

Foundations of the UML

Lecture 4: Message Passing Automata

Joost-Pieter Katoen

with the kind permission of © Benedikt Bollig (ENS Cachan, F)

November 19, 2007

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
"p sends message a to q"
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
"p receives message a from q"
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q “
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q “
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q “
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q “
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q “
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q “
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q ”
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q ”
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q ”
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q ”
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

The architecture of a message-passing system

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

Definition (communication actions, channels)

- $Act_p^! := \{p!q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q ”
- $Act_p^? := \{p?q(a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q ”
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$
- $Com := \{(p!q(a), q?p(a)) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

Message-passing automata

Definition

A **message-passing automaton** (MPA) over \mathcal{P} and \mathbb{C} is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$

where

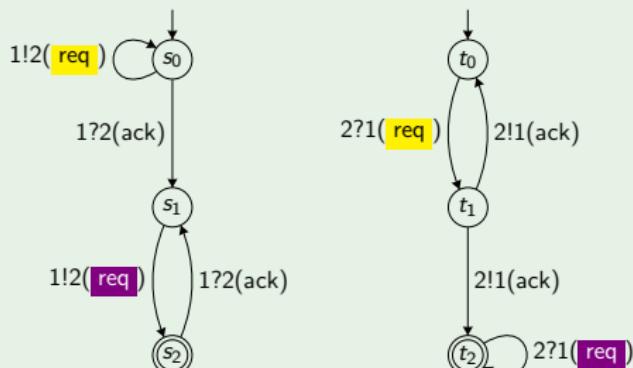
- \mathbb{D} is a nonempty finite set of **synchronization messages** (or **data**)
- for each $p \in \mathcal{P}$
 - ▶ S_p is a nonempty finite set of **local states** (the S_p are disjoint)
 - ▶ $\Delta_p \subseteq S_p \times Act_p \times \mathbb{D} \times S_p$ is a set of **local transitions**
- $s_{init} \in S_{\mathcal{A}}$ is the **global initial state**
- $F \subseteq S_{\mathcal{A}}$ is the set of **global final states**

hereby: $S_{\mathcal{A}} := \prod_{p \in \mathcal{P}} S_p$ is the set of **global states** of \mathcal{A}

Note: We sometimes write $s \xrightarrow{\sigma, m} p s'$ instead of $(s, \sigma, m, s') \in \Delta_p$.

Message-passing automata

Example

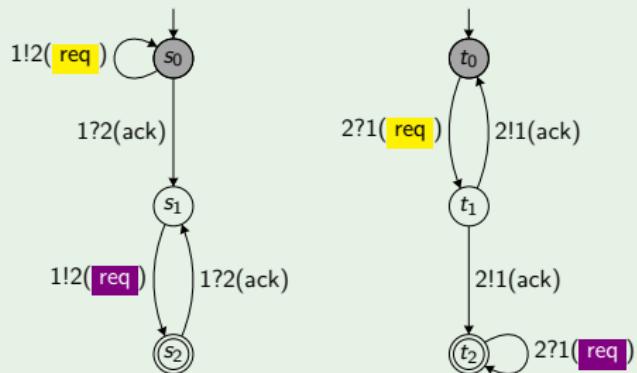
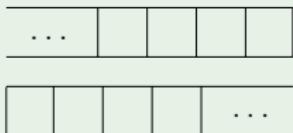


MPA \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

- $\mathbb{D} = \{\text{req}, \text{ack}, \text{req/ack}\}$
- $S_1 = \{s_0, s_1, s_2\}$
- $S_2 = \{t_0, t_1, t_2\}$
- $\Delta_1: s_0 \xrightarrow[2?1(\text{req})]{1!2(\text{req})} s_0 \dots$
- $\Delta_2: t_0 \xrightarrow[2?1(\text{req})]{2!1(\text{ack})} t_1 \dots$
- $s_{init} = (s_0, t_0)$
- $F = \{(s_2, t_2)\}$

