Foundations of the UML

Winter Term 07/08

— Lecture number 8 —

(Date (28th Jan 2008))
summarized by Ratna Widyastuti(277010) and Teena Mary Mihan(284125)

1.1 Configuration example

r2:room

gl:guest rl.room g2:guest
r3.room H:hotel
g3:guest
g5:guest g4.quest
1
(hcheckInd) o 96:guest
g return code51
age23
nights 7
1.2Example

Set of active objects in the above eg are

O ={h,ry, 1y 3 01, 92, U3, 9, G5, s }
Set of active events can be written as:

E={h,checklIn, 1}

where

h = (Hotel, 1)
01 = (Guest, 1)
r; = (Room, i)

In the above case, local set of object gs is:
o (gs) (code) =51

o (9e) (age) = 23

o (gs) (Nr. nights) =7

State of event (h, Check In, 1):
y (h, Check In, 1) = (I, L) with 1(g) =0s

1.2 Static expressions

E::=X|&.a|&.owner|&.return | . new | . alive |o . (§,

| with X; € & from Xz:= & do Xp:= &

X = logical variable
& . a=Parameter / attribute navigation
& . owner = Object executing method &

& . result = Return value of method &

& . new = The object (or method) & is “fresh” in the current state

An object is usually new just after its creation and the
invoked.

& . alive = Object (method) & is currently alive.

method is new when it is just

An object here becomes alive when it is created and remains alive until it is deallocated (eg.

By garbage collection).

with = Like the OCL iterate expression

1.3 Quantification

Temporal expression D X € I' : @ expresses that @ holds for at least one alive instance X of type

I.

Case 1: If I" = void, not, or bool an instance is always alive (as they are static).

Case 2: If I" = C.ref or I' = C.M ref, however instances are dynamic.
Object X € C refis alive if it has been created and not yet deallocated:;

Method X € C.M ref'is alive if occurred

M has been invocated and has not yet terminated.

2. Temporal expressions
O::=([7 O|OVO|DXET:DP[OD|DPUD|

O O = next state O holds
® U @ = @ state can be reached via a path solely consisting of @ states

O_,‘_,O_,O satisfies
O_’O_’O_’O violates

Derived operators:

CO=trueUD ------- > eventually
oP=q ©q ®) ------ » always
Example:

Along the computation of hotel h, eventually at least one guest will check in:
¢ (O m € h. Check In ref: m alive)

2.1.Semantics static expressions
Let © : LVAR ——— VAL assign values to logical variables.
1.e. for X € LVAR N dom (©), O (X) is the value of X.
Semantics of static expression & is given by
(18]l n.0 € VALL
where:
g = (Oy, Eg, oy, tg) is a configuration
N € Oy U Egq, denotes new objects and events in configuration g

O = Valuation of logical variables (in &)

2.2.Semantics
[X[len0 = O(X) ; logical valuation of X.
& . owner|]gn0 = 0 ; where [|€]]gn0 = (O, M, J)(object O invoked M)

€ . return|]gno =V ; Where tg ([|E[]leno = (p, V)(evaluation of & in config)

€ alivelgne = [[llene € Og U Eq
| ® (é CIERRERE > éﬂ) |]g,N,9 = [|(,0|] ([|(D|] -ANKCIIEERERE > [|E.>n |]g,N,9

For the semantics of & . we distinguish two cases:

[
[
[1€ new[]gn.o = ([IE]len.0 € N)(refers to a new object or event)
[
[

[|§]] is a reference or a list (of refs)
[1€ - allgne = 1()
where:
[1Ellene € crefand og ([|E]lene) = |
or [|g]].....€ C.Mref and vq (([IE]]...) = (V)
For lists:
[. allxo = T (@) where
_>
or [|g]].....€ Creflist and og ([|§[]) = |
_>
or [|g]].....€ C.Mref list yq ([|E]])=(1, V)
[Iwith X1 € & from Xz €&, do Xz : =&l gne = [Ifor X1 € [|Eil gne dO X :=E3l] gner
where:
0’ =0 [X2:=[&[]enel

3. Temporal Expressions
Temporal expressions such as O¢ and ¢ U ¢ are interpreted over paths in the automaton (Conf,
—, I), whereas:

T=cpC1Cy.... 1s a path

if ci €Conf and c; = Cj;1, foralli>0

Notation n[i] = ¢;

Form=cpciCy.... let:
o N0= N £ Oo U Eo
Op are objects in configuration Cy
Eoare events in configuration Cy
® Nis1= (01| O) Y (Einr | E})
(Oi+1| Oj) are objects created in Cj — Cisp
(Eis1 | Ej) are events generated in C; — Cisg

. Oi(x)= {E (x)if vk =i: B(x)ef, U E,
" undefined otherwise

The semantics of ¢ is given by a relation k= (satisfaction relation, a =b means a satisfies b).
(m, N, 0, §) € =, should be read as: for path =, initial set N of new objects/methods, and logical
valuation 0, formula ¢ holds. Write 1, N, 6, ¢ = ¢ instead of (T, N, 6, §) € .

