
December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 1

Foundations of the UML
Winter Term 07/08

– Lecture number 8 –
(Date (19th Dec 2007))

summarized by Ratna Widyastuti(277010) and Teena Mary Mihan(284125)

In the previous lecture, we have learned about MSCs. Now, in this lecture, we learn also

about visual formalilsm, namely, statecharts. While MSCs are used to specify the requirement,

statecharts visualizes the behaviour of discrete-event systems, the behavior of components in the

system which run parallel, the hierarchy, the communication between the components. In other

words:

Statecharts are developed by David Harel, in 1987, a professor at Weizmann Institute, an

institute in Israel, and he is also a co-founder of i-Logic Inc. which is a company that sells tools

for statecharts. Statecharts are extensively used in embedded systems, automotive, and avionics

industry, and has variant like stateflow which is used in MATLAB/Simulink. Simulink is popular

tool for embedded system design.

1. What are Statecharts

According to David Harel, ”Statecharts constitute a visual formalism for:

 describing states and transitions in a modular way

 enabling clustering [of states]

 orthogonality

 and refinement, and

 encouraging “zoom” for moving easily back and forth between levels of abstraction”

If we break down the definition above one by one:

 Modular → several statecharts can be placed in 1 statechart

 Clustering → putting state in other state, so 1 state has substates, hierarchy/structure

 Orthogonality → different component/process which run parallel

 Refinement → a state may have substates

 Zoom → to make state more detail, zoom in can be used, vice versa zoom out to reach

higher hierarchy of the state

Statecharts = automata + hierarchy + communication + time + concurrency

Statecharts = Mealy machines + state hierarchy + broadcast communication +orthogonality

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 2

2. Mealy Machine

Mealy machine (or finite state transducer) is:

a finite state machine that produces output on a transition, based on the current input and the

current state. In automata, output can be rejected or accepted, but in a Mealy machine, the

acceptation/rejection of output is not of interest, its task is only generating output.

A mealy machine A=(Q, qo, Σ, Γ, δ, ω) where:

 Q is a finite set of states

 qo є Q is the initial state

 Σ is the input alphabet

 Γ is the output alphabet (what possible output the machine can generate)

 δ: Q x Σ is the transition function such that | δ(q,a) |≤1,

 ω: Q x Σ → Γ is output function

the number of possible successors is deterministic

Characteristics of Mealy machine:

 No final states

 Transitions produce output, no acceptance of input word, but generating output from input

is important

 No nondeterministic states

An example of Mealy machine:

Notation meaning:

 input/output, ex: 0/1 means input=0 output=1

 ω(2,0)=0 means function which return output 0 in state 2 if the input is 0→ω(state,input)=output

 1/0 0/1

 1/1

 0/0

 0/1

 1/1

In a Moore machine, output only depends on the current state, i.e. ω: Q → Γ is the output

function.

0 1 2

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 3

2.1. Limitations of Mealy Machines

 No support for hierarchy, since all states are arranged in “flat” fashion and no notion of

substates

 Scalability problem, since for realistic systems, a complex transition structure and huge

number of states are needed, and it yields unstructured state diagrams

 No notion of concurrency, which is needed for modeling independent component

 No notion for communication

 No direct support for data, in order to yield data, it has to encode data from input output

3. Characteristics of Statecharts

3.1. Scalability

Example of scalability problem:

 Mealy machine

default start state

 e é vs

 superstate

 state

 Statechart

Statecharts yield a modular, hierarchical and more structured model compared to Mealy

machine. In the example above, F is an ancestor of B, C, D, and E. B,C,D,E are

descendants of F. Every state here can be interrupted, if we are in é, and e happens we can

go back to A immediately. The second picture simplifies the states representation with

A

A

B

C

D

E

B

C

D

E

A F

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 4

hierarchy. In a Mealy machine, interruption in each state and then returning to A, can be

obtained, but results in many transitions.

3.2. Orthogonality

Example of orthogonality:

2 different components:

Image: Sound:

 text_on sound

 text_off mute

Mealy machine of the parallel composition of image and sound

 text_on

:

 text_off

 sound mute sound mute

 text_on

 text_off

number of states is exponential

Statechart:

 AND state OR state

Basic state: state which can’t further decomposed

Dashed line in between: conjunction, run parallel

The difference between statechart with the previous Mealy machine is this system consists

of 2 automata running concurrently.

normal videotext mute on

normal videotext

Image Sound

normal videotext normal videotext

tv

normal videotext

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 5

 S

 T

Image

 Sound

3.3. Hierarchy

Example of hierarchy in statechart:

Switching on and switching off the television

 off on

name of AND state

3.4. Broadcast

Example of broadcast communication in statechart:

Turn off sound while changing a channel

 1/sm sm/mute

 1/sm 2/sm 2/sm after(1)/sound

Output is broadcast that can be received by any other component.