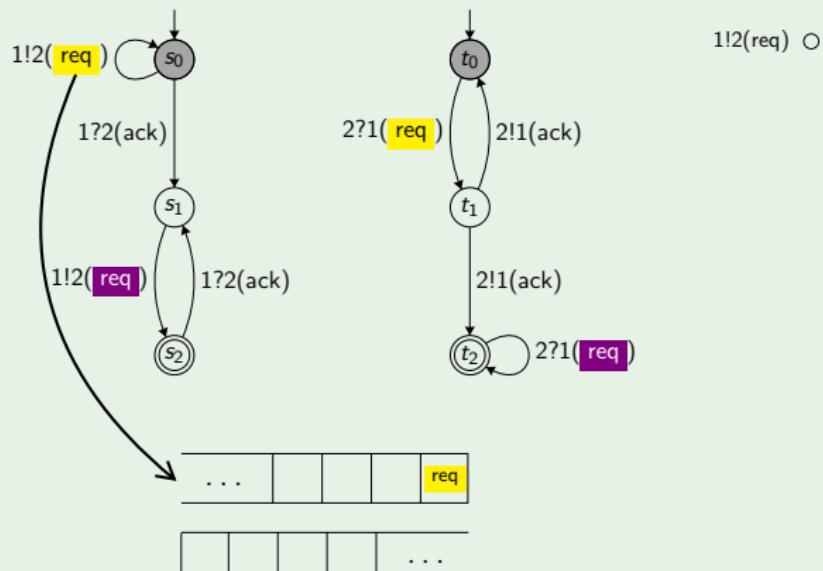
Message-passing automata

Example



Message-passing automata

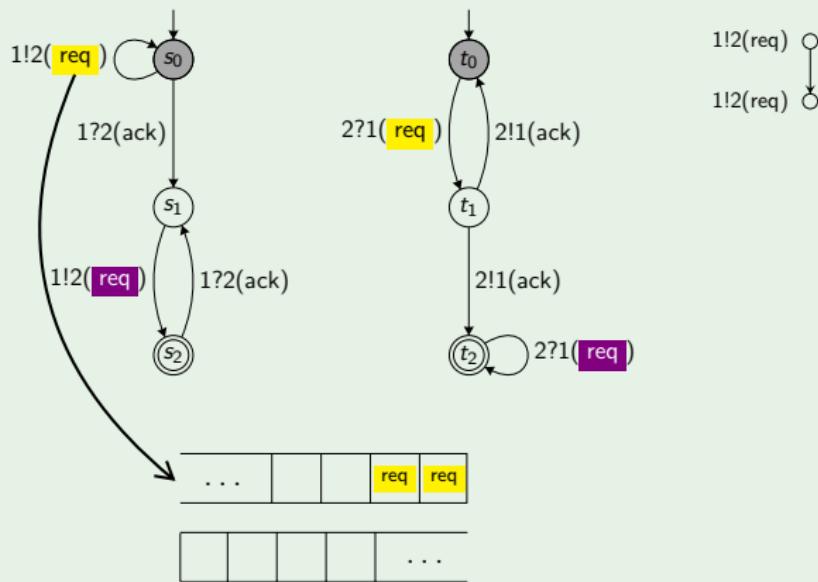
Example



$1!2(\text{req})$

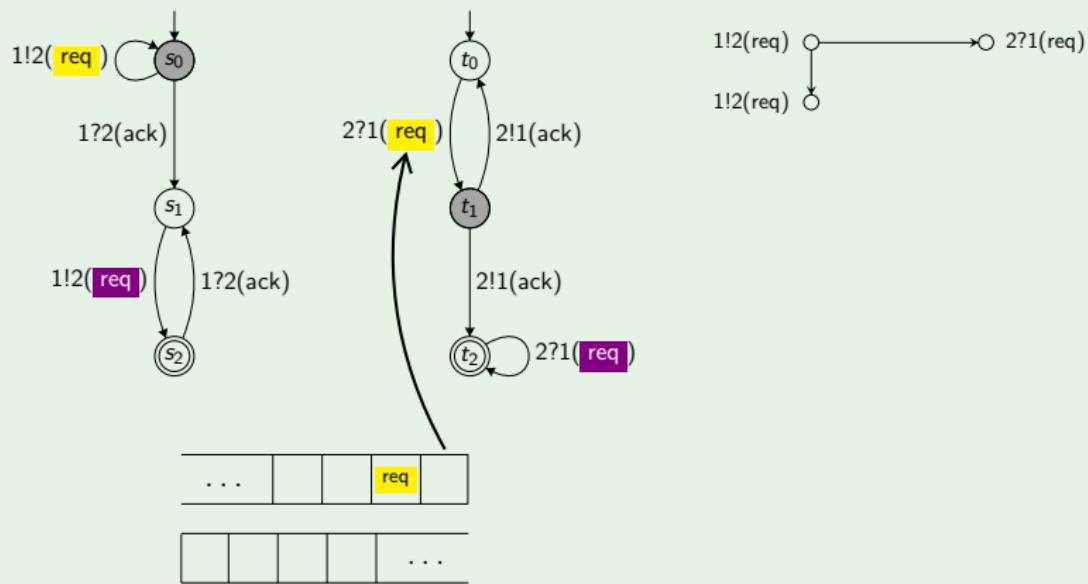
Message-passing automata

Example



Message-passing automata

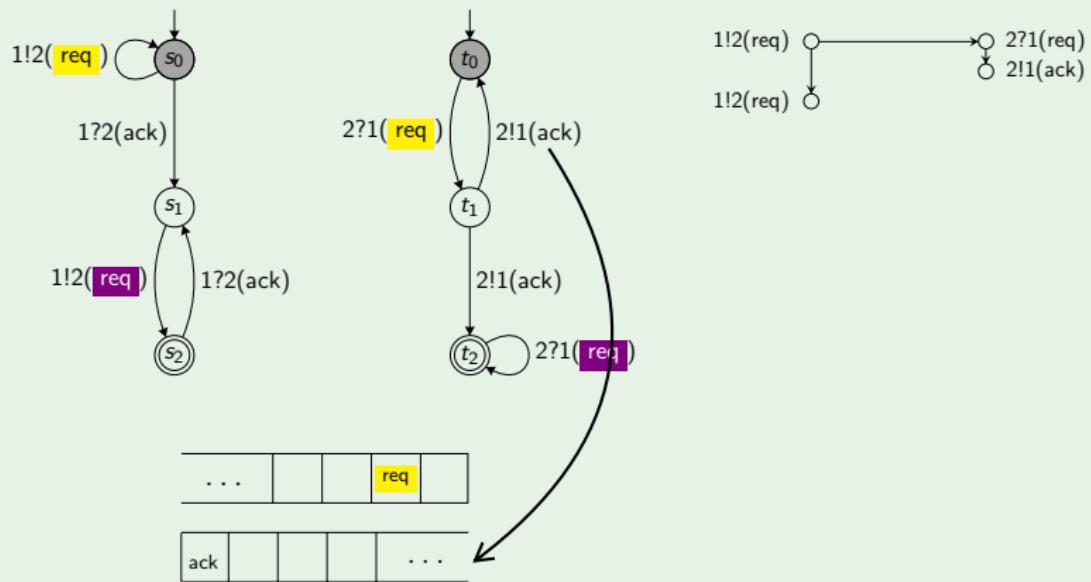
Example



$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$

Message-passing automata

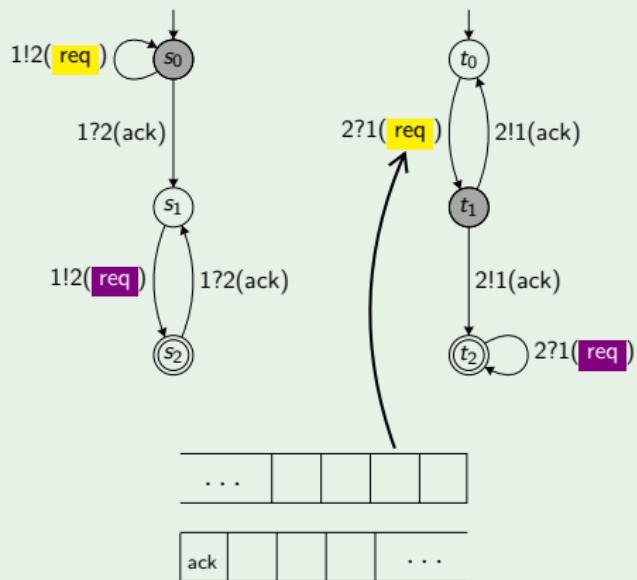
Example



$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$ $2!1(\text{ack})$

Message-passing automata

Example

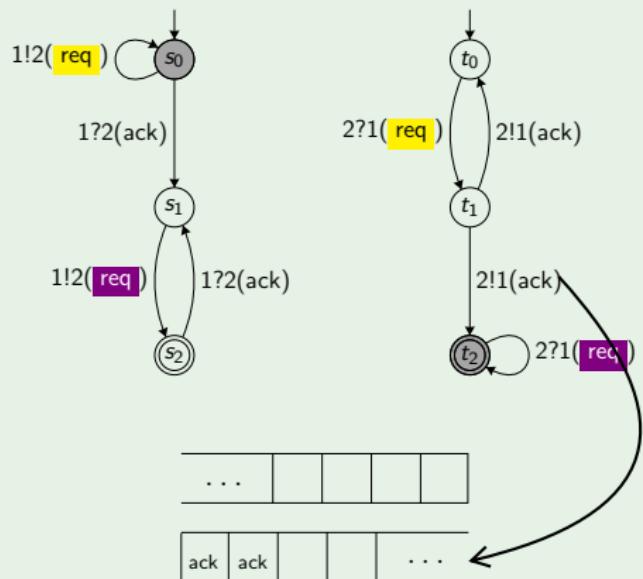


$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$ $2!1(\text{ack})$ $2?1(\text{req})$



Message-passing automata

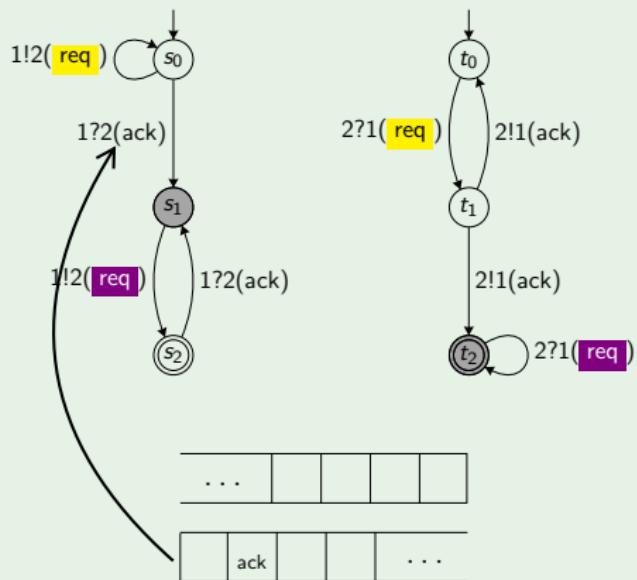
Example



$1!2(\text{req}) \ 1!2(\text{req}) \ 2?1(\text{req}) \ 2!1(\text{ack}) \ 2?1(\text{req}) \ 2!1(\text{ack})$

