

## Foundations of the UML

Winter Term 07/08

---

### – Lecture number 5 Realizability –

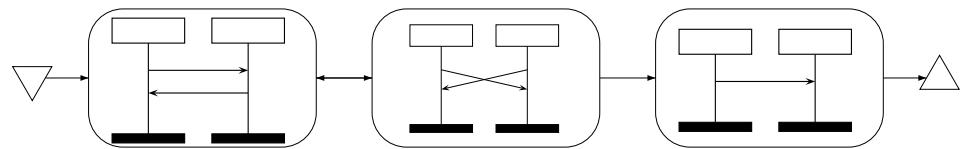
(Date (26.11.2007))  
summarized by *Andrea Hutter and Peter Schumacher*

## 1 Aim

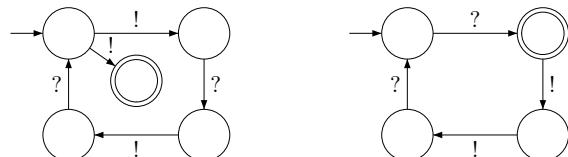
We already know that

- MSCs impose a global view of a system and
- MPA is a set of finite-state machines and a collection of local system views.

The aim of this lecture is to get from a high-level specification (MSC)



to an implementation model (MPA).



So we want to obtain a characterization of MSCs or equivalently, their linearizations for which an equivalent MPA exist. For simplicity, we consider the first case without synchronization messages, i.e.  $|\mathbb{D}| = 1$ . This is known as simple realizability.

First we introduce a new perception.

## 2 Traces

### 2.1 Definition "well-formed"

$$Act = \bigcup_{p \in P} Act_p \text{ with}$$

$$Act_p = Act_p^! \cup Act_p^?$$

$$Act_p^! = \{p!q(a) \mid q \in P, q \neq p, a \in \mathbb{C}\}$$

$$Act_p^? = \{p?q(a) \mid q \in P, q \neq p, a \in \mathbb{C}\}$$

Sequence  $w \in Act^*$  is *well-formed* if for every pair  $(p, q) \in Ch$  it holds:

(1) for any  $v \in pref(w)$  :

$$\underbrace{\sum_{a \in \mathbb{C}} |v|_{p!q(a)}}_{\# \text{send}: p \rightarrow q} - \underbrace{\sum_{a \in \mathbb{C}} |v|_{q?p(a)}}_{\# \text{receipts}: q \leftarrow p} \geq 0$$

(2) all messages sent from  $p$  to  $q$  are received by  $q$  (in  $w$ ), and in the same order as they were sent.

### 2.2 Definition Traces

Let  $e_1, e_2, \dots, e_n \in Lin(M)$  for MSC  $M$   
we call  $l(e_1) l(e_2) \dots l(e_n)$  a *trace* of  $M$

**Lemma 2.1**  $w \in Traces(M)$  iff  $w$  is well-formed

#### Proof 2.1

" $\Rightarrow$ ": let  $w \in Traces(M)$ . Then in every prefix  $v$  of  $w$ ,  $\sum_a |v|_{p!q(a)} \geq \sum_a |v|_{q?p(a)}$  for every  $(p, q) \in Ch$ .  
As  $M$  is FiFo,  $w$  is FiFo.

" $\Leftarrow$ ": let  $w$  be well-formed. Then construct a (canonical) MSC  $M$  with trace  $w$ , starting with empty MSC and  $w = e$ , by inductively inserting sends and receipts. For prefix  $u p?q(a)$  of  $w$ , match  $p?q(a)$  with the first occurrence of  $q!p(a)$  in  $u$  that has not been matched yet. Since " $w$ " is well-formed, all sends will be matched and messages cannot overtake each other. Thus  $M$  is an MSC, and  $w \in Traces(M)$ .

