI(e)=I(e) if eE, I(e) =1,(e) otherwise
* m:E - E, satisfies:
1. m extends m, and m,. In other words ife is in the domain ofm
eldomm), wherei {12} thenm(e) = m (e)
2. m matches unmatched send eventsMp with unmatched receive events in
M, according to order on processes, matching theranf(sy from top to

bottom.
(In other words, if we consider tiketh unmatched send iM, then it will be
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matched with th&-th unmatched receive iM,, where of course the message

content is the same and the sender and the recaateh.)

3. M,[M, satisfies the FIFO condition, when restricted @tch events.

* <:(U<p1U<p2

pOP

Examples

Ml

]U{(e, e)|e0E NE,,e0E,NE,}U{(e m(e)) |eTdom(m)}

q p q
P p
O—P%
. P a
o—— g
X X X
MZ

Figure 3.7 —Example of CMSC concatenation

In the example shown in the figure above (
Figure 3.7) the processin the CMSCM, is first sending messageand latermessage

to the processg. In CMSC M, message can be received by procesgsas it is matched
with the same message sent before by propestowever, messagds and c do not

match. Messagb cannot be matched as procedsas not sent this message before, and
message& cannot be matched as procgsdoes not expect to receive this message from

process.
P g p g
a 9 P C
—>0 O———P»
. p
e, > € —2 e
&—S»e
q
X X X X
Ml MZ

Figure 3.8 —Example of CMSC concatenation

The resulting CMSC shown in
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Figure 3.8 violates the FIFO property. First prege$rom CMSC M, sends message
to the process in g. This message can be receivedgoy CMSC M, as early as;.
Proces sends messageto the process in g,. This message can be receivedgon
e,. Sending of the messagas straightforward. Now, we also have the follogviorder
of events inM;: ¢ - &,e, -~ 6,6, - €, in M,: & - & and from concatenation of
two CMSCs:e, - &,. All of this results in the CMSC shown in the figiabove.

q p
a_ bl e & >< e
q . p _
& —bn o | e~ e| b a -
] -
X X X X X X
M, M, cyclic!

Figure 3.9 —Example of CMSC concatenation

Going from top to bottom, we match firgt with e," and thene, with '. The resulting
CMSC is shown in the Figure 3.9 and it is cyclic.

Associativity

There are two CMSCM andM' as shown in the figure below.

Y q Y q
a d P a
— O——»

X a
O———>
X X X X
M M

If we try to calculate the concatenation of therespion(M [M)[M"' then we will get
the CMSC as shown in the Figure 3.10.

Lecture 3: Compositional MSGs 10



(MIM)IM":

X X

Figure 3.10 —Resulting CMSC

In an other case, if we try to evaluate the expoass [((M [M "), we will get the CMSC

as shown in the Figure 3.11. That CMSC violatesCFIgroperty and therefore is
undefined.

M [(M[M"): 0 q
e

a
X X

Figure 3.11 —Resulting CMSC

Conclusion: Concatenation of CMSCs it associative.

Language of a CMSG

Let G=(V, -,v,F,A) be a CMSG.
* A path nn of Gis afinite sequencer=uyy, ...u, with u OV andu, - u,,.
« TheCMSC of a pathr=uyy,...u, is:

M () = (.. (A(w) TA(U,)) A(s)..) A (U,) = [ A)

Note: Symbol *’ denotes CMSC concatenation, which is left-asso@a
« Path=uy,...u, isacceptingf u, =v, andu, OF .
«  The(MSC) languagef CMSGG is defined by:
L(G) ={M (77 0M | risanacceptingathof G}
Note: We consider all the accepting paths of MSCs only
* G issafeif for every accepting patln of G, M(n) is an MSC. In other words,
there are no accepting paths for unmatched sentiseanives.
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Consider again

As seen before, we could not decompose the exarviplenakakis proposed in a
concatenation of MSCs. However, the proposed exaroph be modeled in terms of
CMSG as shown in the Figure 3.12.

lm
o]
A 4
m\\U
A 4
©
@

Figure 3.12 -CMSG for the Yannakakis’ MSC

Some properties of CMSGs

* CMSGs are strictly morexpressive than MSGs.

» There are subclasses of CMSGs that are equallyessipe to MSGs, the so-
calledlocally safeCMSGs.

» |If there is a pattm of CMSGG such thatM (77) OM then we call it &afepath.

