

 1

Foundations of the UML
Winter Term 07/08

– Lecture number 8 –
(Date (28th Jan 2008))

summarized by Ratna Widyastuti(277010) and Teena Mary Mihan(284125)

1.1 Configuration example

 r2:room

1.2Example

Set of active objects in the above eg are

O = { h, r1, r2, r3, g1, g2, g3, g4, g5, g6 }

Set of active events can be written as:

E = { h, check In, 1 }

g1:guest

H:hotel

r1.room g2:guest

g3:guest
r3.room

g5:guest

g4:guest

(h,checkIn,1)

g return

g6:guest

code51

age23

nights 7

 2

where

h = (Hotel, 1)

g1 = (Guest, i)

r1 = (Room, i)

In the above case, local set of object g6 is:

σ (g6) (code) = 51

σ (g6) (age) = 23

σ (g6) (Nr. nights) = 7

State of event (h, Check In, 1):

γ (h, Check In, 1) = (l, ┴) with l(g) = g6

1.2 Static expressions

ξ : : = X | ξ . a | ξ . owner | ξ . return | ξ . new | ξ . alive | ω . (ξ , ……, ξ)

| with X1 € ξ from X2:= ξ do X2:= ξ

X = logical variable

ξ . a = Parameter / attribute navigation

ξ . owner = Object executing method ξ

ξ . result = Return value of method ξ

ξ . new = The object (or method) ξ is “fresh” in the current state

An object is usually new just after its creation and the method is new when it is just

invoked.

ξ . alive = Object (method) ξ is currently alive.

An object here becomes alive when it is created and remains alive until it is deallocated (eg.

By garbage collection).

with = Like the OCL iterate expression

1.3 Quantification

Temporal expression Э X € Г : Φ expresses that Φ holds for at least one alive instance X of type

Г.

 3

Case 1: If Г = void, not, or bool an instance is always alive (as they are static).

Case 2: If Г = C.ref or Г = C.M ref, however instances are dynamic.

Object X € C ref is alive if it has been created and not yet deallocated;

Method X € C.M ref is alive if occurred

M has been invocated and has not yet terminated.

2. Temporal expressions

Φ : : = ξ | ┐ Φ | Φ V Φ | Э X € Г : Φ | O Φ | Φ U Φ |

O Φ = next state Φ holds

Φ U Φ = Φ state can be reached via a path solely consisting of Φ states

Derived operators:

◊ Φ ≡ true U Φ eventually

□ Φ ≡ ┐ (◊ ┐ Φ) always

Example:

Along the computation of hotel h, eventually at least one guest will check in:

◊ (Э m € h. Check In ref: m alive)

2.1. Semantics static expressions

Let Ө : LVAR VAL assign values to logical variables.

i.e. for X € LVAR ∩ dom (Ө) , Ө (X) is the value of X.

Semantics of static expression ξ is given by

[|ξ|]g,N,Ө € VAL┴

where:

g = (Og, Eg, σg, tg) is a configuration

N € Og U Eg, denotes new objects and events in configuration g

Ө = Valuation of logical variables (in ξ)

satisfies

violates

 4

2.2. Semantics

 [|X|]g,N,Ө = Ө(X) ; logical valuation of X.

[|ξ . owner|]g,N,Ө = 0 ; where [|ξ|]g,N,Ө = (O, M, J)(object O invoked M)

[|ξ . return|]g,N,Ө = v ; where tg ([|ξ|]g,N,Ө = (ρ, v)(evaluation of ξ in config g)

[|ξ new|]g,N,Ө = ([|ξ|]g,N,Ө € N)(refers to a new object or event)

[|ξ alive|]g,N,Ө = [|ξ|]g,N,Ө € Og U Eg

[| ω (ξ , ……, ξn) |]g,N,Ө = [|ω|] ([|ω|] g,N,Ө, ……, [|ξn |]g,N,Ө

For the semantics of ξ . we distinguish two cases:

[|ξ|] is a reference or a list (of refs)

[|ξ . a|]g,N,Ө = l (a)

where:

