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1 Aim

We already know that

• MSCs impose a global view of a system and

• MPA is a set of finite-state machines and a collection of localsystem views.

The aim of this lecture is to get from a high-level specification (MSC)

to an implementation model (MPA).
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So we want to obtain a characterization of MSCs or equivalently, their linearizations for which an equivalent
MPA exist. For simplificity, we consider the first case without synchronization messages, i.e.| D |= 1. This
is known as simple realizability.

First we introduce a new perception.



2 Traces

2.1 Definition "well-formed"‘

Act =
⋃

p∈P

Actp with

Actp = Act!p ∪ Act?p
Act!p = {p!q(a) | q ∈ P.q 6= p, a ∈ C}
Act?p = {p?q(a) | q ∈ P.q 6= p, a ∈ C}
Sequencew ∈ Act∗ is well-formedif for every pair(p, q) ∈ Ch it holds:

(1) for anyv ∈ pref(w) :
∑

a∈C |v|p!q(a)

︸ ︷︷ ︸

#send:p→q

−
∑

a∈C |v|q?p(a)

︸ ︷︷ ︸

#receipts:q←p

≥ 0

(2) all messages sent fromp to q are received byq (in w), and in the same order as they were sent.

2.2 Definition Traces

Let e1, e2, ..., en ∈ Lin(M) for MSC M
we call l(e1) l(e2)... l(en) a traceof M

Lemma 2.1 w ∈ Traces(M) iff w is well-formed

Proof 2.1

"⇒": let w ∈ Traces(M). Then in every prefixv of w,
∑

a

|v|p!q(a) ≥
∑

a

|v|q?p(a) for every(p, q) ∈ Ch.

As M is FiFo,w is FiFo.

"⇐": let w be well-formed. Then construct a (canonical) MSC M with trace w, starting with empty MSC
andw = e, by inductively inserting sends and receipts. For prefixu p?q(a) of w, matchp?q(a) with
the first occurrence ofq!p(a) in u that has not been matched yet. Since "’w"‘ is well-formed, all sends
will be matched and messages cannot overtake each other. Thus M is an MSC, andw ∈ Traces(M).

3 Realizability

• MSCM is realizablewheneverM = L(A) for some MPA A

• Set{M1, ..., Mk} of MSCs isrealizablewhenever{M1, ..., Mk} = L(A) for some MPA A

• MSGG is realizablewheneverL(G) = L(A) for some MPA A



Equivalently

• MSCM is realizable ifLin(M) = Lin(A) for some MPA A

• {M1, ..., Mk} is realizable if
k⋃

i=1

Lin(Mi) = Lin(A) for some MPA A

• MSGG is realizable ifLin(G) = Lin(A) for some MPA A

3.1 Impossible to realize

Consider the following two MSCs :
M1:

p1 u

+1

s p2

+1

M2:

p1 u

∗2

s p2

∗2

They increase the volume of U and S by one entry (M1) or double their volume (M2).
The following scenario is implied by the ability of the process instances (p1andp2) to independently act as
M1 or M2.

p1 u

∗2

s p2

+1

So:{M1, M2} is not realizable



3.2 Closure property (AB)

LanguageL ⊆ Act∗ has property AB if:

for every well-formed wordw ∈ Act∗. (∀p ∈ P .∃v ∈ L .w ↾p= v ↾p) impliesw ∈ L

Here↾p meansprojectionon process p:

ε ↾p= ε

(r!s(a)u) ↾p=

{

r!s(a)(u ↾p), if r = p

u ↾p, otherwise

and similarly for receive actions.

Intuition AB property:

If w can be decomposed such that for each process its contribution to w is in L (i.e., is a possible system
behavior), thenw is in L.

Example:

w = p1!u(∗2)u?p1(∗2)p2!s(+1)s?p2(+1) 6∈ Lin({M1, M2}) but:

w ↾p1
= p1!u(∗2) andw ↾u= u?p1(∗2) are consistent withLin(M2)

w ↾p2
andw ↾s are consistent withLin(M1)

ThusLin(M1, M2) does not fulfill property AB.

3.3 Characterizing realizability

Theorem 3.1 (Alur, Etessami, Yannakakis ’00)L ⊆ Act∗ is realizable iff L only contains well-formed
words and L fulfills AB.

Proof 3.1

"⇒": Assume L is realizable. Then there exists an MPA A withL = Lin(A). Takew ∈ Lin(A). Since
w ∈ Lin(A), w ends in a configuration in which all channels are empty. In addition for anyv ∈
pref(w), for any channel(p, q), the numbers of sends(p, q) ≥ the numbers of receives(q, p). As all
channels in A are FIFO, it follows w is FIFO, thus w is well-formed. Remains to prove L satisfies AB.
Let w ∈ Act∗, well-formed and assume for anyp ∈ P , there existsvP ∈ L such thatw ↾p= vP ↾p.
We show thatw ∈ L. Consider an accepting run of A onvP , in particular consider the local state of
p in this run, as well as local transition in∆p. Sincew ↾p= vP ↾p, these local transitions are also
possible inw ↾p. It is not difficult to see that the runs of the local automata can be combined into an
accepting run of MPA A on w. So L satisfies AB.



