
Foundations of the UML
Lecture 4: Message Passing Automata

Joost-Pieter Katoen

with the kind permission of c© Benedikt Bollig (ENS Cachan, F)

November 19, 2007

RWTH (MOVES) Foundations of the UML November 19, 2007 1 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act!
p := {p!q(a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)

“p sends message a to q“

Act?
p := {p?q(a) | q ∈ P \ {p}, a ∈ C}

“p receives message a from q“

Actp := Act!
p ∪ Act?

p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q}
Com := {(p!q(a), q?p(a)) | (p, q) ∈ Ch, a ∈ C}
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

Message-passing automata

Definition

A message-passing automaton (MPA) over P and C is a structure

A = (((Sp,∆p))p∈P , D, sinit ,F)

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P
� Sp is a nonempty finite set of local states (the Sp are disjoint)
� ∆p ⊆ Sp × Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state

F ⊆ SA is the set of global final states

hereby: SA :=
∏

p∈P Sp is the set of global states of A
Note: We sometimes write s

σ,m−→p s ′ instead of (s, σ,m, s ′) ∈ ∆p.

RWTH (MOVES) Foundations of the UML November 19, 2007 76 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

D = { , , }
S1 = {s0, s1, s2}
S2 = {t0, t1, t2}
∆1: s0

1!2(req)−−−−−→1 s0 ...

∆2: t0
2?1(req)−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

. . .

. . .

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req. . .

. . .

1!2(req)

1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

reqreq. . .

. . .

1!2(req)

1!2(req)

1!2(req) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req. . .

. . .

1!2(req)

1!2(req)

2?1(req)

1!2(req) 1!2(req) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req

ack

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

1!2(req) 1!2(req) 2?1(req) 2!1(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

ack

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

ack ack

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

ack

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req

ack

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req)

1?2(ack)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

reqreq. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req)

1?2(ack)

1!2(req)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

req. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req)

1?2(ack)

1!2(req)

2?1(req)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

. . .

. . .

1!2(req)

1!2(req)

2?1(req)

2!1(ack)

2?1(req)

2!1(ack)

1?2(ack)

1!2(req)

1?2(ack)

1!2(req)

2?1(req)

2?1(req)

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req) 2?1(req) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

. . .

. . .

1 2
req

req

ack

ack

req

req

1!2(req) 1!2(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?2(ack) 1!2(req) 1?2(ack) 1!2(req) 2?1(req) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Interpretation of MPAs

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over P and C.

Definition

configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s , η), p!q(a),m, (s ′, η′)) ∈ =⇒A if
� (s[p], p!q(a), m, s ′[p]) ∈ ∆p

� η′ = η[(p, q)/(a, m) · η((p, q))]

� s[r] = s ′[r] for all r ∈ P \ {p}
receipt of a message: ((s , η), p?q(a),m, (s ′, η′)) ∈ =⇒A if

� (s[p], p?q(a), m, s ′[p]) ∈ ∆p

� η = η′[(q, p)/η′((q, p)) · (a, m)]

� s[r] = s ′[r] for all r ∈ P \ {p}
RWTH (MOVES) Foundations of the UML November 19, 2007 78 / 104

Interpretation of MPAs

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over P and C.

Definition

configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s , η), p!q(a),m, (s ′, η′)) ∈ =⇒A if
� (s[p], p!q(a), m, s ′[p]) ∈ ∆p

� η′ = η[(p, q)/(a, m) · η((p, q))]

� s[r] = s ′[r] for all r ∈ P \ {p}
receipt of a message: ((s , η), p?q(a),m, (s ′, η′)) ∈ =⇒A if

� (s[p], p?q(a), m, s ′[p]) ∈ ∆p

� η = η′[(q, p)/η′((q, p)) · (a, m)]

� s[r] = s ′[r] for all r ∈ P \ {p}
RWTH (MOVES) Foundations of the UML November 19, 2007 78 / 104

Interpretation of MPAs

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over P and C.

Definition

configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s , η), p!q(a),m, (s ′, η′)) ∈ =⇒A if
� (s[p], p!q(a), m, s ′[p]) ∈ ∆p

� η′ = η[(p, q)/(a, m) · η((p, q))]

� s[r] = s ′[r] for all r ∈ P \ {p}
receipt of a message: ((s , η), p?q(a),m, (s ′, η′)) ∈ =⇒A if

� (s[p], p?q(a), m, s ′[p]) ∈ ∆p

� η = η′[(q, p)/η′((q, p)) · (a, m)]

� s[r] = s ′[r] for all r ∈ P \ {p}
RWTH (MOVES) Foundations of the UML November 19, 2007 78 / 104

Linearizations of an MPA

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over over P and C.

Definition

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1 mn γn

such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi ,mi
===⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition

The set of linearizations of A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an MPA

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over over P and C.

Definition

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1 mn γn

such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi ,mi
===⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition

The set of linearizations of A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an MPA

Let A = (((Sp,∆p))p∈P , D, sinit ,F) be an MPA over over P and C.