[|ξ|]g,N,Ө € c ref and σg ([|ξ|]g,N,Ө) = l

or [|ξ|]…..€ C.M ref and γg (([|ξ|]…) = (l,v)

For lists:

[|ξ . a|]g,N,Ө = l (a) where

or [|ξ|]…..€ C ref list and σg ([|ξ|]) = l

or [|ξ|]…..€ C.M ref list γg ([|ξ|]) = (l , v)

[|with X1 € ξ1 from X2 € ξ2 do X2 : = ξ3|] g,N,Ө = [|for X1 € [|ξ1|] g,N,Ө do X2 : = ξ3|] g,N,Ө’

where:

Ө’ = Ө [X2 : = [|ξ2|] g,N,Ө]

3. Temporal Expressions

Temporal expressions such as Oф and ф φ are interpreted over paths in the automaton (Conf,

→, I), whereas:

π = c0 c1 c2 …. is a path

if ci Conf and ci = ci+1, for all i ≥ 0

Notation π[i] = ci

 For π = c0 c1 c2 …. let:

 N0 = N O0 E0

O0 are objects in configuration C0

E0 are events in configuration C0

 Ni+1 = (Oi+1 | Oi) (Ei+1 | Ei)

(Oi+1 | Oi) are objects created in Ci → Ci+1

(Ei+1 | Ei) are events generated in Ci → Ci+1

 i(x) =

 5

The semantics of ɸ is given by a relation ⊨(satisfaction relation, a ⊨b means a satisfies b).

(π, N, θ, ɸ) ϵ ⊨, should be read as: for path π, initial set N of new objects/methods, and logical

valuation θ, formula ф holds. Write π, N, θ, ɸ ⊨ ф instead of (π, N, θ, ɸ) ϵ ⊨.

By structural induction over ф:

 π, N, θ ⊨ ξ iff ⟦ξ⟧π[o],N,θ = tt

 π, N, θ ⊨¬θ iff π, N, θ ⊭ ɸ

 π, N, θ ⊨ ф ∪ φ iff π, N, θ ⊨ ɸ or π, N, θ ⊨ φ

 π, N, θ ⊨ Oф iff π1, N1, θ1 ⊨ ɸ, where π1 = π[1], π[2], …

 π, N, θ ⊨ ф ∪ ψ iff ∃j ≧ 0: πj, Nj, θj ⊨ ψ and ∀k < j:πk, Nk, θk ⊨ф where πk =

π[k] π[k+1]…

 π, N, θ ⊨ ∃xϵ𝜏.ф iff ∃v ϵ VAL𝜏 ↾ (O0, E0): π, N, θ[x:=v] ⊨ ɸ where

VAL𝜏 ↾(O, E) is the subset of VAL𝜏 alive in (O,E), formally:

VAL𝜏 ↾(O, E) =

4. Translating OCL Types
OCL allows sets, bags, and lists, but no nested lists. OCL types are defined by:

 ρ ::= not | bool | C ref (means ρ could be not, bool or/and C ref)

 𝜏 ::= ρ | ρ list | ρ set | ρ bag

Universe of values:

 VAL
nat

=

VAL
bool

= {tt, ff}

VAL
C ref

 = {null} ∪ OD
C

VAL
ρ list

= {[]} ∪ {h :: w| h ∈ VALρ, w ∈ VAL
ρ

list

}

VAL
ρ set

= 2

VAL
ρ bag

= VAL
ρ
→

The set of value in OCL: VALOCL =

bag is type of multi set consists of the set itself and the occurrence frequency of the set,

example:{|1,2,2,3|}, in this set 1 appears 1 times, 2 appears 2 times, 3 appears 1 time.

For each operation ξ1 → ω(ξ1,…, ξn) in OCL on sets or bags, there exists a corresponding

operation ϖ (ξ1,…, ξn) such that the following diagram commutes:

 VALOCL

 ⟦ ω ⟧

 VAL

 ⟦ ϖ ⟧

 where α is an abstraction function.