Message-passing automata

Example

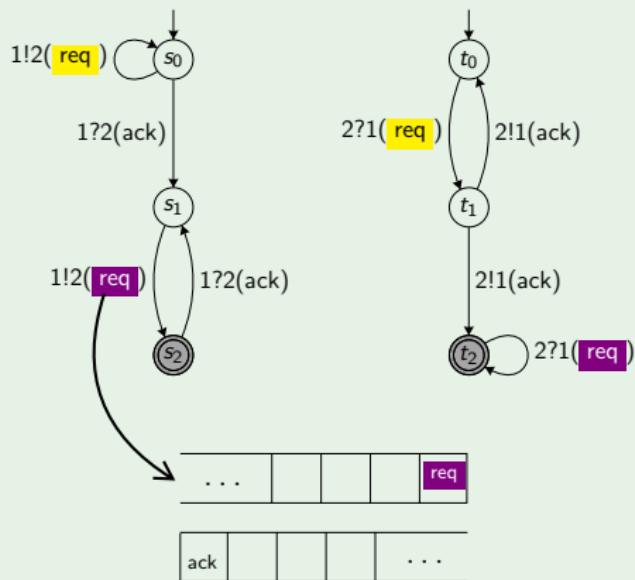


1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack)

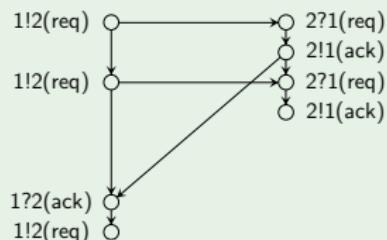


Message-passing automata

Example

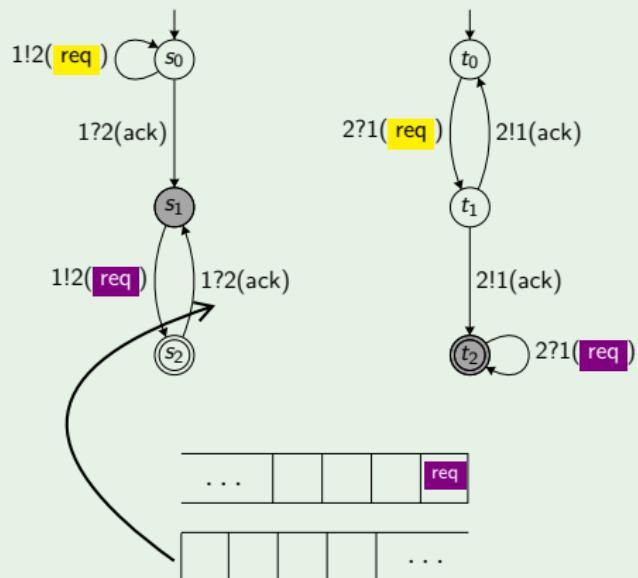


$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$ $2!1(\text{ack})$ $2?1(\text{req})$ $2!1(\text{ack})$ $1?2(\text{ack})$ $1!2(\text{req})$



Message-passing automata

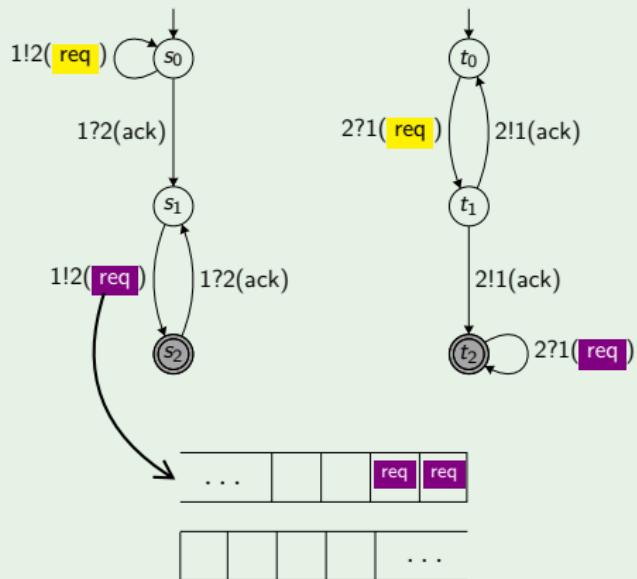
Example



$1!2(\text{req}) \ 1!2(\text{req}) \ 2?1(\text{req}) \ 2!1(\text{ack}) \ 2?1(\text{req}) \ 2!1(\text{ack}) \ 1?2(\text{ack}) \ 1!2(\text{req}) \ 1?2(\text{ack})$

Message-passing automata

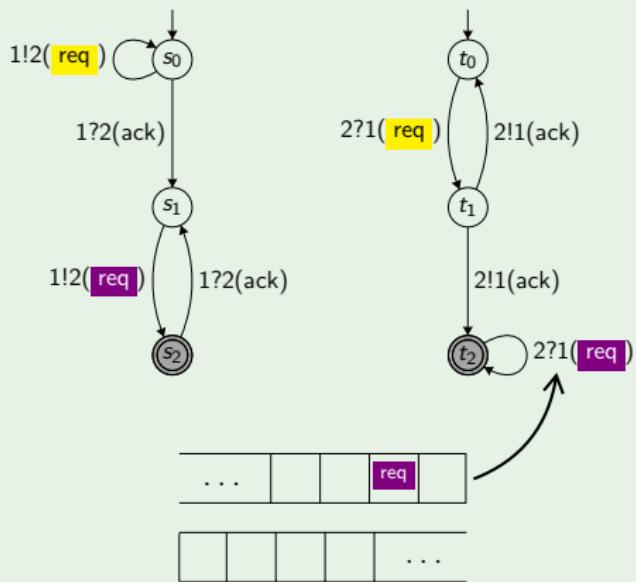
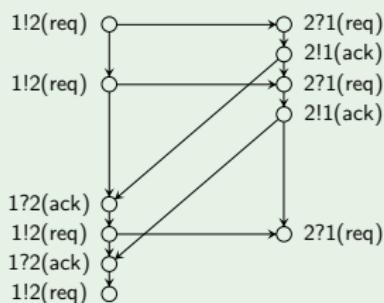
Example



$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$ $2!1(\text{ack})$ $2?1(\text{req})$ $2!1(\text{ack})$ $1?2(\text{ack})$ $1!2(\text{req})$ $1?2(\text{ack})$ $1!2(\text{req})$

Message-passing automata

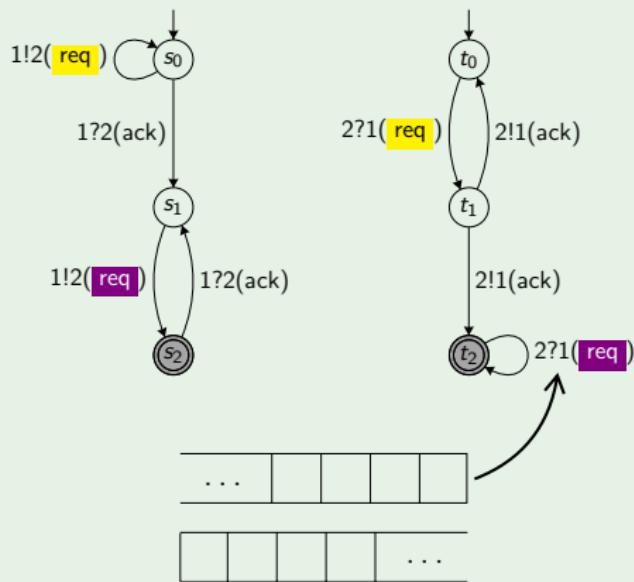
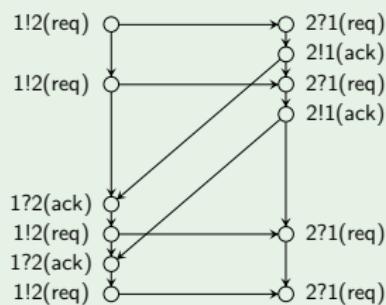
Example