Definition

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1 mn γn

such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi ,mi
===⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition

The set of linearizations of A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an example MPA

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

RWTH (MOVES) Foundations of the UML November 19, 2007 80 / 104

Linearizations of an example MPA

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ≥ 1 such that:

w �1 = (1!2(req))n (1?2(ack) 1!2(req))n

w �2 = (2?1(req) 2!1(ack))n (2?1(req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≥ 0
}

RWTH (MOVES) Foundations of the UML November 19, 2007 80 / 104

Linearizations of an example MPA

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

1!2(req) and 2!1(ack) are always independent.

1!2(req) and 1?2(ack) are always dependent.

1!2(req) and 2?1(req) are sometimes independent.

� non-regular (word) languages

� actually more complicated than framework of traces

RWTH (MOVES) Foundations of the UML November 19, 2007 80 / 104

Linearizations and MSCs of an example MPA

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

Lin(A) =
{

w ∈ Act∗ | there is n ≥ 1 such that:

w �1 = (1!2(req))n (1?2(ack) 1!2(req))n

w �2 = (2?1(req) 2!1(ack))n (2?1(req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≥ 0
}

RWTH (MOVES) Foundations of the UML November 19, 2007 81 / 104

Linearizations and MSCs of an example MPA

Example

s0

s1

s2

t0

t1

t2

1!2(req)

2?1(req)

1?2(ack)

2!1(ack)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

MPA A over
{1, 2} and {req, ack}

L(A) =
{

M ∈M | there is n ≥ 1 such that:

M�1 = (1!2(req))n (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))n
}

RWTH (MOVES) Foundations of the UML November 19, 2007 81 / 104

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

Input: MPA A over P and C

Question: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine
TM = (Q,Σ,∆,�, q0, qf) to emptiness for MPA with two processes. Build
MPA A = ((A1,A2), D, sinit ,F) over {1, 2} and some singleton set such
that L(A) �= ∅ iff TM can reach qf .

Process 1 sends current configurations to process 2.

Process 2 chooses successor configurations and sends them back to 1.

D =
(
(Σ ∪ {�}) × (Q ∪ { })

)
∪ {#}

RWTH (MOVES) Foundations of the UML November 19, 2007 82 / 104

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

Input: MPA A over P and C

Question: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine
TM = (Q,Σ,∆,�, q0, qf) to emptiness for MPA with two processes. Build
MPA A = ((A1,A2), D, sinit ,F) over {1, 2} and some singleton set such
that L(A) �= ∅ iff TM can reach qf .

Process 1 sends current configurations to process 2.

Process 2 chooses successor configurations and sends them back to 1.

D =
(
(Σ ∪ {�}) × (Q ∪ { })

)
∪ {#}

RWTH (MOVES) Foundations of the UML November 19, 2007 82 / 104

An MPA simulating a Turing machine

Proof (contd.)

�

q0

a �

q1

a

q2

b

�

q3

a′ b

...

	TM

	TM

	TM

γ0

{

γ1




γ2




γ3


 ...




γ1




γ2




γ3

�← q0

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

RWTH (MOVES) Foundations of the UML November 19, 2007 83 / 104

An MPA simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(q2, a, a

′,L, q3) is applied so that process 2
� sends b unchanged back to process 1
� detects (receives) a← q2

� sends a′ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with q3

� receives # so that the symbol �← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right before
the head is. For example, provided process 2 decided in favor of
(q2, a, a

′,R , q3) while reading the b, it would have to
� send b ← q3 instead of just b, entering some state t(a← q2)
� receive a← q2 (no other symbol can be received in state t(a← q2))
� send a′ back to process 1

RWTH (MOVES) Foundations of the UML November 19, 2007 84 / 104

An MPA simulating a Turing machine

Proof (contd.)

Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(q2, a, a

′,L, q3) is applied so that process 2
� sends b unchanged back to process 1
� detects (receives) a← q2

� sends a′ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with q3

� receives # so that the symbol �← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right before
the head is. For example, provided process 2 decided in favor of
(q2, a, a

′,R , q3) while reading the b, it would have to
� send b ← q3 instead of just b, entering some state t(a← q2)
� receive a← q2 (no other symbol can be received in state t(a← q2))
� send a′ back to process 1

RWTH (MOVES) Foundations of the UML November 19, 2007 84 / 104

An MPA simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel (1, 2)
as soon as it receives a letter c ← qf for some c .

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel (1, 2)
as soon as it receives a letter c ← qf for some c .

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel (1, 2)
as soon as it receives a letter c ← qf for some c .

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel (1, 2)
as soon as it receives a letter c ← qf for some c .

