Software Modeling and Verification
Lehrstuhl fir Informatik 2
RWTH Aachen University

Foundations of the UML
Winter Term 07/08

Prof. Dr. Ir. J.-P. Katoen
C.Kemn

— Lecture number 4 —

(Date (19th Nov 2007))
summarized by Muhammad Ali(284152) and Mudassir Rasool (284168)

Message Passing Automata

The lecture was about Message Passing Automata and it consisted of the following sections...
»What is a Message Passing Automaton (will be abbreviated as MPA)?
»Formal Definition of MPA
»How MPA work (with the help of Illustration)?
» Configurations and Linearizations of MPAs
»Undecidability of non emptinessin MPAs

» Subclasses of MPASs, Boundedness

We will now summarize each of these sections.

1 Whatis a Message Passing Automaton?

1.1 Definition

Message Passing Automata are "finite set of finite state automata plus communication
channels (FIFO channels)". They are used to realize or exhibit the behavior/specification
/scenerios of systems modelled by a(C)MSG".

1.2 Example lllustration

Suppose we want to realize the following MSG...

M, M

The realization of the above specification (that is MPA) would yield us the following...

Process P Process Q

Because of the non-deterministic choice in the M SG, the process P (and Q) may either behave
like MSC M, or M. But there is apossibility that process P may behave like M ; and process Q
may behave like M,(or vice versa). The MPA for both the processes above shows thisidea.

For instance, in left figure, process P may send a message to process Q but at the same time may
also be waiting to receive a message from Q. To avoid such a deadlock, control messages can be
added. The next picture will show the possible MSG after the addition of control messages.

M1 M2
@ A p | |« p | | ¢
left right

\/
(M —A\

The control messages "left" and "right”, as shown above, resolve the problem and the

deadlock will be prevented.

Process P

plq(left) A\ plq(right)

N

plg(a)

p?q(b)

Process Q

q?p(left) /A q?p(right)

q?p(a)

N i

q'p(b)

The intuition behind isto alow only one process to decide/dictate the execution through
any (non deterministic) path with in any MSG. That single process should always contain
the "minimal event" on all the paths of an MSG. In our case aboveit is process P.

2 Formal Definition of MPA

Let

e P=afinite set of at least two sequential processes.

e C = afinite set of message contents.

Then a message-passing automaton (MPA) A over P and C isastructure defined as...

A=(((S»A)pep Dy Sinit , F)

Where

e D isanonempty finite set of synchronization messages (or data).

eforeachpe P

¢ S, isanonempty finite set of local states (the S, are digoint).

e /,C S, x Act,x D x S, isaset of local transitions.

¢ S,;; € Syisthegloba initia state.

e FC S, istheset of global final states.

Where

S, = Hpep S, isthe set of global states of A.

From the definition it is clear that an MPA defines the collective behavior of all the
individual automatain the system, each corresponding to some process p € P, and their
mutual interaction. It also identifies the DEADLOCK conditions which may arise by
the interaction of all the processes (or their individual automaton).

A system must have at least two processes and they should be interacting with each
other to construct an MPA. In the other situation, if thereis a single process or multiple
independent processes running together there is no point to develop an MPA.

Let’'s now look at an example execution of an MPA in the next section...

3 How MPA work (with the help of lllustration)?

Suppose we havean MPA A over P={1,2} and C ={reqg,ack} and other arguments are:
e 5 = set of statesfor process 1 = { s9,51,52}
e S, = set of statesfor process 2 ={t¢,t1,t2}
e A1 =set of local transitions for process 1: s Ml 50
e N\, =set of local transitions for process 2: ¢ Mg t1...
e S;,;; = Set of initial states(S;; x Sy2) = (s0,t0)
e F = set of final states (Sg1 x Spa) = {(s2,t2)}
The systemisat theinitial states (s, to), Process 1 isat s, and Process 2 is at t .

The following figure depicts theinitial state of the system.

