Software Modeling and Verification
Lehrstuhl fur Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

Foundations of the UML
Winter Term 07/08

— Lecture number 8 —
(Date (19th Dec 2007))
summarized by Ratna Widyastuti(277010) and Teena Mary Mihan(284125)

In the previous lecture, we have learned about MSCs. Now, in this lecture, we learn also

about visual formalilsm, namely, statecharts. While MSCs are used to specify the requirement,
statecharts visualizes the behaviour of discrete-event systems, the behavior of components in the
system which run parallel, the hierarchy, the communication between the components. In other

words:

Statecharts = automata + hierarchy + communication + time + concurrency

Statecharts are developed by David Harel, in 1987, a professor at Weizmann Institute, an

institute in Israel, and he is also a co-founder of i-Logic Inc. which is a company that sells tools
for statecharts. Statecharts are extensively used in embedded systems, automotive, and avionics
industry, and has variant like stateflow which is used in MATLAB/Simulink. Simulink is popular
tool for embedded system design.

1. What are Statecharts

According to David Harel, ”Statecharts constitute a visual formalism for:

describing states and transitions in a modular way

enabling clustering [of states]

orthogonality

and refinement, and

encouraging “zoom” for moving easily back and forth between levels of abstraction”

If we break down the definition above one by one:

Modular — several statecharts can be placed in 1 statechart

Clustering — putting state in other state, so 1 state has substates, hierarchy/structure
Orthogonality — different component/process which run parallel

Refinement — a state may have substates

Zoom — to make state more detail, zoom in can be used, vice versa zoom out to reach
higher hierarchy of the state

Statecharts = Mealy machines + state hierarchy + broadcast communication +orthogonality

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

2. Mealy Machine

Mealy machine (or finite state transducer) is:
a finite state machine that produces output on a transition, based on the current input and the
current state. In automata, output can be rejected or accepted, but in a Mealy machine, the
acceptation/rejection of output is not of interest, its task is only generating output.
A mealy machine A=(Q, qo, %, I, 3, ®) where:
e Qs afinite set of states
e (o€ Qisthe initial state
e X isthe input alphabet
e T is the output alphabet (what possible output the machine can generate)
e 5:Qx X is the transition function such that | (q,a) [<1, ¥ge@, aeE

e :Qx X — I isoutput function
the number of possible successors is deterministic
Characteristics of Mealy machine:
e No final states
e Transitions produce output, no acceptance of input word, but generating output from input
is important
e No nondeterministic states

An example of Mealy machine:
Notation meaning:
input/output, ex: 0/1 means input=0 output=1
®(2,0)=0 means function which return output 0 in state 2 if the input is 0—w(state,input)=output
1/0 0/1

In @ Moore machine, output only depends on the current state, i.e. w: Q — I' is the output
function.

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

2.1. Limitations of Mealy Machines

e No support for hierarchy, since all states are arranged in “flat” fashion and no notion of
substates

e Scalability problem, since for realistic systems, a complex transition structure and huge
number of states are needed, and it yields unstructured state diagrams

e No notion of concurrency, which is needed for modeling independent component

e No notion for communication

e No direct support for data, in order to yield data, it has to encode data from input output

3. Characteristics of Statecharts

3.1. Scalability

Example of scalability problem:

B D
7}

Mealy machine

default start state

Al
> B D
A [, > , >
> D e Vs —» A < F
A\ 4 A\ 4
E k<
47 C - JSuperstate
state-~
Statechart

Statecharts yield a modular, hierarchical and more structured model compared to Mealy
machine. In the example above, F is an ancestor of B, C, D, and E. B,C,D,E are
descendants of F. Every state here can be interrupted, if we are in é, and e happens we can
go back to A immediately. The second picture simplifies the states representation with

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

hierarchy. In a Mealy machine, interruption in each state and then returning to A, can be
obtained, but results in many transitions.
3.2. Orthogonality
Example of orthogonality:
2 different components:
Image: Sound:
text_on sound
—»| normal "| videotext —»| mute on

text_off mute

A 4

Mealy machine of the parallel composition of image and sound

text_on
normal [7| videotext
~ IEXLUII
A - A
sound | mute sound |mute
Y text_on -
normal |_ . . . ¢ | Videotext
number of states is exponential
Statechart: tv
Image . Sound
—| normal | "| videotext i —»| normal | "| videotext
' ¥ 4
1
: AND state OR state

Balsic state: state which can’t further decomposed

Dashed line in between: conjunction, run parallel

The difference between statechart with the previous Mealy machine is this system consists
of 2 automata running concurrently.

Software Modeling and Verification
Lehrstuhl fir Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
December 19, 2007 HoM Gl

3.3. Hierarchy
Example of hierarchy in statechart:
Switching on and switching off the television

Image

i
. Sound
» 1 »
—{ normal | "| videotext \ —»{ normal | "| videotext
< ! <«
1
1
|
1
A
on off on
X v

name of AND state [Stand by]

3.4. Broadcast

Example of broadcast communication in statechart:
Turn off sound while changing a channel

l/sm ll | sm/mutg)
— Chl ’E Ch2 \ —»| rest e mute
1/s 2/sm L_j?/sm i after(1)/sound
normal

Output is broadcast that can be received by any other component.
In this statechart, if we press 1 or 2, the channel will be switch, and it produce signal sm.

On the occurrence of sm, the right component can be executed, and the sound will be
muted, after 1 second it backs into normal again.

