Foundations of the UML

Lecture 4: Message Passing Automata

Joost-Pieter Katoen

with the kind permission of (© Benedikt Bollig (ENS Cachan, F)

November 19, 2007

RWTH (MOVES) Foundations of the UML

The architecture of a message-passing system

Definition
We fix the following parameters:
o P a finite set of at least two (sequential) processes
o C a finite set of message contents
RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system
Definition
We fix the following parameters:

o P a finite set of at least two (sequential) processes

e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system
Definition
We fix the following parameters:

o P a finite set of at least two (sequential) processes

e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*

RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system
Definition
We fix the following parameters:

o P a finite set of at least two (sequential) processes

e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*
o Act, = Acti, U Actl?,

RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system
Definition
We fix the following parameters:

o P a finite set of at least two (sequential) processes

e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*
o Act, = Acti, U Actl?,

o Act := pep Actp

RWTH (MOVES) Foundations of the UML November 19, 2007 75 / 104

The architecture of a message-passing system
Definition
We fix the following parameters:

o P a finite set of at least two (sequential) processes
e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*

o Act, = Acti, U Actl?,

o Act := pep Actp

o Ch:={(p,q) I p,g€P, p#aq}

RWTH (MOVES) Foundations of the UML November 19, 2007

75 / 104

The architecture of a message-passing system

Definition

We fix the following parameters:
o P a finite set of at least two (sequential) processes
e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*

o Act, = Acti, U Actl?,

o Act := pep Actp

o Ch:={(p,q) I p,g€P, p#aq}

o Com:={(plq(a),q?p(a)) | (p,q) € Ch, a€ C}

4

RWTH (MOVES) Foundations of the UML November 19, 2007

75 / 104

Message-passing automata

Definition

A message-passing automaton (MPA) over P and C is a structure
A= (((Spv AP))pE'Pa]D), Sinit s F)

where

@ D is a nonempty finite set of synchronization messages (or data)
o for each pe P

Sp is a nonempty finite set of local states (the S, are disjoint)
A, C S, x Actp, x D x S, is a set of local transitions

@ Sinir € Sy is the global initial state
@ F C Sy is the set of global final states

hereby: Sa :=[],cp Sp is the set of global states of A

Note: We sometimes write s mp s" instead of (s,0,m,s") € Ap.

RWTH (MOVES) Foundations of the UML November 19, 2007

76 / 104

Message-passing automata

Example

MPA A over
{1,2} and {req, ack}

112(req ‘@

OD:{ ’-’:}
0 51 ={so,s1,%}

o 5 ={to,t1, 12}
112(req)
(*] Ali) =1) ooo
271(req)
Ny tg ———o 11 ...
Sinit = (S0, o)

F={(s2, t2)}

©

o

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata
Example

112(req)

172(ack) 271(req)

12(D . 172(ack)

®

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

112(req) O

112(req)

172(ack) 271(req)

PI(req) . 172(ack)

®

112(req)

RWTH (MOVES) Foundations of the UML

November 19, 2007

77 / 104

Message-passing automata
Example

112(req)

172(ack) 271(req)

PI(req) . 172(ack)

®

112(req)
112(req) i

112(req) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata
Example

112(req)

172(ack) 271(req)

12(D . 172(ack)

®

112(req) 112(req) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata
Example

112(req)

172(ack) 271(req)

12(D . 172(ack)

®

112(req) i—»g 271(req)
211(ack)
112(req)

112(req) 112(req) 2?1(req) 2!1(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007

77 / 104

Message-passing automata
Example

112(req)

172(ack) 271(req)

12(D . 172(ack)

®

112(req) i::§ 271(req)
211(ack)
112(req) 271(req)

ack

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req)

RWTH (MOVES) Foundations of the UML November 19, 2007

77 / 104

Message-passing automata

Example

e () o 2
112(req) 271(req)
172(ack) 271(req) 211(ack) 211(ack)

12(D . 172(ack)

®

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007

77 / 104

Message-passing automata

Example

112(req ‘@ 112(req) ill((:ﬁg
112(req) 271(req)
271(req) 211(ack)

172(ack)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 172(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Message-passing automata

Example

112(req ‘@)
112(req)
172(ack) 271(req)
e 172(ack)
112(req)

12(EZ) 172(ack)

ack

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!2(req)

271(req)
211(ack)
271(req)
211 (ack)