211(ack) 271(req)

Transitions; None

At this state, the process 1 will keep on sending sending the "req" messages and will
remain in the same s, state. So after two such messages, there will be two "req"

messages in the channel buffer. The picture below shows this state, the messages are
not currently read by process 2.

211(ack) 271(req)

’ Channel 1to 2: ... reqreq ‘

| Transitions; 1!2(req) 1!2(req) |

As soon as thefirst "req" message isread by the process 2, it will moveto statet;. This
state is shown in the picture on the following page.

211 (ack) 271(req)

| Channel 1t0 2: ... req |

’ Transitions: 1!2(req) 1!2(req) 2?1(req) \

In the next possible scenerio, process 2 may send "ack" message to process 1 and go state t,.
The MPA will keep on executing thisway till both the processes get to their final states s,
and t, respectively, also all the channels should be empty too. If we get to such a condition
then it will be an accepting run.

One of the possible sequences of transitions when this automaton will run (an accepting run)
isasfollows.....

112(req) 1'2(req) 271(req) 2! 1(ack) 2?1(req) 2! 1(ack) 172(ack) 1'2(req) 172(ack)
112(req) 271(req) 2?1(req)

And following istheillustration of the flow in which this automaton changes the states:

Process 1 Process 2 Channels
so 112(req) so req
_—
so 112(req) so req,req
—_—
to 271(req) tq req
—_—
t1 2!1(ack) to req AND ack
_
to 221(req) ty EMPTY AND ack

e

ty 211(ack) ty EMPTY AND ack,ack

 —

so 172(ack) sy EMPTY AND ack
_—
s1 112(req) so req AND ack
_
so 172(ack) sy req AND EMPTY
—_—
s1 112(req) so reg, reqg AND EMPTY
_
ts 271(req) ts req AND EMPTY
_—
ty 271(req) to Both Channels Empty
_

4 Configurations and Linearizations of MPAs

4.1 Configuration of MPA

Let A be a MPA over P and C (as defined in the above sections) then a configuration
"Conf 4" of MPA A can be formally defined as....

Conf, =Sy x{n|n:Ch- (Cx D)*}
So a configuration of an MPA A defines the set of mappings between S, (Set of all

statesin MPA for al the processes) and C (Set of channels). Similarly, the global step
for the MPA A can be defined as..

=A C Confyx Act x D x Conf 4
sending amessage:((5,7), pla@ , m, (5 ,7")) € = Alf
e (s[pl ., pta(@ . m, s[p]) € 4,
o 0" =n[(p, A)/(am) . n((p, A))]
es[r]=5[r]fordlrCPandr+#p
receiving amessage:((5,n), pq@ ,m, (5,1)) C = Alif
e (s[pl ., p2@) ., m,s[p]) € 4,

en=n1l(q,p)n(q,p).(a,m)]

e 5[r] =5[r] for al r C Pand p#£q

4.2 Run of MPA

ArunpofanMPAAono; .. .o, € Act* isasequence

P ="My ... Yn—1MpYn

such that
Yo = (Sinit, 1) With 1. mapping any channel to ¢

vie1 8, m; Ay foranyiel, ..., n
—_

Run p isan accepting run, if v,, € F x n. , that isif for any run we get to the any of the
accepting states of MPA then that run isan "accepting run”.

4.3 Linearizations of MPA

The set of linearizationsLin(A) of an MPA A can be defined as " The set of all sequences
of actions for each of which there exists an accepting run of A". Formally...

Lin(A) ={ w € Act* | thereis an accepting run of A onw }

5 Undecidability of nonemptiness in MPAs

For any MPA A over P and C, it is undecidable whether the set of MSCs with in MPA
(L(A)) of A would be an empty set or not (even if C isasingleton). Formally...