In this statechart, if we press 1 or 2, the channel will be switch, and it produce signal sm.

On the occurrence of sm, the right component can be executed, and the sound will be

muted, after 1 second it backs into normal again.

3.5. Concurrency

Example of concurrency in statechart:

Statechart 1:

 e

Stand by

Image Sound

normal videotext normal videotext

on

X

A B

C E

D

Y Z

Ch1 Ch2 rest mute

normal

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 6

 S

 T

State X is decomposed into 2 sub states: S and T, thus X is a super state of S and T.

As long as X is “active”, S and T are “active”.

S is “active” when either A or B is “active”.

T is “active” if either C,D, or E (one of them) is “active”.

When X exits, both S and T exit together.

When Y exits, X starts, S in A, T in C.

On the occurrence of event e, X exits (regardless of the current state in S or T).

Statechart 2:

 Intra-level transition

 Inter-level transition

 b

In the figure above, S may autonomously decide to move to Z on the occurrence of event

b, while being in state B and T just continues.

Inter Level Transitions are possible in statecharts. The above example is 1 level deeper.

Similarly there is 2 level and higher level transitions are possible.

A B

C E

D

Y Z

X

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 7

3.6. Swapping 2 variables

 x and y are global variables.

 If A and C are active, x=1 and y=2

 Event e occurs

 Next status: B and D are active ,x=2 and y=1

 Variables x and y are thus swapped

Memory is shared, i.e. concurrent processes see changes to variables immediately.

3.7. Priority

 Event e happens when State A and C are active

 Add Priority mechanism that decides whether inter level(C to E) or intra level transitions (A

to B) transitions prevail.

 Inter Level-Transitions occurs between different levels

 Intra Level-Transitions occurs at same Level

 e/x:=y e/y:=x

 A

 B

 C

 D

 e

 e

A B C D

E

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 8

3.8. Zero Response Time

 Here A1,B1 and C1 are active states.

 And when the event a occurs it generates output signal b

 And this b is used by B1 and it generates output signal d.

 As all this are happening in Zero Response Time ,event a and event b together acts on

C1 generating signal e

 That is on occurrence of event a , a chain reaction occurs,t1 triggers t2, and t2 triggers t3

 But transitions t1,t2,t3 occurs at the same time as events do not take time

3.9. Nondeterminism

 e t



 e’

 t’

A B C

 a/b b/d a^d /e

 t1 t2 t3

A1 B1 C1

A2 B2 C2

D

 A B

 C

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 9

In the above figure

 when A is active and events e and e’ happen.

 Then it can move to either State A or State B, but not both.

 This is called Non Determinism

3.10. Negation of Events

 e^~e’

 t

 e’

 t’

Priority of t’ over t can be specified by negated events, i.e. in the absence of events

 This may solve non determinism (but not always)

 According to the above diagram when e happens and e’ is not there (t), it will move to

state B.

 And when both e and e’happens (t’) will move to state C.

3.11. Paradox

The Paradox is due to negated events and Zero Response Time.

 Suppose states A1 and B1 are active.

 Initially no events either a or b occurs.

 C

 A B

A B

 t ~a\b t’ b\a

A1

A2

B1

B2

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 10

 As event a is not happening , state A1 generates b(transition t)

 And event b is used by B1 generating a. (transition t’)

 According to Zero Response time this may not happen. As event a, is generated,

transition t should not have taken place.

 So t’ cannot happen as b does not occur.

 And as t’ is not occurred ,event a is not generated.

 And this again triggers t.

 And so forth.

4. UML Statecharts

4.1 UML Statecharts Definition

4.2 Node

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 11

4.3 Edges

4.4 Example of UML Statechart

December 19, 2007

Software Modeling and Verification

Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen

C. Kern

 12

State chart above explains that there are two different handling after Assessing, namely send

to repair which will execute the whole process in Repairing and send to write off which

only execute Invoicing finished. Repairing needs to finish Invoicing and Report in order to

get all finished, but Invoicing finished doesn’t need to wait approval from Report finished to

further to Finished step.

