Software Modeling and Verification
Lehrstuhl fur Informatilk2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML
Winter Term07/08

— Lecture number 9 —

(7th Jan 2008)
summarized byChristian DernehlandMartin Lang

1 Statechart Ingredients

Statecharts consist of a collection of different ideas.i&dly these are:

] input/outpu
e Mealy machine Q—O

e Hierarchy A B

. A Do {2
e Communication ‘

roo
o)
|
|
. Concurrency 7\ [m
(orthogonality) — A B | —~ C
|

-e
o Negated events A B
€2 AN)
e Compound Events A B
A

—

. Inter-level and intra-leve
edges

2 Some Problems

The rich possibilities of statecharts yield a number of pgois and inconsistencies. In the following some
of them are presented to deliver you an insight.

e zero response time assumption:
input and corresponding output occur at the same time

o self-triggering:
The zero response time induces a problem on 2 edges whichdlepean event generated as output
by the other edge. In the example edge 1 depends on the evely‘assumption of zero response
time this is generated by edge 2 because edge 1 generatédi@wehich triggers edge 2. So edge 2
"triggers" itself.

bla (2)

o effect of edge may contradict its causeThe possibility of negated events combined with zero re-
sponse time leads to a contradiction in events that genamateitput contradicting its cause. In the
example the event a is generated when it is absent. Becausecofesponse time this edge could be
taken if it could not be taken.

- ala

This is a very obvious example but it is not sufficient to efiate only such edges to avoid the given
problem because it can also occur over a chain of edgesteidgée the same time. For instance there
is no event a. An edgea/b is taken. This generates evénso that a second edgga could be taken
that results in the same problem shown above.

e competing events:

ela (1) e’ (2)

What happens when “A’ is active and eveatasnde’ occur?

a) Edge 2 prevents edge 1 from happening and evenhot generated.

b) Both edges occur. Event a is generated. Is the systemifotinge in “B”? Would other edges
possibly from “B” be taken?

c) Only edge 1 occurs. Event a is generated but the systermdbebange to state “C”

To avoid such problems in the interpretation of statecheetike to impose certain restrictions on the model
and formalize it. Though we get an definite interpretation sfatechart.

3 Simplifications

No global variables

¢ No compound events

No negated events

Communication is biliteral (no broadcast)

Events generated in one step (i) can only be consumed inltberfiog step (i+1) and decay otherwise.

4 Formal Definition

Formally a statechart is described as a trigie E, Edges). The components are in detail:

e N is the set ofhodes It contains all types of nodes regardless the hierarchype3yand ordering
are defined later with special functions. According to thenteused with automata the nodes are
sometimes also called states.

e F is the set of theventawhich can trigger the transitions in the statechart.

e Fdgesis the set okdgesor transitions In the graphical representation of a statechart they aveish
as arrows between the nodes. The elements contained Bygtiesset are described later in detail.

4.1 Nodes

The tree structure of the nodes is formally represented loyetion that returns the immediate child-nodes
of a given node. Therefore this function will be callghildren

children : N — 2V

For example given 2 nodesand B, A is the parent oB. SoB € children(A).
This function induces a partial order (denoteflon N representing the hierarchy between the nodes.

e r <=z

o 1z < yif x € children(y)

e r <yANy<z=z<z

Because of the transitivity of the order-relation it is pbksto compare nodes over the levels of the tree. So
x < y(x # y) means that is at a deeper level of the hierarchy thamll nodes that are ancestrally related
are comparable within this relation (eithexK y ory < z (y # x)).

There is aunique rootnode which is not referenced by the children function. Alles are descendants of
this node {x € N : x < root)

Statecharts differentiate betweand, or, andbasicnodes to determine their meaning for concurrency. To
identify the type of a node, a second function for the nodéstisduced matching the type to each node.

type : N — {and, or, basic}
With the properties:

e type(root) = or
The root node should not contain any concurrent nodes.

o type(x) = basic < children(z) = 0
Only the leaf nodes, which have no children, are basic-nodes

e type(z) = and = Vy € children(z) : type(y) = or
Nodes that model concurrency should only contain or-nogesifying the concurrent behavior.

Like an automaton statecharts must have starting nodesonhparison to a normal flat automaton, state-
charts have starting nodes on the different levels of hisarTherefore every or-node has one starting node
which is identified by the partial functiogefault This starting node gets active when the given or-node is
entered.

default : N — N, dom(default) = {z € N|type(z) = or}

Itis important, that the statemedtfault(z) = y = y € children(z) is fulfilled, because the starting node
should be directly contained by one given or-node to takédibrarchy into account.