1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req) 2?1(req)

Message-passing automata

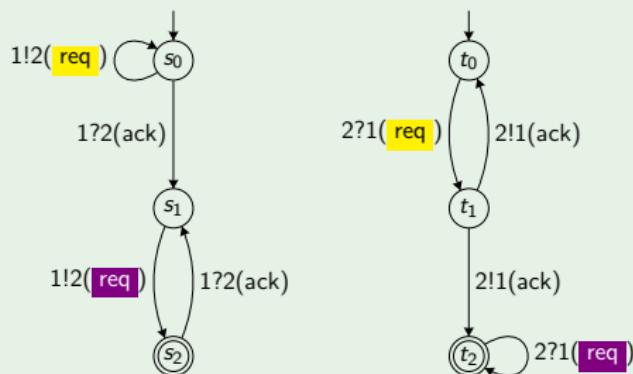
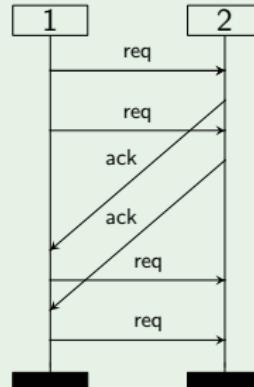
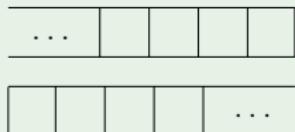
Example



$1!2(\text{req})$ $1!2(\text{req})$ $2?1(\text{req})$ $2!1(\text{ack})$ $2?1(\text{req})$ $2!1(\text{ack})$ $1?2(\text{ack})$ $1!2(\text{req})$ $1?2(\text{ack})$ $1!2(\text{req})$ $2?1(\text{req})$ $2?1(\text{req})$

Message-passing automata

Example



1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req) 2?1(req) 2?1(req)

Interpretation of MPAs

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

configurations of \mathcal{A} : $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \rightarrow (\mathbb{C} \times \mathbb{D})^*\}$

Definition (global step)

$\Rightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$ is defined as follows:

- sending a message: $((\bar{s}, \eta), p!q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - $(\bar{s}[p], p!q(a), m, \bar{s}'[p]) \in \Delta_p$
 - $\eta' = \eta[(p, q)/(a, m) \cdot \eta((p, q))]$
 - $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$
- receipt of a message: $((\bar{s}, \eta), p?q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - $(\bar{s}[p], p?q(a), m, \bar{s}'[p]) \in \Delta_p$
 - $\eta' = \eta'[(q, p)/\eta'((q, p)) \cdot (a, m)]$
 - $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$

Interpretation of MPAs

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

configurations of \mathcal{A} : $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \rightarrow (\mathbb{C} \times \mathbb{D})^*\}$

Definition (global step)

$\Rightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$ is defined as follows:

- sending a message: $((\bar{s}, \eta), p!q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - ▶ $(\bar{s}[p], p!q(a), m, \bar{s}'[p]) \in \Delta_p$
 - ▶ $\eta' = \eta[(p, q)/(a, m) \cdot \eta((p, q))]$
 - ▶ $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$
- receipt of a message: $((\bar{s}, \eta), p?q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - ▶ $(\bar{s}[p], p?q(a), m, \bar{s}'[p]) \in \Delta_p$
 - ▶ $\eta = \eta'[(q, p)/\eta'((q, p)) \cdot (a, m)]$
 - ▶ $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$

Interpretation of MPAs

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

configurations of \mathcal{A} : $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \rightarrow (\mathbb{C} \times \mathbb{D})^*\}$

Definition (global step)

$\Rightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$ is defined as follows:

- sending a message: $((\bar{s}, \eta), p!q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - ▶ $(\bar{s}[p], p!q(a), m, \bar{s}'[p]) \in \Delta_p$
 - ▶ $\eta' = \eta[(p, q)/(a, m) \cdot \eta((p, q))]$
 - ▶ $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$
- receipt of a message: $((\bar{s}, \eta), p?q(a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - ▶ $(\bar{s}[p], p?q(a), m, \bar{s}'[p]) \in \Delta_p$
 - ▶ $\eta = \eta'[(q, p)/\eta'((q, p)) \cdot (a, m)]$
 - ▶ $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$

Linearizations of an MPA

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

A **run** of \mathcal{A} on $\sigma_1 \dots \sigma_n \in Act^*$ is a sequence $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$ such that

- $\gamma_0 = (s_{init}, \eta_\varepsilon)$ with η_ε mapping any channel to ε
- $\gamma_{i-1} \xrightarrow{\sigma_i, m_i} \mathcal{A} \gamma_i$ for any $i \in \{1, \dots, n\}$

Run ρ is **accepting** if $\gamma_n \in F \times \{\eta_\varepsilon\}$.

Definition

The set of **linearizations** of \mathcal{A} :

$Lin(\mathcal{A}) := \{w \in Act^* \mid \text{there is an accepting run of } \mathcal{A} \text{ on } w\}$

Linearizations of an MPA

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

A **run** of \mathcal{A} on $\sigma_1 \dots \sigma_n \in Act^*$ is a sequence $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$ such that

- $\gamma_0 = (s_{init}, \eta_\varepsilon)$ with η_ε mapping any channel to ε
- $\gamma_{i-1} \xrightarrow{\sigma_i, m_i} \mathcal{A} \gamma_i$ for any $i \in \{1, \dots, n\}$

Run ρ is **accepting** if $\gamma_n \in F \times \{\eta_\varepsilon\}$.

Definition

The set of **linearizations** of \mathcal{A} :

$Lin(\mathcal{A}) := \{w \in Act^* \mid \text{there is an accepting run of } \mathcal{A} \text{ on } w\}$

Linearizations of an MPA

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be an MPA over \mathcal{P} and \mathbb{C} .

Definition

A **run** of \mathcal{A} on $\sigma_1 \dots \sigma_n \in Act^*$ is a sequence $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$ such that

- $\gamma_0 = (s_{init}, \eta_\varepsilon)$ with η_ε mapping any channel to ε
- $\gamma_{i-1} \xrightarrow{\sigma_i, m_i} \mathcal{A} \gamma_i$ for any $i \in \{1, \dots, n\}$

Run ρ is **accepting** if $\gamma_n \in F \times \{\eta_\varepsilon\}$.

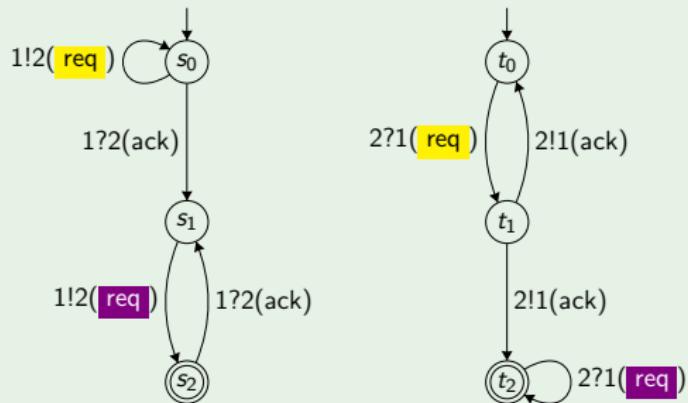
Definition

The set of **linearizations** of \mathcal{A} :

$Lin(\mathcal{A}) := \{w \in Act^* \mid \text{there is an accepting run of } \mathcal{A} \text{ on } w\}$