L(A) = ()2

The proof of the above problem is being provided by the reduction from the Turing
Machine's halting problem. Since it is undecidable whether Turing machine(TM) will
halt or not, the existance of this mapping yields that the emptiness problem for A is
undecidable. We built an MPA A = ((A1,A2), D, s;i: , F) over P={1, 2} and some
singleton set C such that

L(A) =0 iff TM canreach q;

5.1 Proof (sketch):

Reduction from halting problem for Turing machine TM = (Q, >, A, O, 0o, df)
to emptiness for MPA with two processes. Build MPA A = ((A1,A5),D, S;,.i: , F) over {1, 2}
and some singleton set such that L(A) # 0 iff TM can reach q.

e Process 1 sends current configurations to process 2.

e Process 2 chooses successor configurations and sends them back to 1.

e D=(_u{O}) x (QU{-}) u{#

The figure on the next page shows the steps of execution of suchaTM...

Y {0+ q

s—{0]

I_T]V[

B
=—0]
=2

~

|

o 1

2

I_T]V[

a+< q2

e
o

I~
~—
O

I_TM

=]
2|
i

(op

q3 Y3 { a

U<«gs

e Left or standstill transition:

Process 2 may just wait for a symbol containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition (g2 ,a,a ,L,g3) isapplied
so that process 2

¢ sends b unchanged back to process 1

e detects (receives) a < Qs

e sendsa’ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with g3

e receives # so that the symbol O < g3 hasto be inserted
before returning #

¢ Right transition:
Process 2 has to guess what the position right before the head is. For example, provided process
2 decided in favor of (g, & @, R, g3) while reading the b, it would have to

e send b < Q3 instead of just b, entering some statet (a < g2)

e recelve a < g (no other symbol can bereceived in statet (a < g2))

e send & back to process 1

e Introduce local final statess; and t; , one for process 1 and one for process 2, respectively
(i.e, F=(sy,t;) and A islocally accepting).

e At any time, process 1 may switch into s, , in which arbitrary and arbitrarily many messages can
be received to empty channel (2, 1).

e Process 2 isallowed to move into t; and to empty the channel (1, 2) as soon asit receives a
letter ¢ < q; for somec.

e As process 2 modifies a configuration of TM locally, finitely many States are sufficient in A.

6 Sub classes of MPAs: Boundedness

6.1 Definition of B-Bounded Words

A word w € Act* is called B-Bounded (where natural number B > 1), if for any u €
Pref(w) and any channel (p,q) € Ch:

ZaEC |u|p!q(a) - Zae(] |u|p?q(a) < B

That is, inw, it is never the case that the number of sends on channel (p,q) is more than
B ahead of the number of receives on (p,q) by process g.

Conversaly, we can aso say that for any given MPA A, the buffers with maximum size
B (for al the channels) would be sufficient to execute aword w € Act*. If thiscondition
holds, then word w will be called B-Bounded.

6.2 Universal Boundedness of MSCs

AnMSC M iscalled universally B-bounded if all thelinearizationsof M are B-Bounded.
Formaly...

Lin(M) = Ling(M)
Where
e Lin(M) = set of al linearizations of M

e Ling(M) = set of all B-Bounded Linearizationsof M ={w < Lin(M) | w is B-Bounded}

6.3 Existential Boundedness of MSC

An MSC M is caled existentially B-Bounded if there exists some linearization of M
which is B-Bounded. Formally...

Lin(M) (N Ling(M) #

To check boundedness property of a system, all the channel buffers must be checked for
verification. Let’slook at the following M SCs as an example:

M,
L» | Lo |
M;
M P | | 4
] [4
a /
a
a /
a
a /
I I N
The MSC M, is
¢ Universally 5-Bounded (All linearizations of M, are 5-Bounded)
e Existentialy 1-Bounded (some linearizations of M ; are 1-Bounded)
The MSC M5 is
e Universally 4-Bounded (All linearizations of M, are 3-Bounded)
¢ Existentialy 2-Bounded (some linearizations of M, are 1-Bounded)
¢ But not existentially 1-Bounded (no linearization of M, are 2-Bounded)
The MSC M3 is

e Universally 3-Bounded (All linearizations of M 3 are 5-Bounded)
e Existentially 1-Bounded (some linearizations of M ; are 1-Bounded)

END

