
Software Modeling and Verification
Lehrstuhl für Informatik2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML
Winter Term07/08

– Lecture number 9 –
(7th Jan 2008)

summarized byChristian DernehlandMartin Lang

1 Statechart Ingredients

Statecharts consist of a collection of different ideas. Basically these are:

• Mealy machine
input/output

• Hierarchy

C

A B

• Communication
A B ae/a

•
Concurrency
(orthogonality) B C

F

D

E

root

A

• Negated events A B
¬ e

• Compound Events A B
e2 ∧ ¬e2

•
Inter-level and intra-level
edges

2 Some Problems

The rich possibilities of statecharts yield a number of problems and inconsistencies. In the following some
of them are presented to deliver you an insight.

• zero response time assumption:
input and corresponding output occur at the same time

• self-triggering:
The zero response time induces a problem on 2 edges which depend on an event generated as output
by the other edge. In the example edge 1 depends on the event “a”. By assumption of zero response
time this is generated by edge 2 because edge 1 generated event “b” which triggers edge 2. So edge 2
"triggers" itself.

B C
b/a (2)

A

a/b (1)

• effect of edge may contradict its cause: The possibility of negated events combined with zero re-
sponse time leads to a contradiction in events that generatean output contradicting its cause. In the
example the event a is generated when it is absent. Because ofzero response time this edge could be
taken if it could not be taken.

A B
¬ a/a

This is a very obvious example but it is not sufficient to eliminate only such edges to avoid the given
problem because it can also occur over a chain of edges triggered at the same time. For instance there
is no event a. An edge¬a/b is taken. This generates eventb, so that a second edgeb/a could be taken
that results in the same problem shown above.

• competing events:

A B C
e/a (1)

D

e’ (2)

What happens when “A” is active and eventse ande′ occur?

a) Edge 2 prevents edge 1 from happening and eventa is not generated.

b) Both edges occur. Event a is generated. Is the system for zero time in “B”? Would other edges
possibly from “B” be taken?

c) Only edge 1 occurs. Event a is generated but the system doesnot change to state “C”

To avoid such problems in the interpretation of statechartswe like to impose certain restrictions on the model
and formalize it. Though we get an definite interpretation ofa statechart.

3 Simplifications

• No global variables

• No compound events

• No negated events

• Communication is biliteral (no broadcast)

• Events generated in one step (i) can only be consumed in the following step (i+1) and decay otherwise.

4 Formal Definition

Formally a statechart is described as a triple(N, E, Edges). The components are in detail:

• N is the set ofnodes. It contains all types of nodes regardless the hierarchy. Types and ordering
are defined later with special functions. According to the terms used with automata the nodes are
sometimes also called states.

• E is the set of theeventswhich can trigger the transitions in the statechart.

• Edges is the set ofedgesor transitions. In the graphical representation of a statechart they are shown
as arrows between the nodes. The elements contained by theEdges-set are described later in detail.

4.1 Nodes

The tree structure of the nodes is formally represented by a function that returns the immediate child-nodes
of a given node. Therefore this function will be calledchildren:

children : N → 2N

For example given 2 nodesA andB, A is the parent ofB. SoB ∈ children(A).

This function induces a partial order (denoted≤) onN representing the hierarchy between the nodes.

• x ≤ x

• x ≤ y if x ∈ children(y)

• x ≤ y ∧ y ≤ z ⇒ x ≤ z

Because of the transitivity of the order-relation it is possible to compare nodes over the levels of the tree. So
x ≤ y(x 6= y) means thatx is at a deeper level of the hierarchy thany. All nodes that are ancestrally related
are comparable within this relation (eitherx ≤ y or y ≤ x (y 6= x)).

There is aunique rootnode which is not referenced by the children function. All nodes are descendants of
this node (∀x ∈ N : x ≤ root)

Statecharts differentiate betweenand, or, andbasicnodes to determine their meaning for concurrency. To
identify the type of a node, a second function for the nodes isintroduced matching the type to each node.

type : N → {and, or, basic}

With the properties:

• type(root) = or
The root node should not contain any concurrent nodes.

• type(x) = basic ⇔ children(x) = ∅
Only the leaf nodes, which have no children, are basic-nodes.

• type(x) = and ⇒ ∀y ∈ children(x) : type(y) = or
Nodes that model concurrency should only contain or-nodes specifying the concurrent behavior.

Like an automaton statecharts must have starting nodes. In comparison to a normal flat automaton, state-
charts have starting nodes on the different levels of hierarchy. Therefore every or-node has one starting node
which is identified by the partial functiondefault. This starting node gets active when the given or-node is
entered.

default : N → N, dom(default) = {x ∈ N | type(x) = or}

It is important, that the statementdefault(x) = y ⇒ y ∈ children(x) is fulfilled, because the starting node
should be directly contained by one given or-node to take thehierarchy into account.

4.2 Edges

Edges are defined by a quintuple(X, e, g, A, Y):

• X ⊆ N, X 6= ∅ is the set ofsource nodes. All these nodes must be active for the edge getting enabled.