## 3 Realizability

- MSC  $M$  is *realizable* whenever  $M = L(A)$  for some MPA  $A$
- Set  $\{M_1, \dots, M_k\}$  of MSCs is *realizable* whenever  $\{M_1, \dots, M_k\} = L(A)$  for some MPA  $A$
- MSG  $G$  is *realizable* whenever  $L(G) = L(A)$  for some MPA  $A$

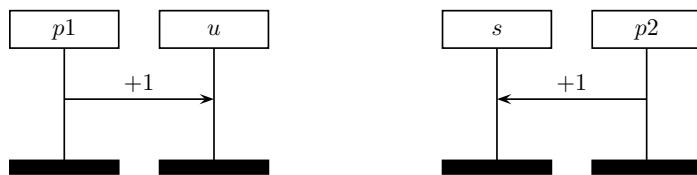
## Equivalently

- MSC  $M$  is realizable if  $\text{Lin}(M) = \text{Lin}(A)$  for some MPA A
- $\{M_1, \dots, M_k\}$  is realizable if  $\bigcup_{i=1}^k \text{Lin}(M_i) = \text{Lin}(A)$  for some MPA A
- MSG  $G$  is realizable if  $\text{Lin}(G) = \text{Lin}(A)$  for some MPA A

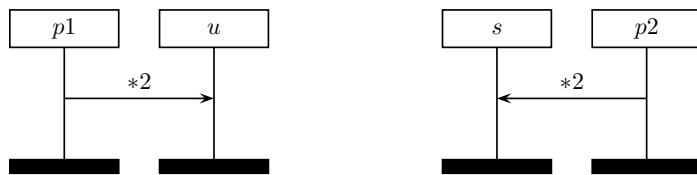
### 3.1 Impossible to realize

Consider the following two MSCs :

M1:



M2:



They increase the volume of U and S by one entry (M1) or double their volume (M2).

The following scenario is implied by the ability of the process instances ( $p1$  and  $p2$ ) to independently act as M1 or M2.



So:  $\{M_1, M_2\}$  is **not** realizable

### 3.2 Closure property (AB)

Language  $L \subseteq Act^*$  has property AB if:

for every well-formed word  $w \in Act^*$ .  $(\forall p \in P . \exists v \in L . w \upharpoonright_p = v \upharpoonright_p)$  implies  $w \in L$

Here  $\upharpoonright_p$  means *projection* on process p:

$$\begin{aligned} \varepsilon \upharpoonright_p &= \varepsilon \\ (r!s(a)u) \upharpoonright_p &= \begin{cases} r!s(a)(u \upharpoonright_p), & \text{if } r = p \\ u \upharpoonright_p, & \text{otherwise} \end{cases} \end{aligned}$$

and similarly for receive actions.

Intuition AB property:

If  $w$  can be decomposed such that for each process its contribution to  $w$  is in  $L$  (i.e., is a possible system behavior), then  $w$  is in  $L$ .

#### Example:

$w = p_1!u(*2)u?p_1(*2)p_2!s(+1)s?p_2(+1) \notin Lin(\{M_1, M_2\})$  but:

$w \upharpoonright_{p_1} = p_1!u(*2)$  and  $w \upharpoonright_u = u?p_1(*2)$  are consistent with  $Lin(M_2)$

$w \upharpoonright_{p_2}$  and  $w \upharpoonright_s$  are consistent with  $Lin(M_1)$

Thus  $Lin(M_1, M_2)$  does not fulfill property AB.

### 3.3 Characterizing realizability

**Theorem 3.1 (Alur, Etessami, Yannakakis '00)**  $L \subseteq Act^*$  is realizable iff  $L$  only contains well-formed words and  $L$  fulfills AB.

#### Proof 3.1

" $\Rightarrow$ ": Assume  $L$  is realizable. Then there exists an MPA  $A$  with  $L = Lin(A)$ . Take  $w \in Lin(A)$ . Since  $w \in Lin(A)$ ,  $w$  ends in a configuration in which all channels are empty. In addition for any  $v \in pref(w)$ , for any channel  $(p, q)$ , the numbers of sends  $(p, q) \geq$  the numbers of receives  $(q, p)$ . As all channels in  $A$  are FIFO, it follows  $w$  is FIFO, thus  $w$  is well-formed. Remains to prove  $L$  satisfies AB. Let  $w \in Act^*$ , well-formed and assume for any  $p \in P$ , there exists  $v^P \in L$  such that  $w \upharpoonright_p = v^P \upharpoonright_p$ . We show that  $w \in L$ . Consider an accepting run of  $A$  on  $v^P$ , in particular consider the local state of  $p$  in this run, as well as local transition in  $\Delta_p$ . Since  $w \upharpoonright_p = v^P \upharpoonright_p$ , these local transitions are also possible in  $w \upharpoonright_p$ . It is not difficult to see that the runs of the local automata can be combined into an accepting run of MPA  $A$  on  $w$ . So  $L$  satisfies AB.

