
Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML
Winter Term 07/08

– Lecture number 12: The Object Constraint Language –
(Date (January 21, 2008))

summarized by Hussein Hamid Baagil and Önder Babur

The Object Constrain Language

Introduction

• OCL is used for textual annotation in UML
(such as class diagrams and statecharts)

• Is strongly related to predicate, and first-order logic

• OCL constraints impose additional restrictions on UML models
e.g. invariants ("‘always x > 0"’)

• Developed by Jos Warmer and Anneke Kleppe

• OCL 2.0. has been adopted by the UML

• Basic ingredients:
typed variables, expressions (e.g. navigation), constraints (e.g. invariants), iterations

OCL example

for the example above:

• class: Hotel, Room, Guest

• attribute: nrOfRooms, nrOfBeds, rent, name

• methode : checkIn(g:Guest)

• Between the classes exit some association

• The number of guests in a room cannot exceed the room’s capacity:

context Room

inv: guests→ size ≤ nrOfBeds

• The guest in the rooms of the hotel equals the guests in the hotel

context Hotel

inv : rooms.guests = guests

• These are invariants, i.e. they should hold in any state of the system

• The violation of an invariant can always be shown by a finite system run that ends in
state that refuses the invariant condition

• When checking in a guest g, say
- g should not already be a guest in the hotel; - after checking in, the number of guests
is increased by one, and should include g
context Hotel :: checkIn(g:Guests)
pre: not guests→ includes(g)
post: guests→ size = (guests@pre→ size)+1
and guests→ includes(g)

where guests@pre refers to the "‘value"’ of guests at evaluating the precondition. Or
another way to say, it refers to guests value at the time of method invocation

• On each invocation of method checkIn, if the precondition holds, then on termination
of checkIn, the postcondition is guaranteed hold.

OCL Types

OCL is a typed language, it consists of predefined types and model types.

• predefined types :

– basic types (e.g. Int, String, Boolean, etc.)

– collection types (e.g., Collection, Set, Bag, Sequence)

– OclAny

these predefined types could be equipped with standard operation (+, -, *, and, not,
union, concatenation, etc.)

• model type : these are types whic are defined in the UML moderl (in our example,
Hotel, Room, and Guests)

OCL Syntax

OCL constraints are defined as:

χ ::= context C inv ζ
| context C :: M(

→
p) pre ζ post ζ

C is a class
M ∈ dom(C.meths), a method of class C
→
p are the parameters of method M
ζ is an OCL expression

• Each OCL constraint is built from OCL expression (ζ) and have type boolean

• Invariants have as context a class

• Pre- and postconditions have as context a method of a class and a class

OCL expressions are defined as:

ζ ::= self | z | result | ζ@pre
| ζ·a | ω(ζ ,...,ζ) | ζ·ω(ζ ,...,ζ)
| ζ → ω(ζ ,...,ζ)
| ζ → iterate (x1;x2 := ζ | ζ)

self refers to context object of class C
z represents either

- an attribute of the context object, or
- a formal parameter of context method
- or a logical variable

result refers to the value returned by the context method (is undefined if
this method has not returned a value)
@pre refers to the value of its opperand at the time of method invocation

Both expression result and @pre may only be used in postconditions

OCL Operations

• ζ·a an attribute or parameter navigation

– ζ is an object refers to its attribute a or to a method occurence with a formal
parameter a

– ζ·a returns the value of the attribute

example: x.rooms.guests returns the value of the number of guests in rooms at hotel
x

• for n-ary operator ω the OCL expression
ω(ζ1,ζ2,...,ζn)
returns the value of application/funktion ω on (ζ1,ζ2,...,ζn)
example: isEqual(g1,g2) return the boolean value of application/funktion isEqul on
g1 and g2

• the notation ζ·ω(ζ1,ζ2,...,ζn) represent operator ω on basic types (Int, Boolean, etc.).
If ζ is of collection type (set, bag, etc.) then we use the notation ζ → ω(ζ1,ζ2,...,ζn)

OCL Iteration

ζ1→ iterate (x1 ; x2 = ζ2 | ζ3)

a) x2 will be initialised to ζ2

b) x1 takes as its value the first element from ζ1

c) ζ3 is computed and its result is assigned to x2

d) x1 will successively takes as its value next element of the sequence ζ1

Example: [1, 2, 3]→ iterate (x1 ; x2 = 0 | x1 + x2)
compute the sum of the elments of the list [1, 2, 3]

first iteration

• x2 := 0

• x1 := 1

• x2 := x1 + x2

second iteration

• x2 := 1

• x1 := 2

• x2 := x1 + x2

third iteration

• x2 := 3

• x1 := 3

• x2 := x1 + x2

finaly x2 := 6

An OCL Deficiency

• The iterate expression is a powerful iteration mechanism on ordered collection

• Thus its evaluation is problematic on unordered collections, like set and bag
e.g., {1, 2, 3} → iterate (x1 ; x2 = 0 | -x2 + x1)
⇒ the result is not well-defined, depending on the order binding the elements

• In OCL, nested collections are "‘automatically flattened"’ e.g, Set {Set {1, 2} ,
Set{3, 4, 5} = Set {1, 2, 3, 4, 5}
what about Sequence {Set {1, 3, 7}} ?
all orderings of {1, 3, 7} are allowed!