 The decision problem “does G have at least one, safeepting path?” is
undecidable

* The decision problem “is CMSG safe?'dscidablein polynomial time.

Existence of safe paths

The decision problem:
Input: CMSGG
Output: Yes, ifG has a safe, accepting path
No, otherwise

is undecidable.

Proof: Reduction from the Post’s Correspondence ProbRGP].
* Let PCP(u, w)over alphabetz with U =u,,u,,...,u, and W =w,,w,,...,w,,
whereu,w 0%, i.e. instanc&(ul,vvl),...,(um,wm)>.

» Construct a CMSG5,, such that PCRu, w)has a solution if and only if CMSG

G has an accepting, safe path.
» PCP is undecidable and the above statement impiesabove decision problem
is undecidable.
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ww LEet

={R.P, PP}
=2 U{finish}U{1.2....., m}

*  A(v)) =CMSC overy,
*  A(v'")=CMSC overw

P
C

o G=(IV | V) TV, Y, )
F

Example:
> ={a,b}
u, = abaa
A(v) = P, P
P,
a
——»eo
b P,
———>e
a P,
——»eo
P,
a
——»eo
X X
Av) = o P
oy
O——»
P
a
O——F
X X

Ps P,

| — )

X X

p3 p4
Ps i
O——r

X X
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A(ve) = P, P, P, P,

finish

A 4

finish

finish

\ 4

Claim: PCP(u,w) has a solution if and only &, has a safe, accepting path.

Proof:

=
Leti,i,,...,i, be a solution ofu,w). Then consider patl in G, ,

m=v, ...v, IV "...v N is accepting an(ﬂ )I( )Eﬂ /1( ) V. ) is an MSC.

I1

R
Let 7=v, ...v, W, ...w; [V be a safe, accepting path@f,, .
Observe:
1. p,?p/(finish) occurs inv: = all unmatched sends ip, are matched by
unmatched receives ip, .
= Number of send9,! p,(...) is equal to number of receives ?p,(...)
= n=Kk
2. p,?p;(finish) in v = all unmatched “index” message sends are matched
7 is safe= M (n) OM, but then:
Iy = iy = Joendy = 5

= ip,ly,...,1, IS & solution oPCP(u,w)
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Safeness of CMSGs
| The decision problem “is CMSG safe?” is decidable in polynomial time.

 Let's consider a pair of process@s, p; )
+ Construct a push-down automatsh, = (Q,l,Z,A with:

o Q afinite set of control states
o I = stack alphabet ={1,}, with 1 indicatingcounterand Oindicating
stack bottom
unmatched (a)
0 2 =<unmatche® (a);,forallC

unmatcheda)

0 AD(QxzxI)x(Qx{push pop skip})

(q,a, v.q', pOp) means:
On readinga and top stack iy in stateq, change t@’ andpop y .

o0 Accept if p and p; are completed and stack is non-empty or if
unmatchedp!p;(a )s matched byp; ?p,(b with a#b.

Functioning of PDAK; ; :

Phase 1:Replace vertexv in G by a linearization ofA(v )such that all unmatched

receive events precede all unmatched send eversgnod type. (Same type means that
the sender and receiver match and that messagentonatches as well).
K;; follows events inA(v )and continues nondeterministically #fw fgr some direct

successow of vin G.
Phase 2:Pushl on stack if p!p;(a )is unmatched, pof if p;?p(a) is not matched.

On occurrence ofp!p;(a Jnove to control state, 1Q and remember what message is

not matched, ignore all events except unmatcheeiptscpop!); if the stack is empty,
compare message content of last receivea#b — accept, otherwise ignore rest of
events and continue further.

Push-down automaton (PDA; ; accepts if and only if CMSG is not safe with respect

to pair (p,, p; )-
 Checking safeness amounts to checking reachalilall PDAs K ; .

* Reachability of a configuration in a PDA is decit#alm polynomial time; hence
checking safeness can be done in polynomial time.

Note: In above construction we have assumed (for sintylithat each safe path is also
well-formed (see the following heading). Withoutstassumption, the PDK; ; needs to

be adaptednow?).
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Well-formed paths
Let CMSCM be well-formedf:
* E, =rmg(m)
* ForalleelE:
I(e) = pla(a) CeTdom(m) CI(e") =1(e) CeDdon(m) impliese'<, e

Path v;...v, in CMSG G is well-formedif for all n<k, ”A(\/i) is a well-formed
CMSC. )
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