" $\Leftarrow$ ": Assume  $L$  satisfies  $AB$  and  $L$  only contains well-formed words. Let  $A_p$  be an automaton that accepts  $\{w \upharpoonright_p \mid w \in L\}$ . We show that for MPA  $A = ((A_p)_{p \in P}, s_{init}, F)$  we have  $\text{Lin}(A) = L$ .

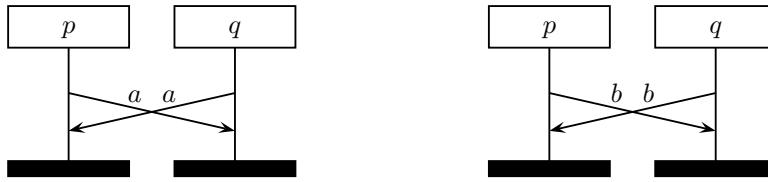
" $\supseteq$ " Let  $w \in L$ . By construction of MPA  $A$ ,  $\text{Lin}(A) = \{w \upharpoonright_p \mid w \in L\}$ . But then  $w \in \text{Lin}(A)$ .

" $\subseteq$ " Let  $w \in \text{Lin}(A)$ . Then  $w \upharpoonright_p \in \text{Lin}(A)$  for any  $p \in P$ . Since  $L$  satisfies  $AB$ , it follows  $w \in L$ .

**Theorem 3.2** The decision problem "is a given set of MSCs realizable" is CoNP-complete.

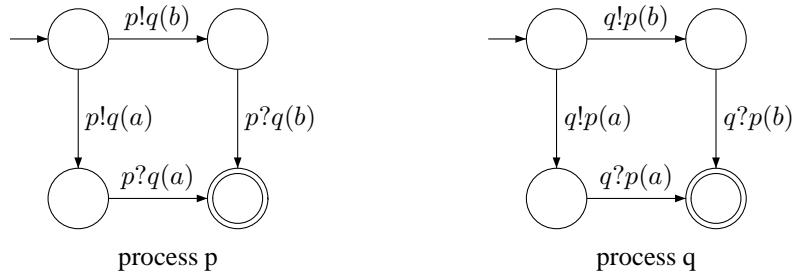
## 4 Safe Realizability

It is possible that a set of MSCs is realizable but only by an MPA that may have deadlocks.

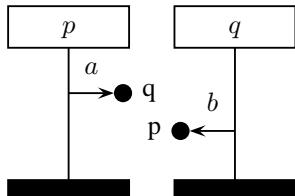


"processes p and q have to agree on a or b"

Realization:



Possible behavior:



$p!q(a) \ q!p(b) \not\in \text{deadlock!}$

## 4.1 Definition "deadlockfree"

An MPA A is deadlockfree if from every configuration  $\gamma$  reachable from  $\gamma_0$ , a final configuration  $\gamma' \in \{\eta_\varepsilon\}$  is reachable.

## 4.2 Definition Safe Realizability

- An MSC M is safely realizable whenever  $M = L(A)$  for some deadlockfree MPA A.
- A set of MSCs  $\{M_1, \dots, M_k\}$  is safely realizable if  $\{M_1, \dots, M_k\} = L(A)$  for some deadlockfree MPA A.
- MSG G is safely realizable if  $L(G) = L(A)$  for some deadlockfree MPA A.

Consider:  $L \subseteq Act^*$  is safely realizable if  $Lin(G) = L$  for some deadlockfree MPA A.

Note: *realizability  $\Rightarrow$  saferealizability*

## 4.3 Closure Property: ABS-Property part 1

Consider  $pref(L) = \{w \mid \exists u : wu \in L\}$  is the set of prefixes of  $L$ .