RWTH (MOVES) Foundations of the UML

November 19, 2007

77 / 104

Message-passing automata

Example

112(req 271(req
112(‘@ e 2!1((ack;
112(req) 271(req)
211(ack)
172(ack)
112(req)
V2(EEEP | |172(ack) 172(ack)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!2(req) 172(ack)

RWTH (MOVES) Foundations of the UML November 19, 2007

77 / 104

Message-passing automata

Example

112(re 271(re
112(req ‘@ e 2!1((353;
112(req) 271(req)
172(ack) 271(req) 211(ack)
e 172(ack)
112(req)
12(D | |172(ack) 172(ack)
112(req)

®

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 112(req) 1?2(ack) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007

77 / 104

Message-passing automata

Example

112(req ‘@ s
112(req)

172(ack)
172(ack)
112(req)
V2(EEEP | |172(ack) 172(ack)
112(req)

271(req)
211(ack)
271(req)
211 (ack)

271(req)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 112(req) 1?2(ack) 1!2(req) 2?1(req)

o

RWTH (MOVES) Foundations of the UML

November 19, 2007

77 / 104

Message-passing automata

Example

112(req ‘@

271(req)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!12(req) 172(ack) 1!2(req) 2?1(req) 2?1(req)

112(req) 271(req)
211(ack)

112(req) 271(req)
211 (ack)

172(ack)

112(req) 271(req)

172(ack)

112(req) 271(req)

o

RWTH (MOVES)

Foundations of the UML

November 19, 2007

77 / 104

Message-passing automata

Example
(1] 2
req
112(req ‘@
req
172(ack) ack
ack
req
(D) e
|]

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!12(req) 1?72(ack) 1!2(req) 2?1(req) 2?1(req)

o

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104

Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}

RWTH (MOVES) Foundations of the UML

Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Confy x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7), plq(a), m,(5',1)) € =4 if
(5lpl, pla(a), m,'[p]) € Ap

n" =nl(p,q)/(a,m) -n((p, q))]
s[r]=53[r] forall r e P\ {p}

RWTH (MOVES) Foundations of the UML November 19, 2007

78 / 104

Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf g x Act x ID x Conf 4 is defined as follows:
@ sending a message: ((3,7), plq(a), m,(5',1)) € =4 if
(5lp. pla(a). m. 5]) € B
n' = nl(p,q)/(a;m) -n((p, q))]
s[r]=53[r] forall r e P\ {p}
@ receipt of a message: ((5,7),p?q(a), m,(3',7)) € =4 if
(5lpl, p?a(a), m,5'[p]) € A,
n="1n'l(q.p)/n'((q,p)) - (2, m)]
s[r]=5[r] forall r e P\ {p}

RWTH (MOVES) Foundations of the UML November 19, 2007

78 / 104

Linearizations of an MPA

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over over P and C.

Definition
A run of Aon oy...0, € Act™ is a sequence p =Y M1 Y1 ---VYn—1 MnVn
such that

® 0 = (Sinit, M) with 7. mapping any channel to ¢

0 i1 2L 4 forany i € {1,...,n}

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an MPA

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over over P and C.
Definition

A run of Aon oy...0, € Act™ is a sequence p =Y M1 Y1 ---VYn—1 MnVn
such that

® 0 = (Sinit, M) with 7. mapping any channel to ¢

0 i1 2L 4 forany i € {1,...,n}

Run p is accepting if v, € F x {n.}.

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an MPA

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over over P and C.

Definition
A run of Aon oy...0, € Act™ is a sequence p =Y M1 Y1 ---VYn—1 MnVn
such that

® 0 = (Sinit, M) with 7. mapping any channel to ¢
0 i1 2L~ forany i € {1,...,n}

Run p is accepting if v, € F x {n.}.

Definition
The set of linearizations of A:

Lin(A) := {w € Act” | there is an accepting run of A on w}

RWTH (MOVES) Foundations of the UML November 19, 2007 79 / 104

Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

o

RWTH (MOVES) Foundations of the UML November 19, 2007 80 / 104

Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

Lin(A) = {W € Act” | there is n > 1 such that:
w 1= (112(req))" (172(ack) 112(req))"”
w2 = (271(req) 2!1(ack))” (271(req))”
for any u € Pref(w) and (p, q) € Ch:

Z |“‘p!Q(a) - Z |U|q?p(a) 2 0}

aeC acC

o

RWTH (MOVES) Foundations of the UML November 19, 2007

80 / 104

Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

@ 1!2(req) and 2!1(ack) are always independent.

@ 112(req) and 172(ack) are always dependent.