Linearizations of an example MPA

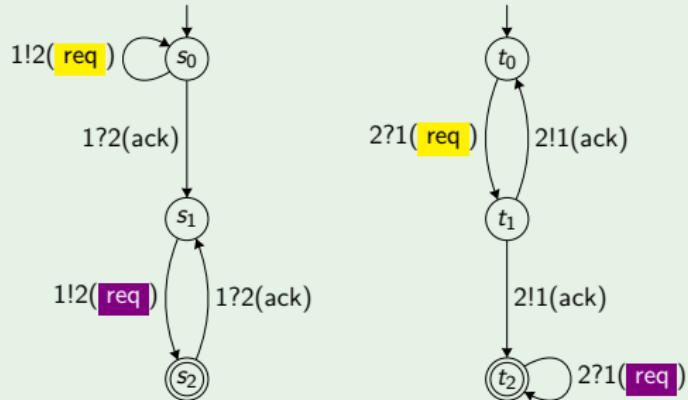
Example



MPA A over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

Linearizations of an example MPA

Example



MPA \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

$\text{Lin}(\mathcal{A}) = \{ w \in \text{Act}^* \mid \text{there is } n \geq 1 \text{ such that:}$

$$w \upharpoonright 1 = (1!2(\text{req}))^n (1?2(\text{ack}) 1!2(\text{req}))^n$$

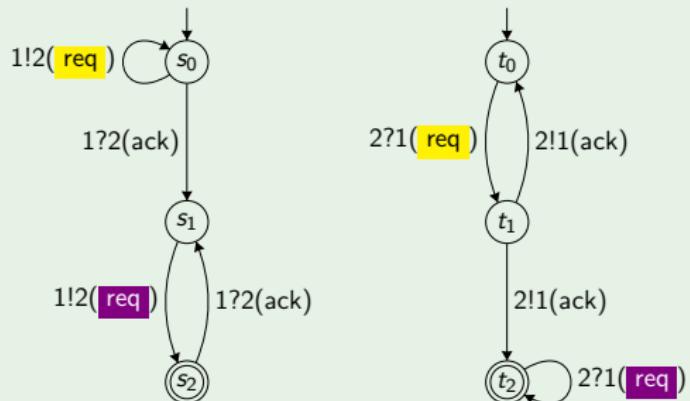
$$w \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^n$$

for any $u \in \text{Pref}(w)$ and $(p, q) \in \text{Ch}$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \geq 0 \}$$

Linearizations of an example MPA

Example

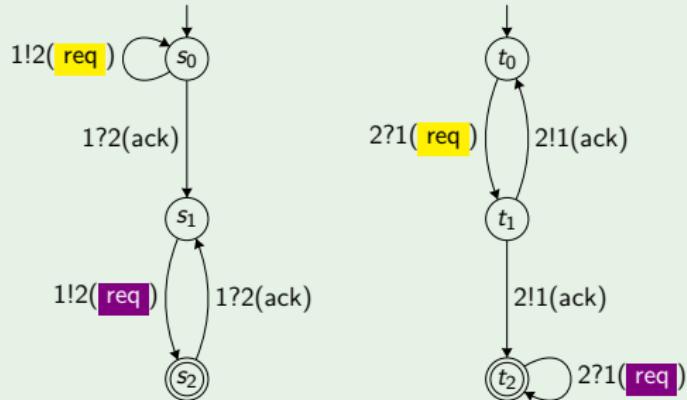


MPA A over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

- $1!2(\text{req})$ and $2!1(\text{ack})$ are always independent.
- $1!2(\text{req})$ and $1?2(\text{ack})$ are always dependent.
- $1!2(\text{req})$ and $2?1(\text{req})$ are sometimes independent.
 - ~ non-regular (word) languages
 - ~ actually more complicated than framework of traces

Linearizations and MSCs of an example MPA

Example



MPA \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

$\text{Lin}(\mathcal{A}) = \{ w \in \text{Act}^* \mid \text{there is } n \geq 1 \text{ such that:}$

$$w \upharpoonright 1 = (1!2(\text{req}))^n (1?2(\text{ack}) 1!2(\text{req}))^n$$

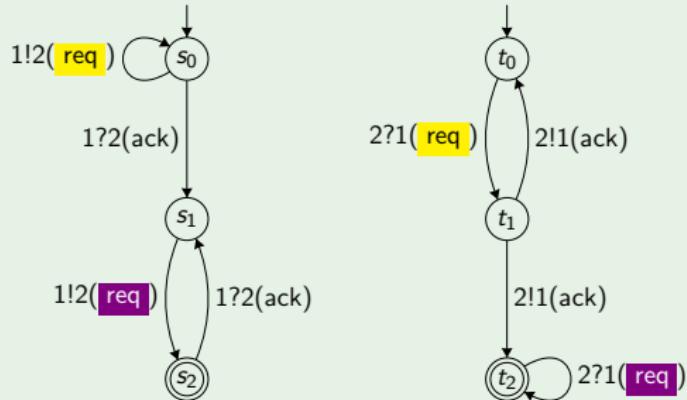
$$w \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^n$$

for any $u \in \text{Pref}(w)$ and $(p, q) \in \text{Ch}$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \geq 0 \}$$

Linearizations and MSCs of an example MPA

Example



MPA \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

$L(\mathcal{A}) = \left\{ \mathcal{M} \in \mathbb{M} \mid \text{there is } n \geq 1 \text{ such that:} \right.$

$$\mathcal{M} \restriction 1 = (1!2(\text{req}))^n \ (1?2(\text{ack}) \ 1!2(\text{req}))^n$$

$$\mathcal{M} \restriction 2 = (2?1(\text{req}) \ 2!1(\text{ack}))^n \ (2?1(\text{req}))^n \left. \right\}$$

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if \mathbb{C} is a singleton):

INPUT: MPA \mathcal{A} over \mathcal{P} and \mathbb{C}

QUESTION: Is $L(\mathcal{A})$ empty?

Proof (sketch)

Reduction from halting problem for Turing machine

$TM = (Q, \Sigma, \Delta, \square, q_0, q_f)$ to emptiness for MPA with two processes. Build MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{init}, F)$ over $\{1, 2\}$ and some singleton set such that $L(\mathcal{A}) \neq \emptyset$ iff TM can reach q_f .

- Process 1 sends current configurations to process 2.
- Process 2 chooses successor configurations and sends them back to 1.
- $\mathbb{D} = ((\Sigma \cup \{\square\}) \times (Q \cup \{-\})) \cup \{\#\}$

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if \mathbb{C} is a singleton):

INPUT: MPA \mathcal{A} over \mathcal{P} and \mathbb{C}

QUESTION: Is $L(\mathcal{A})$ empty?

Proof (sketch)

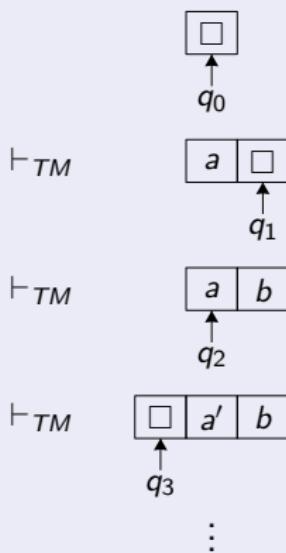
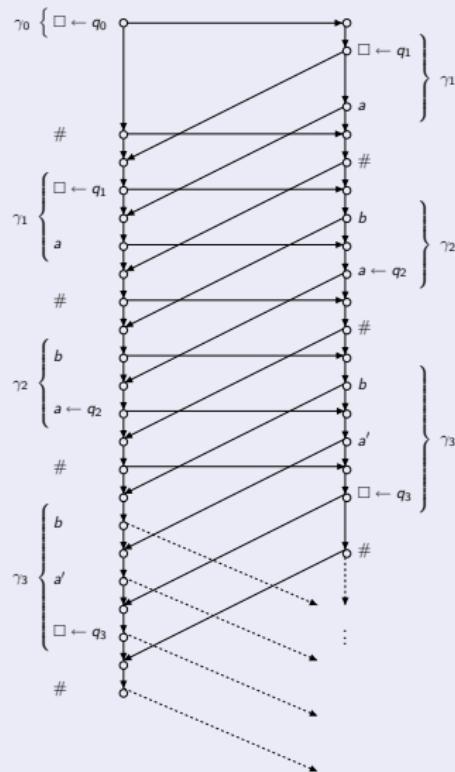
Reduction from halting problem for Turing machine

$TM = (Q, \Sigma, \Delta, \square, q_0, q_f)$ to emptiness for MPA with two processes. Build MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{init}, F)$ over $\{1, 2\}$ and some singleton set such that $L(\mathcal{A}) \neq \emptyset$ iff TM can reach q_f .