$L \subseteq Act^*$  has a ABS property if for every prefix  $w \in Act^*$  of a well-formed word:

$$(\forall p \in P : \exists v \in pref(L) : w \upharpoonright_p = v \upharpoonright_p) \longrightarrow w \in pref(L)$$

**Example:**



$M_1$   
 $L = (Lin\{M_1, M_2\})$  fullfills AB, but not ABS

$$\begin{aligned} L = \{ & p!q(a) q!p(a) p?q(a) q?p(a), \\ & p!q(a) q!p(a) q?p(a) p?q(a), \\ & q!p(a) p!q(a) p?q(a) q?p(a), \\ & q!p(a) p!q(a) q?p(a) p?q(a), \\ & \dots \text{ditto for } M_2 \dots \} \end{aligned}$$

Take  $w = p!q(a) q!p(b)$   
 $w$  is a prefix of a well-formed word,

$$\left. \begin{aligned} & \text{and } p!q(a) \in pref(L), (p!q(a)) \upharpoonright p = w \upharpoonright p \\ & \text{and } q!p(b) \in pref(L), (q!p(b)) \upharpoonright p = w \upharpoonright p \end{aligned} \right\} w \notin pref(L)$$

**ABS is insufficient to characterize safe realizability**



$$Lin(\{M_4, M_5\}) = \{1!2(a) 2?1(a) 3!4(a) 4?3(a), \\ 1!2(a) 3!4(a) 2?1(a) 4?3(a), \dots \\ 3!4(a) 4?3(a) 1!2(a) 2?1(a), \varepsilon\}$$

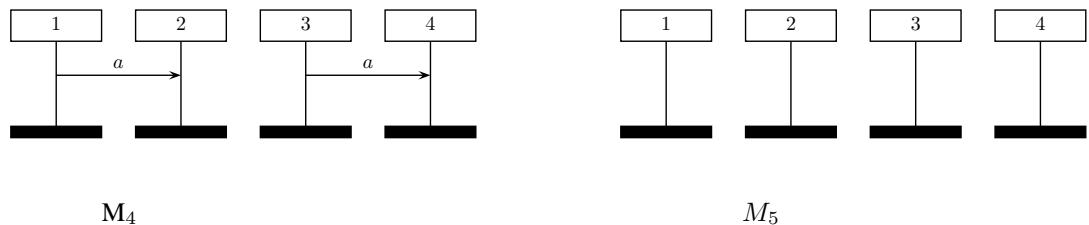
$M_5$  (= empty)

$Lin(\{M_4, M_5\})$  possesses property ABS but a safe realization should allow to accept  
 1!2(a) 2?1(a) only (3,4 decides to behave as  $M_5$ )  
 or 3!4(a) 4?3(a) only (1,2 decides to behave as  $M_5$ )

So: ABS is insufficient to characterize safe realizability

#### 4.4 Closure Property: ABS-Property part 2

Now, in addition to ABS adapt AB as follows:  $L \subseteq Act^*$  has property AB' if for every well-formed  $w \in pref(L)$ :  
 $(\forall p \in P : \exists v \in L : w \upharpoonright_p = v \upharpoonright_p) \longrightarrow w \in L$   
 (the last formula is only imposed on prefixes of L, not on arbitrary action sequences.)



$$Lin(\{M_4, M_5\}) = \{1!2(a) 3!4(a) 2?1(a) 4?3(a), \\ 3!4(a) 1!2(a) 4?3(a) 2?1(a), \varepsilon\}$$

$M_5$

$Lin(\{M_4, M_5\})$  does not fulfill AB', e.g.,  $1!2(a) 2?1(a) \in pref(Lin(\dots))$  and is well-formed and

$$\begin{array}{ll}
(1!2(a) 2?1(a)) \upharpoonright 1 = 1!2(a) & M_4 \\
(1!2(a) 2?1(a)) \upharpoonright 2 = 2?1(a) & M_4 \\
(1!2(a) 2?1(a)) \upharpoonright 3 = \varepsilon & M_5 \\
(1!2(a) 2?1(a)) \upharpoonright 3 = \varepsilon & M_5
\end{array}$$

but  $1!2(a) 2?1(a) \notin \text{Lin}(\{M_4, M_5\})$

## 4.5 Characterizing Safe Realizability

Realizability can be characterized by two theorems:

(1) **Theorem 4.1 (Alur, Etessami, Yannakakis '00)**  $L \subseteq \text{Act}^*$  is safely realizable iff  $L$  only contains well-formed words and  $L$  fulfills AB' and ABS.

**Proof 4.1** skipped, is simply like the proof of "Characterizing Realizability".

(2) **Theorem 4.2** The decision problem "is given set of MSCs safely realizable" is in PTIME.  
For  $\{M_1, \dots, M_k\}$  over  $|P| = n$  and  $|E| = m$  :

- checking ABS takes  $O(k^2n + mn)$  time
- checking AB' takes  $O(k^2n + m)$  time