"⇐": Assume L satisfies AB and L only contains well-formed words. LetAp be an automaton that accepts
{w ↾p| w ∈ L}. We show that for MPAA = ((Ap)p∈P , sinit, F ) we haveLin(A) = L.

"⊇" Let w ∈ L. By construction of MPA A,Lin(A) = {w ↾p| w ∈ L}. But thenw ∈ Lin(A).

"⊆" Let w ∈ Lin(A). Thenw ↾p∈ Lin(A) for anyp ∈ P . Since L satisfies AB, it followsw ∈ L.

Theorem 3.2 The decision problem "is a given set of MSCs realizable" is CoNP-complete.

4 Safe Realizability

It is possible that a set of MSCs is realizable but only by an MPA that may have deadlocks.

p q

aa

p q

bb

"processes p and q have to agree on a or b"

Realization:

p!q(b)

p?q(b)

p?q(a)

p!q(a)

q!p(b)

q?p(b)

q?p(a)

q!p(a)

process p process q

Possible behavior:

p q

a
q

b
p

p!q(a) q!p(b) deadlock!



4.1 Definition "deadlockfree"

An MPA A is deadlockfree if from every configurationγ reachable fromγ0, a final configurationγ′ ∈ {ηε}
is reachable.

4.2 Definition Safe Realizability

• An MSC M is safely realizable whenever M = L(A) for some deadlockfree MPA A.

• A set of MSCs{M1, . . . , Mk} is safely realizable if{M1, . . . , Mk} = L(A) for some deadlockfree
MPA A.

• MSG G is safely realizable ifL(G) = L(A) for some deadlockfree MPA A.

Consider:L ⊆ Act∗ is safely realizable ifLin(G) = L for some deadlockfree MPA A.
Note:realizability ; saferealizability

4.3 Closure Property: ABS-Property part 1

Considerpref(L) = {w | ∃u : wu ∈ L} is the set of prefixes ofL.
L ⊆ Act∗ has a ABS property if for every prefixw ∈ Act∗ of a well-formed word:
( ∀p ∈ P : ∃v ∈ pref(L) : w ↾p= v ↾p) −→ w ∈ pref(L)

Example:

p q

a a

p q

b b

M1 M2

L = (Lin{M1, M2}) fullfills AB, but not ABS

L = {p!q(a) q!p(a) p?q(a) q?p(a),
p!q(a) q!p(a) q?p(a) p?q(a),
q!p(a) p!q(a) p?q(a) q?p(a),
q!p(a) p!q(a) q?p(a) p?q(a),

. . . dito forM2 . . . }

Takew = p!q(a) q!p(b)
w is a prefix of a well-formed word,

and p!q(a)∈ pref(L), (p!q(a))↾ p = w ↾ p
and q!p(b)∈ pref(L), (q!p(b))↾ p = w ↾ p

}

w /∈ pref(L)



ABS is insufficent to characterize safe realizability

1 2 3 4

a a

1 2 3 4

M4 M5 (= empty)

Lin({M4, M5}) = {1!2(a) 2?1(a) 3!4(a) 4?3(a),
1!2(a) 3!4(a) 2?1(a) 4?3(a), . . .
3!4(a) 4?3(a) 1!2(a) 2?1(a), ε}

Lin({M4, M5}) possesses property ABS but a safe realization should allow to accept
1!2(a) 2?1(a) only (3,4 decides to behave asM5)

or 3!4(a) 4?3(a) only (1,2 decides to behave asM5)

So: ABS is insufficient to characterize safe realizability

4.4 Closure Poperty: ABS-Property part 2

Now, in addition to ABS adapt AB as follows:L ⊆ Act∗ has property AB’ if for every well-formed
w ∈ pref(L):
(∀p ∈ P : ∃v ∈ L : w ↾p= v ↾p) −→ w ∈ L
(the last formula is only imposed on prefixes of L, not on arbitrary action sequences.)

1 2 3 4

a a

1 2 3 4

M4 M5

Lin({M4, M5}) = {1!2(a) 3!4(a) 2?1(a) 4?3(a),
3!4(a) 1!2(a) 4?3(a) 2?1(a), ε}

Lin({M4, M5}) does notfulfill AB’, e.g., 1!2(a) 2?1(a)∈ pref(Lin(. . . )) and is well-formed and



(1!2(a) 2?1(a)) ↾ 1 = 1!2 (a) M4

(1!2(a) 2?1(a)) ↾ 2 = 2?1 (a) M4

(1!2(a) 2?1(a)) ↾ 3 = ε M5

(1!2(a) 2?1(a)) ↾ 3 = ε M5

but1!2(a) 2?1(a) /∈ Lin({M4, M5})

4.5 Characterizing Safe Realizability

Realizability can be characterized by two theorems:

(1) Theorem 4.1 (Alur, Etessami, Yannakakis ’00)L ⊆ Act∗ is safely realizable iff L only contains
well-formed words and L fulfills AB’ and ABS.

Proof 4.1 skipped, is simply like the proof of "Characterizing Realizability".

(2) Theorem 4.2 The decision problem "‘is given set of MSCs safely realizable"’ is in PTIME.
For {M1, . . . , Mk} over| P |= n and| E |= m :

• checking ABS takesO(k2n + mn) time

• checking AB’ takesO(k2n + m) time