- Process 1 sends current configurations to process 2.
- Process 2 chooses successor configurations and sends them back to 1.
- $\mathbb{D} = ((\Sigma \cup \{\square\}) \times (Q \cup \{-\})) \cup \{\#\}$

An MPA simulating a Turing machine

Proof (contd.)



An MPA simulating a Turing machine

Proof (contd.)

- **Left or standstill transition:** Process 2 may just wait for a symbol containing a state of the Turing machine and to alter it correspondingly. In the example, the left-moving transition (q_2, a, a', L, q_3) is applied so that process 2
 - ▶ sends b unchanged back to process 1
 - ▶ detects (receives) $a \leftarrow q_2$
 - ▶ sends a' to process 1 entering a state indicating that the symbol to be sent next has to be equipped with q_3
 - ▶ receives $\#$ so that the symbol $\square \leftarrow q_3$ has to be inserted before returning $\#$
- **Right transition:** Process 2 has to guess what the position right before the head is. For example, provided process 2 decided in favor of (q_2, a, a', R, q_3) while reading the b , it would have to
 - ▶ send $b \leftarrow q_3$ instead of just b , entering some state $t(a \leftarrow q_2)$
 - ▶ receive $a \leftarrow q_2$ (no other symbol can be received in state $t(a \leftarrow q_2)$)
 - ▶ send a' back to process 1

An MPA simulating a Turing machine

Proof (contd.)

- **Left or standstill transition:** Process 2 may just wait for a symbol containing a state of the Turing machine and to alter it correspondingly. In the example, the left-moving transition (q_2, a, a', L, q_3) is applied so that process 2
 - ▶ sends b unchanged back to process 1
 - ▶ detects (receives) $a \leftarrow q_2$
 - ▶ sends a' to process 1 entering a state indicating that the symbol to be sent next has to be equipped with q_3
 - ▶ receives $\#$ so that the symbol $\square \leftarrow q_3$ has to be inserted before returning $\#$
- **Right transition:** Process 2 has to guess what the position right before the head is. For example, provided process 2 decided in favor of (q_2, a, a', R, q_3) while reading the b , it would have to
 - ▶ send $b \leftarrow q_3$ instead of just b , entering some state $t(a \leftarrow q_2)$
 - ▶ receive $a \leftarrow q_2$ (no other symbol can be received in state $t(a \leftarrow q_2)$)
 - ▶ send a' back to process 1

An MPA simulating a Turing machine

Proof (contd.)

- Introduce local final states s_f and t_f , one for process 1 and one for process 2, respectively (i.e., $F = \{(s_f, t_f)\}$ and \mathcal{A} is locally accepting).
- At any time, process 1 may switch into s_f , in which arbitrary and arbitrarily many messages can be received to empty channel $(2, 1)$.
- Process 2 is allowed to move into t_f and to empty the channel $(1, 2)$ as soon as it receives a letter $c \leftarrow q_f$ for some c .
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in \mathcal{A} . □

An MPA simulating a Turing machine

Proof (contd.)

- Introduce local final states s_f and t_f , one for process 1 and one for process 2, respectively (i.e., $F = \{(s_f, t_f)\}$ and \mathcal{A} is locally accepting).
- At any time, process 1 may switch into s_f , in which arbitrary and arbitrarily many messages can be received to empty channel $(2, 1)$.
- Process 2 is allowed to move into t_f and to empty the channel $(1, 2)$ as soon as it receives a letter $c \leftarrow q_f$ for some c .
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in \mathcal{A} . □

An MPA simulating a Turing machine

Proof (contd.)

- Introduce local final states s_f and t_f , one for process 1 and one for process 2, respectively (i.e., $F = \{(s_f, t_f)\}$ and \mathcal{A} is locally accepting).
- At any time, process 1 may switch into s_f , in which arbitrary and arbitrarily many messages can be received to empty channel (2, 1).
- Process 2 is allowed to move into t_f and to empty the channel (1, 2) as soon as it receives a letter $c \leftarrow q_f$ for some c .
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in \mathcal{A} . □

An MPA simulating a Turing machine

Proof (contd.)

- Introduce local final states s_f and t_f , one for process 1 and one for process 2, respectively (i.e., $F = \{(s_f, t_f)\}$ and \mathcal{A} is locally accepting).
- At any time, process 1 may switch into s_f , in which arbitrary and arbitrarily many messages can be received to empty channel (2, 1).
- Process 2 is allowed to move into t_f and to empty the channel (1, 2) as soon as it receives a letter $c \leftarrow q_f$ for some c .
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in \mathcal{A} . □

Towards subclasses of MPA: Boundedness

Definition (B -bounded words)

Let $B \geq 1$. A word $w \in \text{Act}^*$ is called **B -bounded** if, for any $u \in \text{Pref}(w)$ and any channel $(p, q) \in \text{Ch}$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \leq B$$

Example

$1!2(a) 1!2(b) 2?1(a) 2?1(b)$ is 2-bounded but not 1-bounded.

Definition (bounded MSCs)

Let $B \geq 1$. An MSC $\mathcal{M} \in \mathbb{M}$ is called

- universally B -bounded ($\forall B$ -bounded) if $\text{Lin}(\mathcal{M}) = \text{Lin}^B(\mathcal{M})$
where $\text{Lin}^B(\mathcal{M}) := \{w \in \text{Lin}(\mathcal{M}) \mid w \text{ is } B\text{-bounded}\}$.
- existentially B -bounded ($\exists B$ -bounded) if $\text{Lin}(\mathcal{M}) \cap \text{Lin}^B(\mathcal{M}) \neq \emptyset$.

Towards subclasses of MPA: Boundedness

Definition (B -bounded words)

Let $B \geq 1$. A word $w \in \text{Act}^*$ is called **B -bounded** if, for any $u \in \text{Pref}(w)$ and any channel $(p, q) \in \text{Ch}$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \leq B$$

Example

$1!2(a) 1!2(b) 2?1(a) 2?1(b)$ is **2**-bounded but not **1**-bounded.

Definition (bounded MSCs)

Let $B \geq 1$. An MSC $\mathcal{M} \in \mathbb{M}$ is called

- universally B -bounded ($\forall B$ -bounded) if $\text{Lin}(\mathcal{M}) = \text{Lin}^B(\mathcal{M})$
where $\text{Lin}^B(\mathcal{M}) := \{w \in \text{Lin}(\mathcal{M}) \mid w \text{ is } B\text{-bounded}\}$.
- existentially B -bounded ($\exists B$ -bounded) if $\text{Lin}(\mathcal{M}) \cap \text{Lin}^B(\mathcal{M}) \neq \emptyset$.

Towards subclasses of MPA: Boundedness

Definition (B -bounded words)

Let $B \geq 1$. A word $w \in Act^*$ is called **B -bounded** if, for any $u \in Pref(w)$ and any channel $(p, q) \in Ch$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \leq B$$

Example

$1!2(a) \ 1!2(b) \ 2?1(a) \ 2?1(b)$ is **2**-bounded but not **1**-bounded.

