Software Modeling and Verification
Lehrstuhl fiir Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML
Winter Term 07/08

— Lecture number 12: The Object Constraint Language —

(Date (January 21, 2008))
summarized by Hussein Hamid Baagil and Onder Babur

The Object Constrain Language

Introduction

e OCL is used for textual annotation in UML
(such as class diagrams and statecharts)

o [s strongly related to predicate, and first-order logic

e OCL constraints impose additional restrictions on UML models
e.g. invariants ("‘always x > 0"")

e Developed by Jos Warmer and Anneke Kleppe
e OCL 2.0. has been adopted by the UML

e Basic ingredients:
typed variables, expressions (e.g. navigation), constraints (e.g. invariants), iterations

Hotel
nrlfRooms : int L
chackln (g : Guest) : Room
+ |hotel
* | room
Room
% | Quesis nr(fBeds : int
Guest * roam | rent:int
narne : String quets 0.l
OCL example

for the example above:

e class: Hotel, Room, Guest
e attribute: nrOfRooms, nrOfBeds, rent, name
e methode : checkIn(g:Guest)

e Between the classes exit some association

e The number of guests in a room cannot exceed the room’s capacity:

context Room

inv: guests — size < nrOfBeds

e The guest in the rooms of the hotel equals the guests in the hotel

context Hotel
inv : rooms.guests = guests
e These are invariants, i.e. they should hold in any state of the system

e The violation of an invariant can always be shown by a finite system run that ends in
state that refuses the invariant condition

e When checking in a guest g, say
- g should not already be a guest in the hotel; - after checking in, the number of guests
is increased by one, and should include g

context Hotel :: checkIn(g:Guests)

pre: not guests — includes(g)

post: guests — size = (guests@pre — size)+1
and guests — includes(g)

where guests @pre refers to the "‘value"’ of guests at evaluating the precondition. Or
another way to say, it refers to guests value at the time of method invocation

e On each invocation of method checkln, if the precondition holds, then on termination
of checkln, the postcondition is guaranteed hold.

OCL Types

OCL is a typed language, it consists of predefined types and model types.

e predefined types :
— basic types (e.g. Int, String, Boolean, etc.)
— collection types (e.g., Collection, Set, Bag, Sequence)
— OclAny

these predefined types could be equipped with standard operation (+, -, *, and, not,
union, concatenation, etc.)

e model type : these are types whic are defined in the UML moderl (in our example,
Hotel, Room, and Guests)

OCL Syntax

OCL constraints are defined as:

X ::= context C inv (
| context C :: M(P) pre ¢ post ¢

Cis aclass
M € dom(C.meths), a method of class C

P are the parameters of method M
¢ is an OCL expression

e Each OCL constraint is built from OCL expression ({) and have type boolean
e Invariants have as context a class

e Pre- and postconditions have as context a method of a class and a class

OCL expressions are defined as:

¢ n=self |zl result | (@pre

I ¢-alw(,....0) I ¢-w(C,...,0)
| — w((,...,)
| ¢ — iterate (x1;X2 :=(1()

self refers to context object of class C
z represents either
- an attribute of the context object, or
- a formal parameter of context method
- or a logical variable
result refers to the value returned by the context method (is undefined if
this method has not returned a value)
@pre refers to the value of its opperand at the time of method invocation

Both expression result and @pre may only be used in postconditions

OCL Operations

e (-a an attribute or parameter navigation

— (is an object refers to its attribute a or to a method occurence with a formal
parameter a

— (-a returns the value of the attribute

example: x.rooms.guests returns the value of the number of guests in rooms at hotel
X

e for n-ary operator w the OCL expression

w(Cl?C%'“aCﬂ)
returns the value of application/funktion w on ((1,(s,...,(y)
example: isEqual(g;,g,) return the boolean value of application/funktion isEqul on

g and g

e the notation (-w((1,(2,...,() represent operator w on basic types (Int, Boolean, etc.).
If C is of collection type (set, bag, etc.) then we use the notation { — w((1,(2,-.-,(pn)

OCL Iteration

(1 — iterate (xq 5 X2 = (2 1 (3)
a) X, will be initialised to (»
b) x; takes as its value the first element from (;
¢) (3 is computed and its result is assigned to xo

d) x; will successively takes as its value next element of the sequence (;

Example: [1,2,3]— iterate (x; ; X2 =01 x; + Xo)
compute the sum of the elments of the list [1, 2, 3]

first iteration

.XQZZO
o x;:=1

® Xy (= X1 + X9

second iteration

o X, :=1
o x| :=2

® X9 :=X1 + X9
third iteration

® Xy, :=3
e X, =3

® Xy (= X1 + X9

finaly x5 :=6

An OCL Deficiency

e The iterate expression is a powerful iteration mechanism on ordered collection

e Thus its evaluation is problematic on unordered collections, like set and bag
e.g., {1,2,3} — iterate (x; ; xo =01-x3 + x9)
=> the result is not well-defined, depending on the order binding the elements

e In OCL, nested collections are "‘automatically flattened"” e.g, Set {Set {1,2},
Set{3,4,5} = Set {1,2,3,4,5}
what about Sequence {Set {1,3,7}} ?
all orderings of {1, 3, 7} are allowed!