@ 112(req) and 271(req) are sometimes independent.
~ non-regular (word) languages

~ actually more complicated than framework of traces

o

RWTH (MOVES) Foundations of the UML November 19, 2007

80 / 104

Linearizations and MSCs of an example MPA

Example

MPA A over
{1,2} and {req, ack}

Lin(A) = {W € Act” | there is n > 1 such that:
w 1= (112(req))" (172(ack) 112(req))"”
w2 = (271(req) 2!1(ack))” (271(req))”
for any u € Pref(w) and (p, q) € Ch:

Z |ulpg(a) = Z |ulgzp(a) = 0}

aeC acC

RWTH (MOVES) Foundations of the UML November 19, 2007

81 /104

Linearizations and MSCs of an example MPA

Example

MPA A over
{1,2} and {req, ack}

L(A) = {M € M | there is n > 1 such that:
M1 = (1!2(req))” (172(ack) 1!12(req))”
M2 = (271(req) 2'1(ack))" (2?1(req))”}

o

RWTH (MOVES) Foundations of the UML November 19, 2007

81 /104

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

INPUT: MPA A over P and C
QUESTION: Is L(A) empty?

RWTH (MOVES) Foundations of the UML November 19, 2007 82 / 104

Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

INPUT: MPA A over P and C
QUESTION: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine

™ = (Q,%,A,, qo, gr) to emptiness for MPA with two processes. Build
MPA A = ((A1, A), D, sinit, F) over {1,2} and some singleton set such
that L(A) # 0 iff TM can reach gr.

@ Process 1 sends current configurations to process 2.

@ Process 2 chooses successor configurations and sends them back to 1.

o D= ((ZU{D}) x (QU{1) U {#)

<

RWTH (MOVES) Foundations of the UML November 19, 2007 82 / 104

An MPA simulating a Turing machine
Proof (contd.)

7
qdo
Frm
a1
1w
a2
Frm

2]
R

RWTH (MOVES) Foundations of the UML November 19, 2007 83 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(g2,a,2', L, g3) is applied so that process 2

sends b unchanged back to process 1

detects (receives) a < g

sends a’ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with g3

receives # so that the symbol [0 < g3 has to be inserted before
returning #

<

RWTH (MOVES) Foundations of the UML November 19, 2007 84 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(g2,a,2', L, g3) is applied so that process 2

sends b unchanged back to process 1

detects (receives) a < g

sends a’ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with g3

receives # so that the symbol [0 < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right before
the head is. For example, provided process 2 decided in favor of
(92, 4,2, R, g3) while reading the b, it would have to

send b < g3 instead of just b, entering some state t(a < ¢)
receive a «<— g (no other symbol can be received in state t(a < ¢2))
send a’ back to process 1

RWTH (MOVES) Foundations of the UML November 19, 2007 84 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into tf and to empty the channel (1,2)
as soon as it receives a letter ¢ < g for some c.

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into tf and to empty the channel (1,2)
as soon as it receives a letter ¢ < g for some c.

@ As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. O

RWTH (MOVES) Foundations of the UML November 19, 2007 85 / 104

Towards subclasses of MPA: Boundedness
Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprg(a) — Z lulgrp(a) < B

aeC aeC

RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprg(a) — Z lulgrp(a) < B

acC aeC

Example

112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.

RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprga) — Z lulgrp(a) < B

acC aeC

Example
112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)
Let B>1. An MSC M € M is called

@ universally B-bounded (VB-bounded) if Lin(M) = Lin®(M)
where LinB(M) := {w € Lin(M) | w is B-bounded}.

4

RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |u|p!q(a) - Z |u|q?p(a) <B

acC aeC

Example
112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)
Let B>1. An MSC M € M is called

@ universally B-bounded (VB-bounded) if Lin(M) = Lin®(M)
where LinB(M) := {w € Lin(M) | w is B-bounded}.
@ existentially B-bounded (3B-bounded) if Lin(M) N Lin® (M) # .