Definition (bounded MSCs)

Let $B \geq 1$. An MSC $\mathcal{M} \in \mathbb{M}$ is called

- **universally B -bounded** ($\forall B$ -bounded) if $Lin(\mathcal{M}) = Lin^B(\mathcal{M})$
where $Lin^B(\mathcal{M}) := \{w \in Lin(\mathcal{M}) \mid w \text{ is } B\text{-bounded}\}$.
- **existentially B -bounded** ($\exists B$ -bounded) if $Lin(\mathcal{M}) \cap Lin^B(\mathcal{M}) \neq \emptyset$.

Towards subclasses of MPA: Boundedness

Definition (B -bounded words)

Let $B \geq 1$. A word $w \in \text{Act}^*$ is called **B -bounded** if, for any $u \in \text{Pref}(w)$ and any channel $(p, q) \in \text{Ch}$:

$$\sum_{a \in \mathbb{C}} |u|_{p!q(a)} - \sum_{a \in \mathbb{C}} |u|_{q?p(a)} \leq B$$

Example

$1!2(a) \ 1!2(b) \ 2?1(a) \ 2?1(b)$ is **2**-bounded but not **1**-bounded.

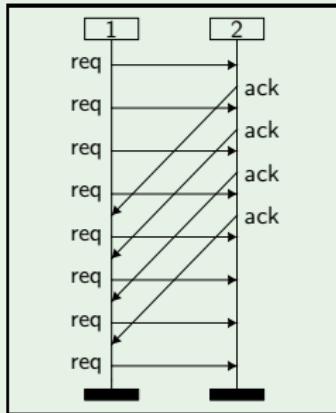
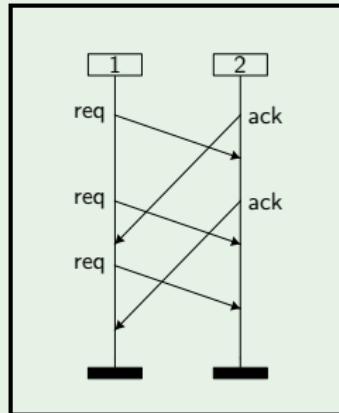
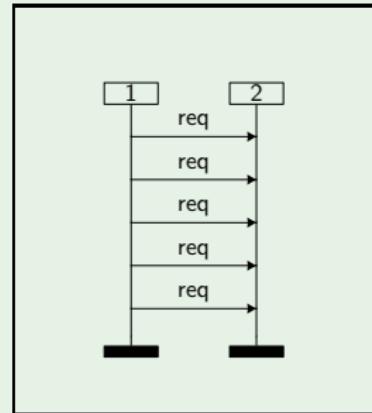
Definition (bounded MSCs)

Let $B \geq 1$. An MSC $\mathcal{M} \in \mathbb{M}$ is called

- **universally B -bounded** ($\forall B$ -bounded) if $\text{Lin}(\mathcal{M}) = \text{Lin}^B(\mathcal{M})$
where $\text{Lin}^B(\mathcal{M}) := \{w \in \text{Lin}(\mathcal{M}) \mid w \text{ is } B\text{-bounded}\}$.
- **existentially B -bounded** ($\exists B$ -bounded) if $\text{Lin}(\mathcal{M}) \cap \text{Lin}^B(\mathcal{M}) \neq \emptyset$.

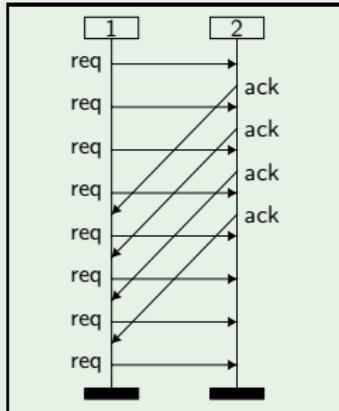
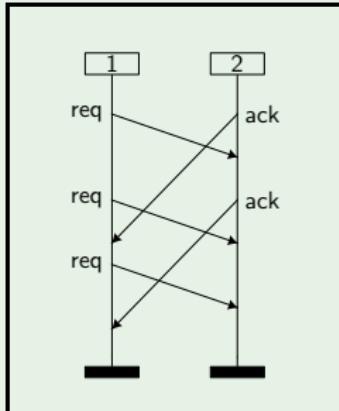
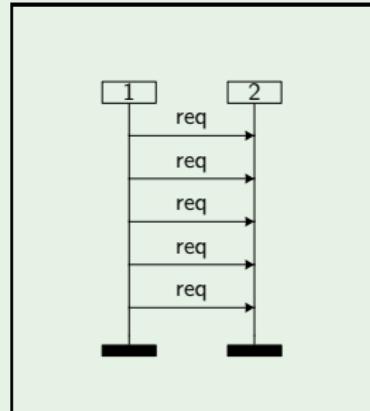
Bounded MSCs

Example



Bounded MSCs

Example



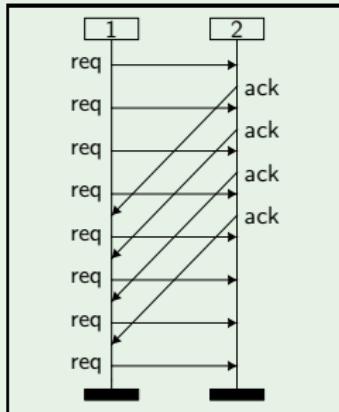
$\forall 4$ -bounded

$\exists 2$ -bounded

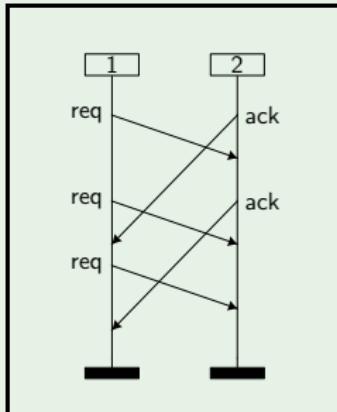
not $\exists 1$ -bounded

Bounded MSCs

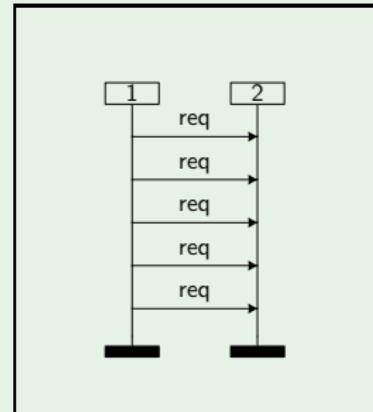
Example



$\forall 4\text{-bounded}$
 $\exists 2\text{-bounded}$
not $\exists 1\text{-bounded}$



$\forall 3\text{-bounded}$
 $\exists 1\text{-bounded}$

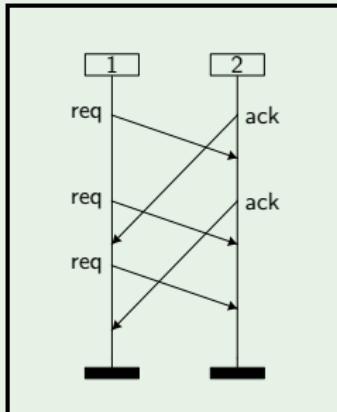


Bounded MSCs

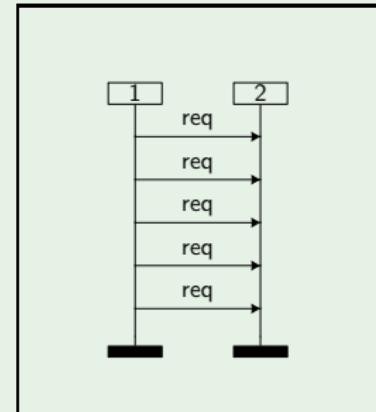
Example



$\forall 4\text{-bounded}$
 $\exists 2\text{-bounded}$
not $\exists 1\text{-bounded}$