Operational Model

OCL semantics is defined using an operational model of an object-based system.
Let:

VNAME is a countable set of variable names

MNAME is a countable set of method names (ranged over M)
CNAME is a countable set of class names (ranged over C)

T (¢ TYPE) ::==void | nat | bool | T list | C ref | C.M ref

e void is the unit type with trivial value ()

o T list denotes the type of lists of T with elements [] (empty list) and h::w (list
with head h and tail w)
notation [h1, h2, ... h3]

e C ref = type of objects of class C

o C.M ref = type of method occurrency of M of C
Partial functions:

e VDECL : VNAME — TYPE
maps variable names onto types

e MDECL : MNAME — VDECL x TYPE, VDECL are formal parameters,
TYPE is return type

¢ CNAME : CNAME — VDECL x MDECL, VDECL are attributes, MDECL
are methods

Notation : let D € CDECL. For C € dom(D), let

C.attrs (¢ VDECL) are its attributes
C.meths (¢ VDECL) are its methods

For methods M of class C:

M.fpars (€ VDECL) are its formal parameters
C.retty (€ TYPE) is its return type

Thus: C.meths(M) = (M.fpars, M.retty)

Example :

nat if v = nrOfRooms
Hotel.attrs(v) Roomlist if v =rooms
otel.attrs(v) =
Guestlist if v = guests

1 otherwise. (means undefined)

Hotel if v =Hotel
Room.attrs(v) = ¢ Guest if v = guests
1 otherwise.

Guests ifv=g

check]n.prLTS(U) - {J_ otherwise

(checkIn.fpars,void) if m = checkIn

Hotel.meths(m) = _
L otherwise.

Note that | is a special value, where 1 V true = L.

As operational model, we use automata (also called Kripke structures) of the form
(Conf, —, I) where:

e Conf is a set of configurations

e — C Conf x Conf, a transition relation

e 1 C Conf, a set of initial states with I £ ()

Intuition : a configuration denotes the state of the UML model (e.g, current objects,
current method calls, state of each object + methods) and — models the evolution of
the system, such that:

If an active method occurrence becomes inactive, then it has a well-defined
return value (i.e not _L).

Objects and Events

References to objects and events will be used as data values.

Events correspond to method occurrences, i.e invocations of a given method of a
given object.

Let C € CNAME and M € MNAME:

OIDY = {C'} x IN (numbered instances of the class C)
EVTYM = OID®x {M} IN x (numbered instances of method M with
explicit asociated to object executing M.)
OID = UcOIDCIN (setofobjectids)
EVT = UcUy EVTOMI N (setofevents)

Thus o € EVT is a triple ((C, n), M, k):

"k-th invocation of method M, executed by (C, n)

Example :
Consider the Hotel class diagram. Example instances of class Hotel:

(Hotel, 1), (Hotel, 2), (Hotel, 27), ...

Example instances of class Guest:

(Guest, 231), (Guest, 0), ...

Example events related to method checklIn:
Example instances of class Guest:

((Hotel,1), checkln, 1)
((Hotel, 1), checkln, 2) — different execution of checkln by same object
((Hotel,27), checkln, 1)

Values

Data types of operational model:

T ::=void | nat | bool | T list | C ref IC.M ref

The universe of values VAL = UV ALT
VALY, setofvalues fortypeT, isdefinedby :

VAL™ = ()}

VAL = [N

VAL = {(ff, 1)}

VAL = {(a,b,c, ..., 2)}

VALTUst = {[]}U {h::w | h € VALT we VALT!st}
VALC®) = {null}uU OID®

VALC.Mref _ {EVTC’M}

Data types are equipped with standard operation. eg:

+1 VAL x VAL~ VAL"!
sort : VALTlst — VAL Tlist
flat : VALTlstGmm)Tlist_ AT Tlst(flattensnestedlists)

Strictness

1 ¢ VAL denotes the "undefined" value. Let VAL | = VAL U {1}

All operations are extended to VAL _L such that the interpretation is strict, i.e if one of the
operands is strict, the entire expression equals L.

For example:

Configurations

A configuration := current objects + current method invocations + object states + method
invocation state.
Formally, a configuration is a tuple (O, E, o,) with:

O COID

E CEVT

o0: 0 — VNAME — VAL

v:E— (VNAME — VAL) x VAL

For each o € O, 0(0) is local state of object o.

o(0) = ¢ with o € OIDY,— dom(¥) = dom(C.attrs) and /(a) €
VALC4#3(a) for (5mm)each(5mm)a€ dom(¥).
o is extended point-wise to lists of objects, i.e.

a([D(@) =]

o(h:w)(a) = o(h)(a) :: o(w)(a)
~v: E — (VNAME — VAL) x VAL L

event(method invocation) — valuations of formal parameters of invoked method x return
value of method

If v(e) = (¢, v) fore € EVT“Mthen :

dom(¢) = dom(M.fpars)
U(p) € VALM-#pars®) £ or (5mm)pe dom(¥)

ve VALgl‘retty

A method invocation has terminated in the current configuration if it is deallo-
cated in the next state. On termination, the method has a well-defined value.
(i.e, different from _L).

If (O,E, 0,7) — (0", E’, 07, 7") then
e € E\E'— 3v e VAL. v(e) = (/, V).