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B ≥ 1. A word w ∈ Act∗ is called B-bounded if, for any u ∈ Pref (w)
and any channel (p, q) ∈ Ch:∑

a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≤ B

Example

1!2(a) 1!2(b) 2?1(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)

Let B ≥ 1. An MSC M ∈M is called

universally B-bounded (∀B-bounded) if Lin(M) = LinB(M)
where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.
existentially B-bounded (∃B-bounded) if Lin(M) ∩ LinB(M) �= ∅.
RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B ≥ 1. A word w ∈ Act∗ is called B-bounded if, for any u ∈ Pref (w)
and any channel (p, q) ∈ Ch:∑

a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≤ B

Example

1!2(a) 1!2(b) 2?1(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)

Let B ≥ 1. An MSC M ∈M is called

universally B-bounded (∀B-bounded) if Lin(M) = LinB(M)
where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.
existentially B-bounded (∃B-bounded) if Lin(M) ∩ LinB(M) �= ∅.
RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B ≥ 1. A word w ∈ Act∗ is called B-bounded if, for any u ∈ Pref (w)
and any channel (p, q) ∈ Ch:∑

a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≤ B

Example

1!2(a) 1!2(b) 2?1(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)

Let B ≥ 1. An MSC M ∈M is called

universally B-bounded (∀B-bounded) if Lin(M) = LinB(M)
where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.
existentially B-bounded (∃B-bounded) if Lin(M) ∩ LinB(M) �= ∅.
RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B ≥ 1. A word w ∈ Act∗ is called B-bounded if, for any u ∈ Pref (w)
and any channel (p, q) ∈ Ch:∑

a∈C

|u|p!q(a) −
∑
a∈C

|u|q?p(a) ≤ B

Example

1!2(a) 1!2(b) 2?1(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)

Let B ≥ 1. An MSC M ∈M is called

universally B-bounded (∀B-bounded) if Lin(M) = LinB(M)
where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.
existentially B-bounded (∃B-bounded) if Lin(M) ∩ LinB(M) �= ∅.
RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Bounded MSCs

Example

1 2
req

req

req

req

req

req

req

req

ack

ack

ack

ack

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

Bounded MSCs

Example

1 2
req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

1 2
req

req

req

req

req

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

Bounded MSCs

Example

1 2
req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

Bounded MSCs

Example

1 2
req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: M∀B is the set of ∀B-bounded MSCs
M∃B is the set of ∃B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition

An MPA A = (((Sp,∆p))p∈P , D, sinit ,F) over P and C is called

∀B-bounded if L(A) ⊆M∀B .

strongly B-bounded if, for any u ∈ Act∗:
if there is a run of A on u, then u is B-bounded.

∃B-bounded if L(A) ⊆M∃B .

a product MPA if |D| = 1.

locally accepting if F =
∏

p∈P Fp for some sets Fp ⊆ Sp, p ∈ P.

deadlock-free if from every reachable configuration a final
configuration is reachable

deterministic if the following holds:

� if s
p!q(a),m1−−−−−−→p s1 and s

p!q(a),m2−−−−−−→p s2, then s1 = s2 and m1 = m2

� if s
p?q(a),m−−−−−→p s1 and s

p?q(a),m−−−−−→p s2, then s1 = s2

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Example

!(req)

?(req)

?(ack)

!(ack)!(req) ?(ack)

?(req) !(ack)

A1: A2:

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

!(req) ?(req)

A1: A2:

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

A zoo of MPA

Example

!(req)

?(req)

?(ack)

!(ack)!(req) ?(ack)

?(req) !(ack)

A1: A2:

not ∃B-bounded f.a. B
not a product MPA
locally accepting

not safe
not deterministic

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

!(req) ?(req)

A1: A2:

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

A zoo of MPA

Example

!(req)

?(req)

?(ack)

!(ack)!(req) ?(ack)

?(req) !(ack)

A1: A2:

not ∃B-bounded f.a. B
not a product MPA
locally accepting

not safe
not deterministic

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

strongly ∀3-bounded
product MPA

locally accepting
safe

deterministic

!(req) ?(req)

A1: A2:

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

A zoo of MPA

Example

!(req)

?(req)

?(ack)

!(ack)!(req) ?(ack)

?(req) !(ack)

A1: A2:

not ∃B-bounded f.a. B
not a product MPA
locally accepting

not safe
not deterministic

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

strongly ∀3-bounded
product MPA

locally accepting
safe

deterministic

!(req) ?(req)

A1: A2:

not ∀B-bound.f.a.B
∃1-bounded

product MPA
locally accepting

safe
deterministic

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma

Product MPA are less expressive than MPA.

Proof.

For m, n ≥ 1, let M(m, n) ∈M over ({1, 2}, {req, ack}) be given by:

M�1 = (1!2(req))m (1?2(ack) 1!2(req))n

M�2 = (2?1(req) 2!1(ack))n (2?1(req))m

There is no product MPA over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n ≥ 1}. Suppose there is a product MPA
A = ((A1,A2), D, sinit ,F) with L(A) = L. For any n ≥ 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i ≥ 1 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j ≥ 1 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n + (i · j), n) �∈ L.

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