4.2 Edges
Edges are defined by a quintugl¥, e, g, 4,Y):

e X C N, X # (isthe set obource nodesAll these nodes must be active for the edge getting enabled.

e € E U {1} is thetrigger event This event must be active for the edge being taken whemeans
“no event” (comparable te-transitions in NFAS)

g € Cond(Var) is aguard expressionThis is a boolean expression over all variables in the given
statechart. The edge can only be taken if this guard evalbateue.

e A C Actis a set ofactionsthat occur when the edge is taken. For instance setting afed \@riable
or sending an event to another statechart.

Y C N,Y # (is a set oftarget nodesAll these nodes get active when the edge is taken. Therefore
it should be possible for all elementsYfto be active at the same time.

It should be noticed that the setsandY may contain nodes at different levels of the hierarchy.

5 Sequential Step Semantics

Two notions of a step:

e macro steps observable “time” steps

e micro steps a set of edges

A macro step can be subdivided in an arbitrary but finite nunalbenicro steps that cannot be prolonged
anymore.

Events generated in macro step i are only available in themagro step (i+1). If an eventis not consumed,
it decays and has no more influence on the following macrsstep

6 Assumptions

e The input to a macro step is a set of events.
As a direct consequence of this the order of event generiatignored and all edges that are triggered
by those events are equal. Additionally it follows that thider of events that are generated in step i
is not of relevance in step i+1.

e A macro step reacts to all available events.
By executing a macro step all events are processed - evea Witsh does not trigger any edges of
the statechart. And therefore they can only be “used” in theédiately following step after their
generation. All possible edges that could be taken withonflict are executed.

¢ Instantaneous edges and actions
The execution of edges and action needs zero time.

e Unlimited concurrency
No limitation on the events that are consumed by a macro step.

e Perfect communication
No messages are lost in the system.

7 States and Configurations

A configurationof a statecharSC = (N, E, Edges) is a setC C N that contains the active nodes.
Therefore it must fulfill the following conditions:

e root € C

e z € C Atype(z) = or = |children(z) NC| =1
In an or-node only one direct child can be active at a giventpoi

o © € C Atype(x) = and = children(z) C C
All direct children of an active and-node must be active, too

In a system with more than one statech@stu f; is theset of possible configurations the statecharC;.

Based on the configuration of a statechart,dfa¢eof a statechart is now defined as a tripfe I, V') where
the components are:

e C € Conf describes the current configuration
e [C F identifies which events are currently active.

e 1 is avaluationof the statechart variables at this time.

7.1 Enabled edges in a state

To compute a step in a statechart the first question that dlmunswered is which edges could be taken.
These edges are called enabled.

An edgeX Bty is enabled in a given stafe’, I, V) if:

e X C C - All source nodes of the edge are currently active.
e ¢ €] - The event that triggers this edge is active.

o ((C1,...,Cn),(V1,..., V) E g - The guardy is satisfied by the variables and configurations.

configurations valuations

The set of enabled edges in configurat{éh I, V') is denoted a&n(C, I, V).

8 Consistency

The edges executed must lead to a valid new configuratiomeidre only consistent edges could be taken at
the same time. If some edges are inconsistent the systenmioasiaterministic choice between the different
consistent sets of edges when there are no other mechawistasitie which of them should be taken.

To get an impression of what kind such edges are take a loditedbtlowing 2 examples. Let the current
state b {root, A}, {e,e’'}, {}).

l—

e(1)

e’ (2)

In the next macro step only the edge triggeredloy e’ could be taken because the nodéand B can not
both be active at the same time. So the edges labelecwaititle’ are inconsistent.

root

e (1) e’ (2)

Let this statechart be currently in the stéfeoot, G, F, A, A’, B, D}, {e,e'}, {}). In this example the edges
could both be taken in the next macro step beca&ised £ may be active at the same time due to the
arrangement in the and-node

To define what consistency exactly means we use orthoggnalit
For X C N, theleast common ancestahortlylca(X), is the node; € N that:
eVze X :x<y

eVzeN:(VzeX:z<z)=y<z

That means thaj is an ancestor of all nodes i and there is no node deeper in the hierarchy that also
fulfills this property.

Nodesz,y € X are calledbrthogona) denotedr L y, if they are not comparable in the hierarchy relation
(z £ y Ay £ z) andtype(lca({z,y})) = and.

The scopeof an edgeX — Y is the most nested or-node ancestorofandY. Note that a node is an
ancestor of a set of nodes if it is an ancestor of all nodesarsét.

Now we can defineonsistencyf two edges in the following way:
Two edgesd, ed’ € Edges areconsistentf:

ed = ed V scope(ed) L scope(ed')

A set of edgedl is consistent if all elements dF are pairwise consistent¢d,ed’ € T : (ed,ed’) is
consistent)

