

Foundations of the UML

Winter Term 07/08

– Lecture 6: Regularity –

(February 8, 2008)

summarized by *Andreas Hackelöer*

Summary

- Conditions for (safe) realizability for languages have been obtained for a finite set of MSCs
- Checking realizability is coNP-complete; safe realizability is decidable in PTIME

But..

- Can results be obtained for a larger class of MSGs? E.g., MSGs that specify an infinite set of MSCs?
- What happens if we allow synchronization messages?
- How do we obtain an MPA that realizes an MSG?
- Conditions ABS , AB' , AB are semantic notions. Can we find - possibly only necessary - simple syntactic conditions that guarantee realizability?

Regular MSCs

Let $Tr(M_i)$ be the traces of MSC M_i .

- The set of MSCs $\{M_1, \dots, M_k\}$, with possibly $k = \infty$, is regular if

$$\bigcup_{i=1}^k Tr(M_i)$$

is a regular language.

- MSC G is regular if $Tr(G)$ is a regular language.
- MPA A is regular if $L(A)$ is regular.

Facts:

Every \forall -bounded MPA is regular.

The decision problem "Is $L \subseteq \text{Act}^*$ with L regular realizable by a set of MSCs?" is decidable.

I.e., do MSCs M_1, \dots, M_k exist such that $\bigcup_{i=1}^k \text{Tr}(M_i) = L$ for a regular language L ?

Proof:

Let $L \subseteq \text{Act}^*$ be regular. Let DFA $A = (S, \Sigma, s_0, \delta, F)$ be the minimal DFA for L , i.e. $L(A) = L$. Assume w. log. that A has no dead states (i.e., from every $s \in S$, it is possible to reach some $s' \in F$). Associate with each state $s \in S$ a channel-capacity function $cp : S \times Ch \rightarrow \mathbb{N}$ satisfying:

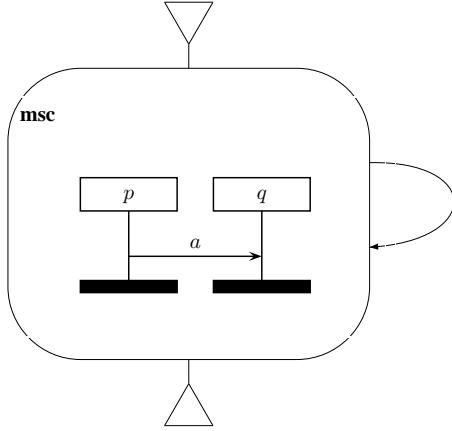
1. $cp(s, c) = 0$ if $s = s_0$ or $s \in F$, for any $c \in Ch$
2. If $\delta(s, p!q) = s$ then $cp(s', c) = \begin{cases} cp(s, c) & \text{if } c \neq (p, q) \\ cp(s, c) + 1 & \text{if } c = (p, q) \end{cases}$
3. If $\delta(s, q?p) = s'$ then $cp(s', c) = \begin{cases} cp(s, c) & \text{if } c \neq (p, q) \\ cp(s, c) - 1 & \text{if } c = (p, q) \end{cases}$
4. If $\delta(s, a) = s_1$ and $\delta(s_1, b) = \underline{s_2}$ with $a \in \Sigma_p, b \in \Sigma_q, p \neq q$ then
if not $(a = p!q \text{ and } b = q?p)$ or $cp(s, (p, q)) > 0$ then:
 $\exists s' \in S: \delta(s, b) = s'$ and $\delta(s', a) = \underline{s_2}$

Claim: $L \subseteq \text{Act}^*$ with L regular is realizable by a set of MSCs if and only if there exists function cp satisfying 1-4.

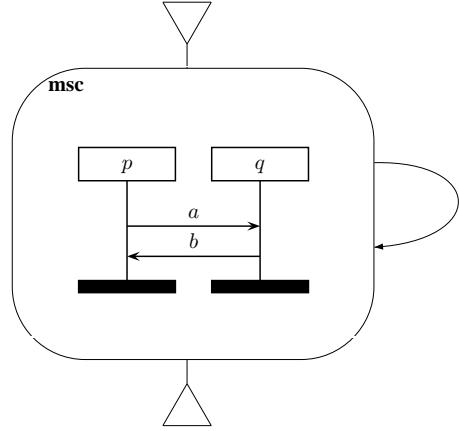
But..