Operational Model

OCL semantics is defined using an operational model of an object-based system.
Let:

VNAME is a countable set of variable names
MNAME is a countable set of method names (ranged over M)
CNAME is a countable set of class names (ranged over C)
T (∈ TYPE) ::== void | nat | bool | T list | C ref | C.M ref

• void is the unit type with trivial value ()

• T list denotes the type of lists of T with elements [] (empty list) and h::w (list
with head h and tail w)
notation [h1, h2, ... h3]

• C ref = type of objects of class C

• C.M ref = type of method occurrency of M of C

Partial functions:

• VDECL : VNAME→ TYPE
maps variable names onto types

• MDECL : MNAME → VDECL × TYPE, VDECL are formal parameters,
TYPE is return type

• CNAME : CNAME → VDECL × MDECL, VDECL are attributes, MDECL
are methods

Notation : let D ∈ CDECL. For C ∈ dom(D), let

C.attrs (∈ VDECL) are its attributes
C.meths (∈ VDECL) are its methods

For methods M of class C:

M.fpars (∈ VDECL) are its formal parameters
C.retty (∈ TYPE) is its return type

Thus: C.meths(M) = (M.fpars, M.retty)

Example :

Hotel.attrs(v) =


nat if v = nrOfRooms
Roomlist if v = rooms
Guestlist if v = guests
⊥ otherwise. (means undefined)

Room.attrs(v) =


Hotel if v = Hotel
Guest if v = guests
⊥ otherwise.

checkIn.fpars(v) =

{
Guests if v = g
⊥ otherwise.

Hotel.meths(m) =

{
(checkIn.fpars, void) if m = checkIn
⊥ otherwise.

Note that ⊥ is a special value, where ⊥ ∨ true = ⊥.

As operational model, we use automata (also called Kripke structures) of the form
(Conf,→, I) where:

• Conf is a set of configurations

• → ⊆ Conf × Conf, a transition relation

• I ⊆ Conf, a set of initial states with I 6= ∅

Intuition : a configuration denotes the state of the UML model (e.g, current objects,
current method calls, state of each object + methods) and→ models the evolution of
the system, such that:

If an active method occurrence becomes inactive, then it has a well-defined
return value (i.e not ⊥).

Objects and Events

References to objects and events will be used as data values.
Events correspond to method occurrences, i.e invocations of a given method of a
given object.
Let C ∈ CNAME and M ∈MNAME:

OIDC = {C}× IN (numbered instances of the class C)
EVTC,M = OIDC× {M} IN × (numbered instances of method M with

explicit asociated to object executing M.)
OID = ∪COID

CIN(setofobjectids)
EVT = ∪C∪MEV T

C,MIN(setofevents)

Thus o ∈ EVT is a triple ((C, n), M, k):

"k-th invocation of method M, executed by (C, n)

Example :
Consider the Hotel class diagram. Example instances of class Hotel:

(Hotel, 1), (Hotel, 2), (Hotel, 27), ...

Example instances of class Guest:

(Guest, 231), (Guest, 0), ...

Example events related to method checkIn:
Example instances of class Guest:

((Hotel,1), checkIn, 1)
((Hotel,1), checkIn, 2)→ different execution of checkIn by same object
((Hotel,27), checkIn, 1)
...

Values

Data types of operational model:

T ::= void | nat | bool | T list | C ref |C.M ref

The universe of values VAL = ∪TV AL
T

V ALT , setofvaluesfortypeT, isdefinedby :

VALvoid = {()}
VALnat = IN
VALbool = {(ff, tt)}
VALchar = {(a, b, c, ..., z)}
VALT list = {[]}∪ {h::w | h ∈ VALT , w∈ VALT list}
VALCref = {null}∪ OIDC

VALC.Mref = {EV TC,M}

Data types are equipped with standard operation. eg:

+ : VALnat× VALnat→ VALnat

sort : VALT list→ VALT list

flat : VALT list(5mm)T list→ VALT list(flattensnestedlists)

Strictness

⊥ /∈ VAL denotes the "undefined" value. Let VAL⊥ = VAL ∪ {⊥}
All operations are extended to VAL⊥ such that the interpretation is strict, i.e if one of the
operands is strict, the entire expression equals ⊥.
For example:

⊥ :: w = ⊥
h :: ⊥ = ⊥
ζ + ⊥ = ⊥
sort ⊥ = ⊥
⊥ ∨ tt = ⊥
etc.

Configurations

A configuration := current objects + current method invocations + object states + method
invocation state.
Formally, a configuration is a tuple (O, E, σ, γ) with:

O ⊆ OID
E ⊆ EVT
σ : O→ VNAME→ VAL
γ : E→ (VNAME→ VAL) × VAL

For each o ∈ O, σ(o) is local state of object o.

σ(o) = ` with o ∈ OIDC ,→ dom(`) = dom(C.attrs) and `(a) ∈
VALC.attrs(a)for(5mm)each(5mm)a∈ dom(`).

σ is extended point-wise to lists of objects, i.e.

σ([])(a) = []
σ(h:w)(a) = σ(h)(a) :: σ(w)(a)

γ : E→ (VNAME→ VAL) × VAL⊥
event(method invocation)→ valuations of formal parameters of invoked method × return
value of method

If γ(e) = (`, v) for e ∈ EVTC,M then :

dom(`) = dom(M.fpars)

`(p) ∈ VALM.fpars(p)for(5mm)p∈ dom(`)

v ∈ VALM.retty
T

A method invocation has terminated in the current configuration if it is deallo-
cated in the next state. On termination, the method has a well-defined value.
(i.e, different from ⊥).

If (O, E, σ, γ)→ (O’, E’, σ’, γ’) then
e ∈ E \E ′→ ∃ v ∈ VAL. γ(e) = (`, v).