• e ∈ E ∪ {⊥} is thetrigger event. This event must be active for the edge being taken where⊥ means
“no event” (comparable toε-transitions in NFAs)

• g ∈ Cond(V ar) is a guard expression. This is a boolean expression over all variables in the given
statechart. The edge can only be taken if this guard evaluates to true.

• A ⊆ Act is a set ofactionsthat occur when the edge is taken. For instance setting of a local variable
or sending an event to another statechart.

• Y ⊆ N, Y 6= ∅ is a set oftarget nodes. All these nodes get active when the edge is taken. Therefore
it should be possible for all elements ofY to be active at the same time.

BA C
e

1 2 3

x:=0 x:=1 x:=2

A

B

It should be noticed that the setsX andY may contain nodes at different levels of the hierarchy.

5 Sequential Step Semantics

Two notions of a step:

• macro steps: observable “time” steps

• micro steps: a set of edges

A macro step can be subdivided in an arbitrary but finite number of micro steps that cannot be prolonged
anymore.

Events generated in macro step i are only available in the next macro step (i+1). If an event is not consumed,
it decays and has no more influence on the following macro steps.

6 Assumptions

• The input to a macro step is a set of events.
As a direct consequence of this the order of event generationis ignored and all edges that are triggered
by those events are equal. Additionally it follows that the order of events that are generated in step i
is not of relevance in step i+1.

• A macro step reacts to all available events.
By executing a macro step all events are processed - even those which does not trigger any edges of
the statechart. And therefore they can only be “used” in the immediately following step after their
generation. All possible edges that could be taken without conflict are executed.

• Instantaneous edges and actions
The execution of edges and action needs zero time.

• Unlimited concurrency
No limitation on the events that are consumed by a macro step.

• Perfect communication
No messages are lost in the system.

7 States and Configurations

A configurationof a statechartSC = (N, E, Edges) is a setC ⊆ N that contains the active nodes.
Therefore it must fulfill the following conditions:

• root ∈ C

• x ∈ C ∧ type(x) = or ⇒ | children(x) ∩ C| = 1
In an or-node only one direct child can be active at a given point.

• x ∈ C ∧ type(x) = and ⇒ children(x) ⊆ C
All direct children of an active and-node must be active, too.

In a system with more than one statechartConfi is theset of possible configurationsof the statechartSCi.

Based on the configuration of a statechart, thestateof a statechart is now defined as a triple(C, I, V) where
the components are:

• C ∈ Conf describes the current configuration

• I ⊆ E identifies which events are currently active.

• V is avaluationof the statechart variables at this time.

7.1 Enabled edges in a state

To compute a step in a statechart the first question that should be answered is which edges could be taken.
These edges are called enabled.

An edgeX
e[g]/A
−→ Y is enabled in a given state(C, I, V) if:

• X ⊆ C - All source nodes of the edge are currently active.

• e ∈ I - The event that triggers this edge is active.

• ((C1, . . . , Cn)
︸ ︷︷ ︸

configurations

, (V1, . . . , Vn)
︸ ︷︷ ︸

valuations

) |= g - The guardg is satisfied by the variables and configurations.

The set of enabled edges in configuration(C, I, V) is denoted asEn(C, I, V).

8 Consistency

The edges executed must lead to a valid new configuration. Therefore only consistent edges could be taken at
the same time. If some edges are inconsistent the system has anondeterministic choice between the different
consistent sets of edges when there are no other mechanisms to decide which of them should be taken.

To get an impression of what kind such edges are take a look at the following 2 examples. Let the current
state be({root, A}, {e, e′}, {}).

AC B
e (1)

e’ (2)

In the next macro step only the edge triggered bye or e′ could be taken because the nodesC andB can not
both be active at the same time. So the edges labeled withe ande′ are inconsistent.

A

B

C

D

E

e (1) e’ (2)

F G

root

Let this statechart be currently in the state({root, G, F, A, A′, B, D}, {e, e′}, {}). In this example the edges
could both be taken in the next macro step becauseC andE may be active at the same time due to the
arrangement in the and-nodeA.

To define what consistency exactly means we use orthogonality.

ForX ⊆ N , theleast common ancestor, shortlylca(X), is the nodey ∈ N that:

• ∀x ∈ X : x ≤ y

• ∀z ∈ N : (∀x ∈ X : x ≤ z) ⇒ y ≤ z

That means thaty is an ancestor of all nodes inX and there is no node deeper in the hierarchy that also
fulfills this property.

Nodesx, y ∈ X are calledorthogonal, denotedx ⊥ y, if they are not comparable in the hierarchy relation
(x 6≤ y ∧ y 6≤ x) andtype(lca({x, y})) = and.

The scopeof an edgeX −→ Y is the most nested or-node ancestor ofX andY . Note that a node is an
ancestor of a set of nodes if it is an ancestor of all nodes in the set.

Now we can defineconsistencyof two edges in the following way:

Two edgesed, ed′ ∈ Edges areconsistentif:

ed = ed′ ∨ scope(ed) ⊥ scope(ed′)

A set of edgesT is consistent if all elements ofT are pairwise consistent (∀ed, ed′ ∈ T : (ed, ed′) is
consistent)