The decision problem "Is MSG G regular?" is undecidable [Henriksen et al., 2005]

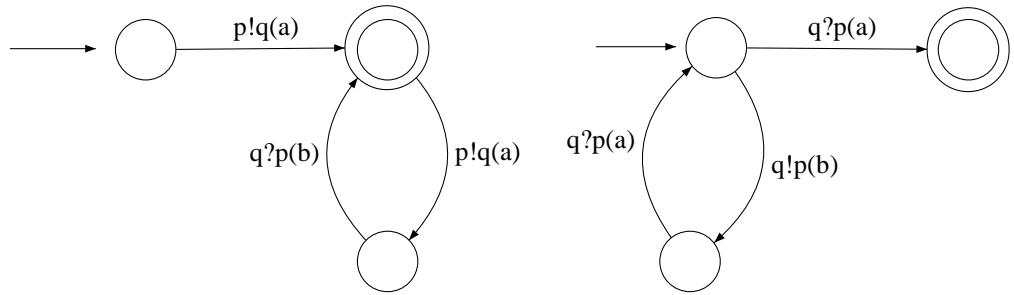
Examples



MSG G_1 : Not regular
 $Tr(G_1) = \text{Dyck language}$



MSG G_2 : Not regular
 $Tr(G_2) = (p!q(a) \ q?p(a) \ q!p(b) \ p?q(b))$



Regularity and Realizability

$L \subseteq Act^*$ is an MSC language if

$$L = Tr(M_1, \dots, M_k) = \bigcup_{i=1}^k Tr(M_i)$$

for some MSCs M_i .

Then ([Henriksen et al. 03]):

L is a regular language if and only if L is realizable by a \forall -bounded deterministic MPA.

An MPA A is \forall -bounded if there exists $B \in \mathbb{N}$ such that for each reachable configuration of A , $|\eta(c)| \leq B$ for each channel c .

Equivalently: Any MSC in $L(A)$ is $\forall B$ - bounded.

Regular MSGs

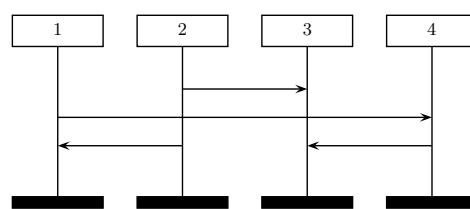
- MSG G is regular if $Traces(G)$ is a regular language
- The decision problem "Is MSG G regular?" is undecidable
- Now try to impose structural conditions on G that guarantee that G is regular
- Use: So-called communication graph

The communication graph of the MSC $M = (P, E, \mathbb{C}, l, m, <)$ is the digraph (V, \rightarrow) with:

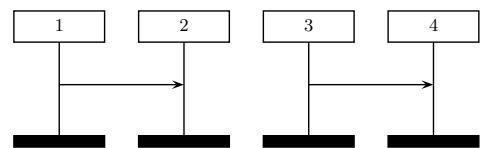
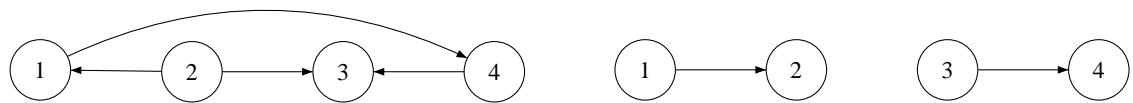
- $V = P \setminus \underbrace{\{p \in P \mid E_p = \emptyset\}}_{\text{"inactive" processes}}$
- $p \rightarrow q$ if and only if for some $a \in \mathbb{C}$ $\begin{cases} p!q(a) \in E \text{ or} \\ q?p(a) \in E \end{cases}$

Examples:

msc



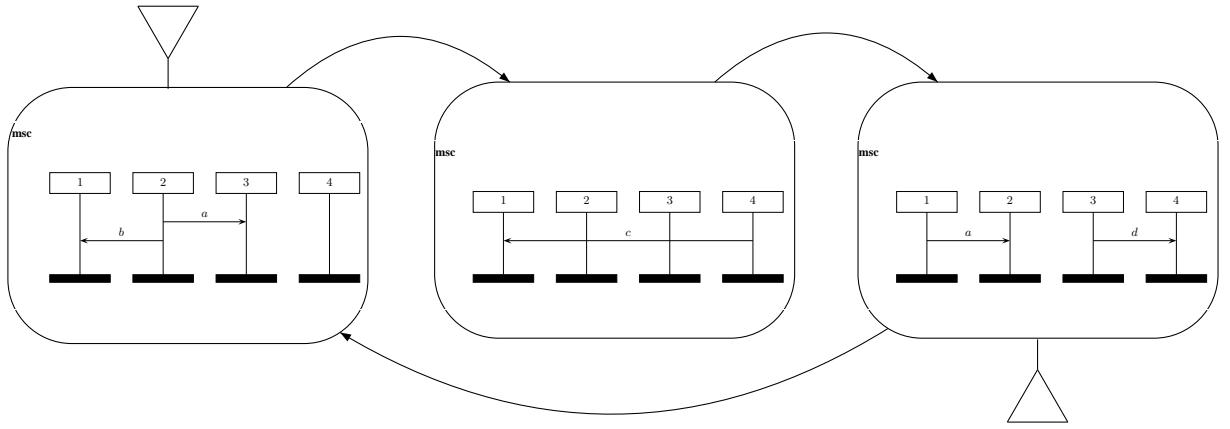
msc



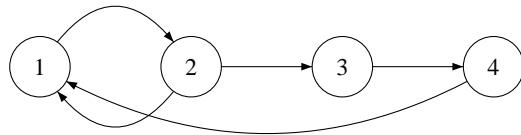
Communication-closed MSGs

MSG G is communication-closed if for any loop v_1, v_2, \dots, v_n in G , the MSC $M(\pi)$ has a strongly connected communication graph.

E.g.,



is communication-closed since for the only loop, the communication graph is:



which is strongly connected.

Note: Checking whether MSG G is communication-closed is in PTIME (determine all loops in G , construct for every loop its communication graph, check strong connectedness).

Communication-Closedness vs. Regularity

For any MSG G : G is communication-closed $\Rightarrow G$ is regular

Notes:

1. The reverse does not hold (see example below);
2. Not every language can be represented by an MSG (see Yannakakis exam).

But:

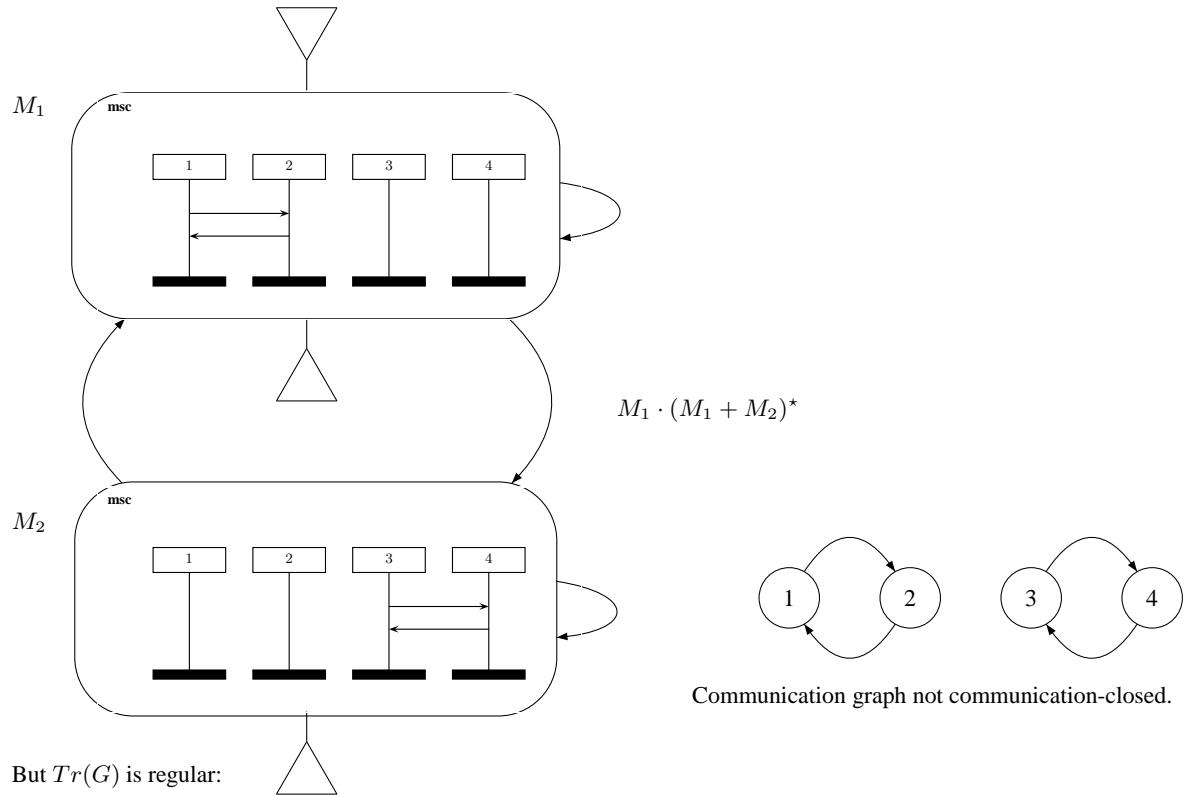
For a set of MSCs $M_1, \dots, M_k | k \text{ possibly infinite}$ which is regular:

L can be represented by an MSG
 if and only if
 L can be represented by a communication-closed MSG

where

$$L = \bigcup_{i=1}^k Tr(M_i)$$

Communication-closedness is a sufficient, but not necessary condition for regularity. Consider the following graph G :



But $Tr(G)$ is regular:

$$(1!2\ 2?1\ 2!1\ 1?2) \cdot (1!2\ 2?1\ 2!1\ 1!2 + 3!4\ 4?3\ 4!3\ 3?4)^*$$

Summary of Realizability

	finite MSG*	comm.-closed MSG	general MSG	
realizability	coNP-complete	undecidable	undecidable	FIFO communication
safe realizability	PTIME	EXPSPACE-complete	undecidable	FIFO communication
realizability	coNP-complete	PSPACE-hard	undecidable	non-FIFO communication
safe realizability	PTIME	EXPSPACE-complete	undecidable	non-FIFO communication

* G is finite if the number of MSGs defined by G is finite, i.e., $L(G)$ is finite.