RWTH (MOVES) Foundations of the UML November 19, 2007 86 / 104

Bounded MSCs

Example
(| 2]
req 1] [2]
ack 1] 21
red req ack req
ack
req re
e ack 9
re
eq 2ck q ack req
e req
req -
req
— —
S — ——
— —

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

Bounded MSCs

Example
1] [2]
req 1] [2]
ack [] [2]
req req ack req
ack
red req
ack
req 2ck (=g ack req
red req
req
req req
req
— —
req) — —
— —
V4-bounded
32-bounded

not J1-bounded

RWTH (MOVES) Foundations of the UML

November 19, 2007

87 / 104

Bounded MSCs

Example
1] 2]
req 1] [2]
ack [1] [2]
red req ack req
ack
=t req
ack
req 2ck (=g ack req
req req
req req -
req
reql——— | —— —— | |
| |
V4-bounded V3-bounded
J2-bounded J1-bounded

not J1-bounded

RWTH (MOVES) Foundations of the UML November 19, 2007 87 / 104

Bounded MSCs

Example
1] 2]
req 1] [2]
ack [1] [2]
red req ack req
ack
=t req
e ack o
2ck q ack req
req req
req req -
req
reql——— | —— —— | |
| |
V4-bounded V3-bounded V5-bounded
J2-bounded J1-bounded J1-bounded

not J1-bounded

RWTH (MOVES)

Foundations of the UML

November 19, 2007

87 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called
@ VB-bounded if L(A) C Myg.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007

88 / 104

A zoo of MPA
Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

RWTH (MOVES) Foundations of the UML November 19, 2007

88 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

v

RWTH (MOVES) Foundations of the UML November 19, 2007

88 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

v

RWTH (MOVES) Foundations of the UML November 19, 2007

88 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called
@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.

o locally accepting if F =[] ,cp Fp for some sets F, C Sp, p € P.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

v

RWTH (MOVES) Foundations of the UML November 19, 2007

88 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per, D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on v, then v is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.
@ locally accepting if F = [],cp Fp for some sets F, C S, p € P.

@ deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

v

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per, D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

strongly B-bounded if, for any u € Act™:
if there is a run of A on v, then v is B-bounded.

3B-bounded if L(A) C M3g.
a product MPA if |D| = 1.
locally accepting if £ =[],cp Fp for some sets F, C Sp, p € P.

©

¢ 6 ¢ ¢

deadlock-free if from every reachable configuration a final
configuration is reachable

©

deterministic if the following holds:

. p'q(a),m p'q(a),m>

if s ———,s1 and s p 52, then sy = s, and my = my
. p?q(a),m p?q(a),m

if s ——=—, s and s p 52, then s =5

v

RWTH (MOVES) Foundations of the UML November 19, 2007 88 / 104

A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) I(req) ng 7777777 é@ ?(req)
?(ack) ?(req)| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
777777777 (D)

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) !(req>Q%> ——————— CSQ ?(req)
?(ack) ?(req)| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
————————— E{(r<q)]

not 3B-bounded f.a. B

not a product MPA
locally accepting

not safe

not deterministic

RWTH (MOVES)

Foundations of the UML

November 19, 2007

89 / 104

A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) I(req) ng 7777777 é@ ?(req)
?(ack) ?(req)| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
777777777 (D)

not IB-bounded f.a. B strongly V3-bounded

not a product MPA product MPA
locally accepting locally accepting
not safe safe
not deterministic deterministic

RWTH (MOVES) Foundations of the UML November 19, 2007 89 / 104

A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) !(req>Q%> ——————— CSQ ?(req)
?(ack) ?(req)| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
————————— E{(r<q)]

not IB-bounded f.a. B
not a product MPA
locally accepting
not safe
not deterministic

strongly V3-bounded
product MPA
locally accepting
safe
deterministic

not VB-bound.f.a.B
J1-bounded
product MPA
locally accepting
safe
deterministic

RWTH (MOVES)

Foundations of the UML

November 19, 2007

89 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

RWTH (MOVES) Foundations of the UML

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.

For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:
@ M1 =(112(req))™ (172(ack) 1!2(req))"
@ M2 =(271(req) 2!1(ack))"” (271(req))”

O

v

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.

For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:
@ M1 =(112(req))™ (172(ack) 1!2(req))"
@ M2 =(271(req) 2!1(ack))"” (271(req))”

There is no product MPA over {1,2} and {req, ack} whose language is
L={M(n,n)|n>1}.

O

v

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ M1 =(112(req))™ (172(ack) 1!2(req))"

@ M2 =(271(req) 2!1(ack))"” (271(req))”
There is no product MPA over {1,2} and {req, ack} whose language is
L={M(n,n) | n=>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n).

O

v

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1

O

v

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1
@ A, visits a cycle of length j > 1 to read the last n letters of M(n, n) |2
O

<

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1
@ A, visits a cycle of length j > 1 to read the last n letters of M(n, n) |2
But then, there is an accepting run of A on M(n+ (i -j),n) & L. O

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104