3.5. Concurrency
Example of concurrency in statechart:

Statechart 1:

A 4

A

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

State X is decomposed into 2 sub states: S and T, thus X is a super state of S and T.
As long as X is “active”, S and T are “active”.

S is “active” when either A or B is “active”.

T is “active” if either C,D, or E (one of them) is “active”.

When X exits, both S and T exit together.

When Y exits, X starts, Sin A, T in C.

On the occurrence of event e, X exits (regardless of the current state in S or T).

Statechart 2:

X /" Intra-level transition
- ; N
> S | Inter-level transition
_> A <« . B Vd
+ ______________________________________ [~ ‘//
; b I
y > c E " z
| >)
D |«

In the figure above, S may autonomously decide to move to Z on the occurrence of event
b, while being in state B and T just continues.

Inter Level Transitions are possible in statecharts. The above example is 1 level deeper.
Similarly there is 2 level and higher level transitions are possible.

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

3.6. Swapping 2 variables

A C
ex=y ¢ ely:=xy
B D

e xandy are global variables.

e If Aand C are active, x=1 and y=2

e Evente occurs

e Next status: B and D are active ,x=2 and y=1
e Variables x and y are thus swapped

Memory is shared, i.e. concurrent processes see changes to variables immediately.

3.7. Priority

N

e Event e happens when State A and C are active

e Add Priority mechanism that decides whether inter level(C to E) or intra level transitions (A
to B) transitions prevail.

e Inter Level-Transitions occurs between different levels

e Intra Level-Transitions occurs at same Level

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

3.8. Zero Response Time

D
A ' B 'C
Al i B1 i c1
— — -«
/b ' b/d L and /e
t]_ E t2 t3i
v | v | v
A2 | B2 | (o)

e Here Al1,B1 and C1 are active states.

e And when the event a occurs it generates output signal b

e And this b is used by B1 and it generates output signal d.

e Asall this are happening in Zero Response Time ,event a and event b together acts on
C1 generating signal e

e That is on occurrence of event a, a chain reaction occurs,tl triggers t2, and t2 triggers t3

e But transitions t1,t2,t3 occurs at the same time as events do not take time

3.9. Nondeterminism

e t

»
>

t’

A 4

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

In the above figure
e when A is active and events ¢ and ¢’ happen.
e Then it can move to either State A or State B, but not both.
e This is called Non Determinism

3.10. Negation of Events

e/\~e,

v

A 4

tl

Priority of t” over t can be specified by negated events, i.e. in the absence of events

e This may solve non determinism (but not always)

e According to the above diagram when e happens and e’ is not there (t), it will move to
state B.

e And when both e and e’happens (t”) will move to state C.

3.11. Paradox

A B
Al B1
t ‘;a\b t' b\a v
A2 B2

The Paradox is due to negated events and Zero Response Time.
e Suppose states Al and B1 are active.
e Initially no events either a or b occurs.

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

e Asevent a is not happening , state A1 generates b(transition t)
e Andevent b is used by B1 generating a. (transition t’)

e According to Zero Response time this may not happen. As event a, is generated,
transition t should not have taken place.

e S0 t’ cannot happen as b does not occur.

e Andas t’ is not occurred ,event a is not generated.
e And this again triggers t.

e And so forth.

4. UML Statecharts
4.1 UML Statecharts Definition

What is a UML StateChart?

A UML StateChart SC = (Nodes, Ev, Edges) with:
e A set Nodes of nodes structured in a tree

e A (finite) set Ev of evenis

— there is a pseudo-event after(d) denoting a delay of d time units
— 1= ;é Ev stands for “no event required” (for this edge)

e A (finite) set Edges of edges (in fact, hyperedges)

4.2 Node

More about nodes

e Nodes are structured in a free

— children(z) is the set of children of node =
— rootis the unique root node &
— x < y means node z is a descendant of node y

e Nodes are typed, type(xz) € { BAsiC, AND, OR } such that:

— the root node is of type OR

each leaf node is of type BASIC

each child of an AND-node is of type OR
each OR-node has a default (initial) node

Software Modeling and Verification
Lehrstuhl fir Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
December 19, 2007 HoM Gl

4.3 Edges

Edges
An edgeis a tuple (X,e, g, A,Y), notation X /A,y where

e X and Y are non-empty sets of nodes

X is the source and Y the target

e € Evis the trigger event

g is a guard, i.e., a Boolean expression

A is a set of actions (such as send j.e or v := expr)

“if currently in X and g holds, on occurrence of e,
actions A can be performed while evolving into Y

4.4 Example of UML Statechart

A UML StateChart

garage

low damage estimate high damage damage
received / received /

Assessing

Ph%sical
assessment

assessed assessed
Repairing / send 2.repair / send 2.write off
(
(" Invoice handling =
receive check

invoice / finished /

report finished
/send 2.end

oo,

repo

A
(Y
...........
Reporting

Software Modeling and Verification
Lehrstuhl fir Informatik 2

RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

December 19, 2007 HoM Gl

State chart above explains that there are two different handling after Assessing, namely send
to repair which will execute the whole process in Repairing and send to write off which
only execute Invoicing finished. Repairing needs to finish Invoicing and Report in order to
get all finished, but Invoicing finished doesn’t need to wait approval from Report finished to
further to Finished step.

Syntactic sugar

this is an elementary form; the UML allows more constructs
that can be defined in terms of these basic elements

e Deferred evenis simulate by regeneration
e Parametrised events simulate by set of parameter-less events
e Activities that take time simulate by start and end event
e Dynamic choice points simulate by intermediate state
e Synchronization states use a hyperedge with a counter
e History states (re)define an entry point