By structural induction over ¢:
e N, OEE iff [E]none=tt
e 1, N,0F-0 iff t, N, 0 # ¢
e M, N,OEPU iff , N OE=pormN,0E@
e 1N, 0E00 iff m1, Ny, 01 = ¢, where ml = #[1], n[2], ...
e MmN OEQUY iff3j = 0: W Nj, 6; E Y and Vk < j:mk, N, Ok = where Tk =
n[k] m[k+1]...
e N, 0 E3Ixer.d iff Ive VALT[(0o, Eo): T, N, 8[x:=V] E ¢ where
VAL I'(0, E) is the subset of VAL alive in (O,E), formally:
VAL" n0 ift=Cref
VAL'I(0,E) =4VAL* N 0 ift=C.Mref
VAL N0 otherwise

4. Translating OCL Types
OCL allows sets, bags, and lists, but no nested lists. OCL types are defined by:

p ::=not | bool | C ref (means p could be not, bool or/and C ref)
Tu=p]|plist|pset|pbag
Universe of values:
VAL™ =N
VALY = {tt, ff}
VAL €™ = {null} u OD®
VAL Pt = {[1} U {h :: W] h € VALe, w € VALP "™}
VALP*'=2 VAL
VAL PP9= VALP - N
The set of value in OCL: VALoc = U, VALT

bag is type of multi set consists of the set itself and the occurrence frequency of the set,
example:{|1,2,2,3|}, in this set 1 appears 1 times, 2 appears 2 times, 3 appears 1 time.

For each operation & — (&, &) in OCL on sets or bags, there exists a corresponding

operation @ (&;..... &») such that the following diagram commutes:

VALY, >VALocL
[o]

o i

VAL"? » VAL
[o]

where o is an abstraction function.

5} if v=1[]
Forsets: oset(V) = §{h} U @serin ifv=h=w
& otherwise
For bags: apag: VAL = VALoc, defined by
{3 ifv=1]
abag(V)=1 {|h|} U Apag(W) if v=hzw
v otherwise

Example:

Consider the OCL expression & — union(&,). The corresponding operator wrizon has semantics

[wrmion] : VALtlist x VALtlist » VALtlist j.e. [umon] is the concatenation of two VALt list

According to the commutativity diagram, we have:

s [TOT(v1, v2)D) = [E00T] (ctse(V1), Gsen(V2)),

union oflists union of sets

e.g. unron(wy, Wo) = Wy # W, where # is list concatenation.
e OCL equality on sets: &1 =&
[[=zet]] + VALtlist x VALTlist — YVAJ,bool

Where ==et on lists is defined as follows:

=set(w1,W,) = Eqlist (sort(del_duplicates(w,)),sort(del_duplicates (w;)))

delete duplicate value in W and sort

Semantics

A 4

Types: lists, nat,

Static exp‘re_ssionS/

OCL

Types: sets, bags,

If we want to transform bags (in OCL) to nat (in semantics), then do type translation.

5. Translating OCL Expressions
8omz (§) is the translation of expression & wrt. object 0, method occurrence m with

formal parameters p .
e J(self) =0
0.x if o € Cref Ax € dom(C.attr)
® d(x) =ym.x ifx€p
x otherwise

e 5(result) = m.return

o E@ipre)=y
the i—th occurrence of @pre
* 3(0(&1...., &) =@ (8(&1)...., 8(&n))
* 3(Ew(1..... &) = @ (3(8),0(E1)..... 3(&n))
e 3(E—w(&y,..., &) = ditto
o J(E—iterate (x1; Xo= &2 | £3)) = With X; € 3(&1) from x2 = (&) do = X2 = 3(&3)

6. Translating OCL Invariants

Context C inv & : the condition & must hold in any state where no method in
dom(C.meths) is active. During the execution of such method, some configuration may
even violate & Let y € LVAR and dom(C.meths) = {mg,...,my}.Then:
S(context C inv &) = O(VxeC ref:

(=3m;1 € x.M1ref A ... A =3 my € x.My ref) implies

6xy,[1(5))

translation of £
Example:
Context Hotel
Inv rooms.guests = guests

The OCL translation of the example above:

O(vx € Hotel ref:

(—=3m € x.checklIn ref A =3m’ € x.checkOut) implies Eqlist(3(rooms.guests) = guests)

= 0(vx € Hotel ref:

(=3Im € x.checkin ref A =3m" € x.checkOut) implies Eqlist(sort(d(rooms.guests)),
sort(d(guests)))

= 0(vx € Hotel ref:

(—=3m € x.checklIn ref A =3m’ € x.checkOut) implies

Eqlist(sort(flat(x.rooms.guests)), sort(x.guests))

7. Translating Pre- and Post Condition
Main complication: for each &@pre expression in the post condition, we should

“remember” its value on evaluating the precondition. This is done using auxiliary
variables: for each £@; pre use auxiliary variable u;
Extended precondition = precondition + auxiliary variables

fore (.. in}

Formally: &375 = 3(Epre) A N pre im Fppse Wi = 8(&), where u; = §(¢) means “freeze”

pre

value of & in u;

Then: a(context C: : M() pre Epre POSt Epost)

= VUIETy ..., unE T VZ ECref: Ym € z.M ref:

o(m new A &35 implies m alive U (term(m) A 8(&post)))

pre
until

Example:
context Hotel : checklIn (g:Guest)
pre not guests—includes(g)
postguests—size=guests@pre—size+1 and guests—includes(g)
Let z,m € LVAR, z = object class Hotel
m = occurrence of method checkln
A(context Hotel pre post ...)
=V uy: vz € Hotel ref : Ym € z.checkIn ref o(m new A &2 and 3(Epost))

pre

It remains to consider: £355 = — includes (z.guests, m.g) A Ui= d(guests)

= — includes (z.guests, m.g) A ui= z.guests
A(&post) = 51Z€ (z.guests) = 5ize (Up) + 1 A tncludes (z.guests, m.g)

Configuration during the execution of checkIn(ga):

H : Hotel

r: Room

i E.:\'\C
C:h.checkln [f------- \ H : Hotel r: Room -
o : m new
— ! m alive
return | - e gy @ Guast g, : Guest
L
[_5:\'&
@ h.checkIn -
o m old
— m alive
return | 4+
L J
= &
Z: h.checkIn c
- ‘|FO€'.
o m old
return | L m zlive
termim)
v
m dead