Regular Expressions over MSCs

Let $M \in \mathbb{M}$ be an MSC.

The set of regular expressions over \mathbb{M} is given by the grammar:

$$\alpha := \emptyset | M | \alpha_1 * \alpha_2 | \alpha_1 + \alpha_2 | \alpha^*$$

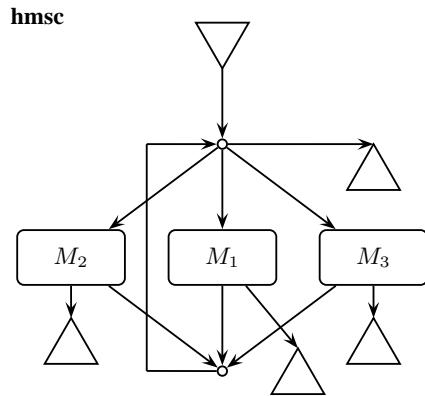
Semantics of regular expressions is given by

$$L : \text{RegExp}_{\mathbb{M}} \longrightarrow 2^{\mathbb{M}}$$

and defined as:

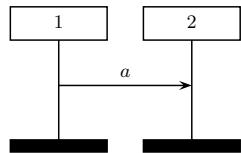
- $L(\emptyset) = \emptyset$
- $L(M) = \{M\}$
- $L(\alpha_1 * \alpha_2) = L(\alpha_1) * L(\alpha_2)$, a concatenation of sets of MSCs
- $L(\alpha_1 + \alpha_2) = L(\alpha_1) \cup L(\alpha_2)$
- $L(\alpha^*) = L(\alpha)^*$, where $*$ is the Kleene star over sets of MSCs

E.g., $(\{M_1, M_2, M_3\})^*$ is to be read as:

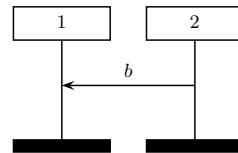


Regular Expressions for MSCs

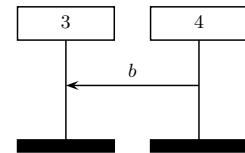
msc A



msc B



msc C



Consider the regular expressions:

$\alpha_1 = (A * B)^*$	deterministic safe product MPA $\forall 1$ -bounded
$\alpha_2 = (A + B)^*$	deterministic $\exists 1$ -bounded MPA
$\alpha_3 = (A * C)^*$	not realizable
$\alpha_4 = A * (A + B)^*$	$\exists 1$ -bounded safe MPA

How about the realizability of $L(\alpha_i)$?

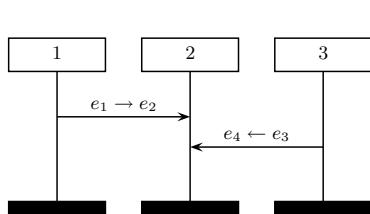
(Note: All realizable $L(\alpha_i)$ have as possible realization a locally accepting MPA, i.e., $F = \prod_{p \in P} F_p$ for some $F_p \subseteq S_p$)

Can we obtain a simple criterion on regular expressions that guarantees realizability?

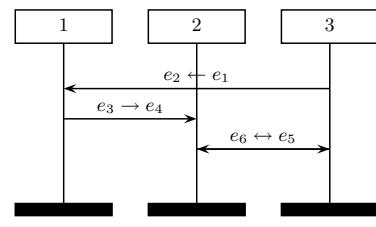
- MSC $M = (P, E, \mathbb{C}, l, m, <)$ is connected if: $\forall e, e \in E : e <^+ e \text{ or } e <^+ e$

msc

msc



Not connected, since $e_1 \not\leq^+ e_3 \wedge e_2 \not\leq^+ e_1$



Connected

- Regular expression α is connected if for any subexpression β^* of α , $L(\beta)$ is a set of connected MSCs
- Let $\underbrace{\{M_1, \dots, M_k\}}_D$ be MSCs such that $D \subseteq E^*$ for some finite set E of MSCs.

Then [Genest et al. 2006]:

D is realizable if and only if there exists a connected regular expression α such that $L(\alpha) = D$.