$\forall 3\text{-bounded}$
 $\exists 1\text{-bounded}$



$\forall 5\text{-bounded}$
 $\exists 1\text{-bounded}$

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable

hereby: $\mathbb{M}_{\forall B}$ is the set of $\forall B$ -bounded MSCs

$\mathbb{M}_{\exists B}$ is the set of $\exists B$ -bounded MSCs

A zoo of MPA

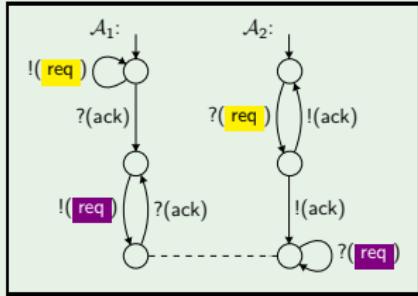
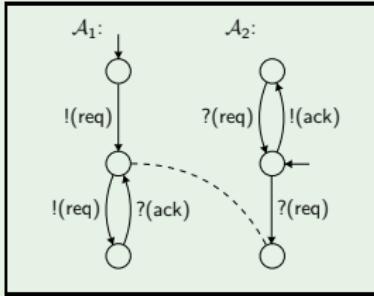
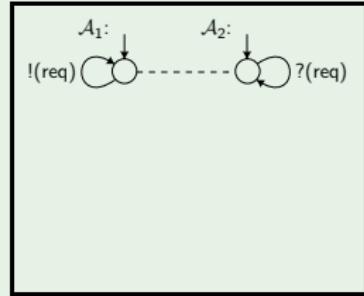
Definition

An MPA $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ over \mathcal{P} and \mathbb{C} is called

- **$\forall B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\forall B}$.
- **strongly B -bounded** if, for any $u \in Act^*$:
if there is a run of \mathcal{A} on u , then u is B -bounded.
- **$\exists B$ -bounded** if $L(\mathcal{A}) \subseteq \mathbb{M}_{\exists B}$.
- a **product** MPA if $|\mathbb{D}| = 1$.
- **locally accepting** if $F = \prod_{p \in \mathcal{P}} F_p$ for some sets $F_p \subseteq S_p$, $p \in \mathcal{P}$.
- **deadlock-free** if from every reachable configuration a final configuration is reachable
- **deterministic** if the following holds:
 - ▶ if $s \xrightarrow{p!q(a), m_1} s_1$ and $s \xrightarrow{p!q(a), m_2} s_2$, then $s_1 = s_2$ and $m_1 = m_2$
 - ▶ if $s \xrightarrow{p?q(a), m} s_1$ and $s \xrightarrow{p?q(a), m} s_2$, then $s_1 = s_2$

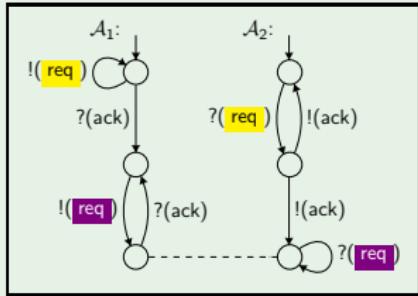
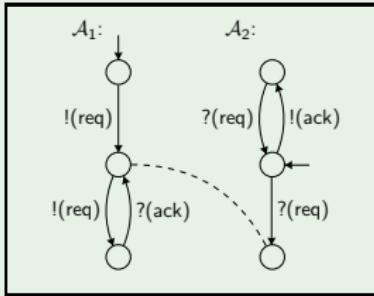
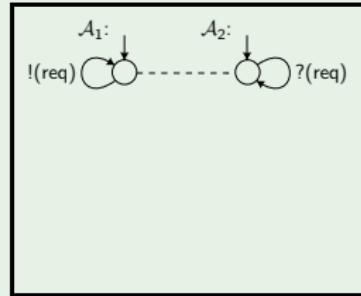
A zoo of MPA

Example



A zoo of MPA

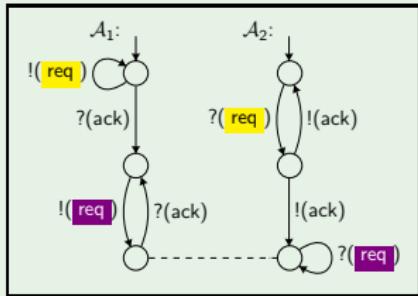
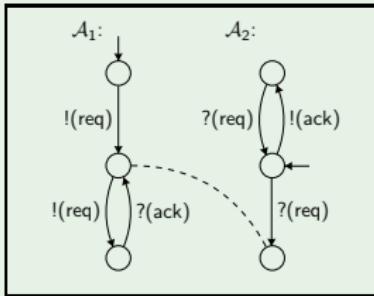
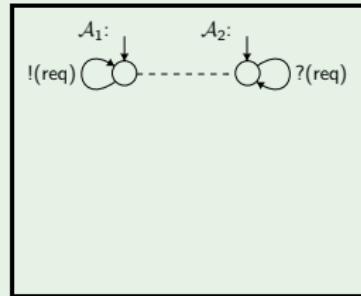
Example



not $\exists B$ -bounded f.a. B
not a product MPA
locally accepting
not safe
not deterministic

A zoo of MPA

Example



not $\exists B$ -bounded f.a. B
not a product MPA
locally accepting
not safe
not deterministic

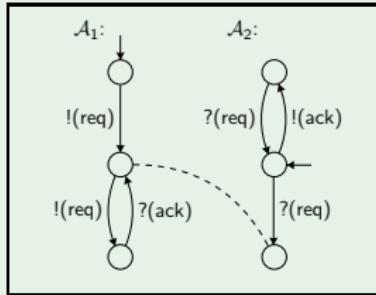
strongly $\forall 3$ -bounded
product MPA
locally accepting
safe
deterministic

A zoo of MPA

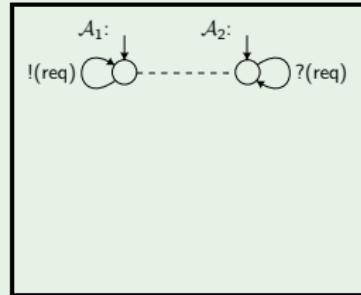
Example



not $\exists B$ -bounded f.a. B
not a product MPA
locally accepting
not safe
not deterministic



strongly $\forall 3$ -bounded
product MPA
locally accepting
safe
deterministic



not $\forall B$ -bound.f.a. B
 $\exists 1$ -bounded
product MPA
locally accepting
safe
deterministic

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M}[1] = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M}[2] = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA

$\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{init}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n)[1]$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n)[2]$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i + j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For $m, n \geq 1$, let $\mathcal{M}(m, n) \in \mathbb{M}$ over $(\{1, 2\}, \{\text{req}, \text{ack}\})$ be given by:

- $\mathcal{M} \upharpoonright 1 = (1!2(\text{req}))^m (1?2(\text{ack}) 1!2(\text{req}))^n$
- $\mathcal{M} \upharpoonright 2 = (2?1(\text{req}) 2!1(\text{ack}))^n (2?1(\text{req}))^m$

There is no product MPA over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{\mathcal{M}(n, n) \mid n \geq 1\}$. Suppose there is a product MPA $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{\text{init}}, F)$ with $L(\mathcal{A}) = L$. For any $n \geq 1$, there is an accepting run of \mathcal{A} on $\mathcal{M}(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i \geq 1$ to read the first n letters of $\mathcal{M}(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j \geq 1$ to read the last n letters of $\mathcal{M}(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $\mathcal{M}(n + (i \cdot j), n) \notin L$. □