 6

For sets: αset(v) =

For bags: αbag : VAL VALOCL defined by

αbag(v)=

Example:

Consider the OCL expression ξ1 → union(ξ2). The corresponding operator has semantics

⟦ ⟧ : VALτ list x VALτ list → VALτ list , i.e. ⟦ ⟧ is the concatenation of two VALτ list

According to the commutativity diagram, we have:

αset = (αset(v1), αset(v2)),

e.g. (w1, w2) = w1 # w2 where # is list concatenation.

 OCL equality on sets: ξ1 = ξ2

⟦ ≣ ⟧ : VALτ list x VALτ list → VALbool

 Where ≣ on lists is defined as follows:

 ≣ (w1,w2) = Eqlist ())

If we want to transform bags (in OCL) to nat (in semantics), then do type translation.

5. Translating OCL Expressions

 (ξ) is the translation of expression ξ wrt. object o, method occurrence m with

formal parameters .

 δ(self) = 0

 δ(x) =

 δ(result) = m.return

Static expressions

Temporal expressions

OCL

Types: sets, bags,

sequences

Semantics

Types: lists, nat,

bool,list

 7

 δ() = ui

 δ(ω(ξ1,…, ξn)) = ϖ (δ(ξ1),…, δ(ξn))

 δ(ξ.ω(ξ1,…, ξn)) = ϖ (δ(ξ),δ(ξ1),…, δ(ξn))

 δ(ξ→ω(ξ1,…, ξn)) = ditto

 δ(ξ→iterate (x1; x2= ξ2 | ξ3)) = with x1 ∈ δ(ξ1) from x2 = δ(ξ2) do = x2 = δ(ξ3)

6. Translating OCL Invariants

Context C inv ξ : the condition ξ must hold in any state where no method in

dom(C.meths) is active. During the execution of such method, some configuration may

even violate ξ. Let y ∈ LVAR and dom(C.meths) = {m1,…,mk}.Then:

δ(context C inv ξ) = □(∀x∈C ref:

(¬∃m1 ∈ x.M1 ref ∧ … ∧ ¬∃mk ∈ x.Mk ref) implies

)

Example:

Context Hotel

Inv rooms.guests = guests

The OCL translation of the example above:

□(∀x ∈ Hotel ref:

 (¬∃m ∈ x.checkIn ref ∧ ¬∃m` ∈ x.checkOut) implies Eqlist(δ(rooms.guests) = guests)

= □(∀x ∈ Hotel ref:

 (¬∃m ∈ x.checkIn ref ∧ ¬∃m` ∈ x.checkOut) implies Eqlist(sort(δ(rooms.guests)),

sort(δ(guests)))

= □(∀x ∈ Hotel ref:

 (¬∃m ∈ x.checkIn ref ∧ ¬∃m` ∈ x.checkOut) implies

Eqlist(sort(flat(x.rooms.guests)), sort(x.guests))

7. Translating Pre- and Post Condition
Main complication: for each ξ@pre expression in the post condition, we should

“remember” its value on evaluating the precondition. This is done using auxiliary

variables: for each ξ@i pre use auxiliary variable ui.

Extended precondition = +

Formally: = δ(ξpre) ∧ , where means “freeze”

value of ξ in ui

Then: △(context C: : M() pre ξpre post ξpost)

= ∀u1∈𝜏1, …, un ∈ 𝜏n : ∀z ∈ C ref : ∀m ∈ z.M ref:

□(m new ∧ implies m alive (term(m) ∧ δ(ξpost)))

 8

Example:

context Hotel : checkIn (g:Guest)

pre not guests→includes(g)

post guests→size=guests@pre→size+1 and guests→includes(g)

Let z,m ∈ LVAR, z = object class Hotel

 m = occurrence of method checkIn

△(context Hotel …. pre …. post …)

= ∀ u1 : ∀z ∈ Hotel ref : ∀m ∈ z.checkIn ref □(m new ∧ and δ(ξpost))

It remains to consider: ≣ ¬ (z.guests, m.g) ∧ u1= δ(guests)

 ≣ ¬ (z.guests, m.g) ∧ u1= z.guests

 Δ(ξpost) = (z.guests) = (u1) + 1 ∧ (z.guests, m.g)

Configuration during the execution of checkIn(g1):

