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The architecture of a message-passing system

Definition
We fix the following parameters:
o P a finite set of at least two (sequential) processes
o C a finite set of message contents
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The architecture of a message-passing system
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o P a finite set of at least two (sequential) processes
e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*
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The architecture of a message-passing system

Definition

We fix the following parameters:
o P a finite set of at least two (sequential) processes
e C a finite set of message contents

Definition (communication actions, channels)

o Act,:={plq(a) | g€ P\ {p}, acC} (for peP)
“p sends message a to g*

o Act!,:={p?q(a) | g € P\ {p}, a€C}
“p receives message a from g*

o Act, = Acti, U Actl?,

o Act := pep Actp

o Ch:={(p,q) I p,g€P, p#aq}

o Com:={(plq(a),q?p(a)) | (p,q) € Ch, a€ C}

4
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Message-passing automata

Definition

A message-passing automaton (MPA) over P and C is a structure
A= (((Spv AP))pE'Pa ]D), Sinit s F)

where

@ D is a nonempty finite set of synchronization messages (or data)
o for each pe P

Sp is a nonempty finite set of local states (the S, are disjoint)
A, C S, x Actp, x D x S, is a set of local transitions

@ Sinir € Sy is the global initial state
@ F C Sy is the set of global final states

hereby: Sa :=[],cp Sp is the set of global states of A

Note: We sometimes write s mp s" instead of (s,0,m,s") € Ap.
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Message-passing automata

Example

MPA A over
{1,2} and {req, ack}

112( req ‘@

OD:{ ’-’:}
0 51 ={so,s1,%}

o 5 ={to,t1, 12}
112( req )
(*] Ali ) =1 ) ooo
271( req )
Ny tg ———o 11 ...
Sinit = (S0, o)

F={(s2, t2)}

©

o
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Message-passing automata
Example

112( req )

172(ack) 271( req )

12(D . 172(ack)

®
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112( req )

172(ack) 271( req )

PI( req ) . 172(ack)
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Message-passing automata
Example

112( req )

172(ack) 271( req )

PI( req ) . 172(ack)

®

112(req)
112(req) i

112(req) 1!2(req)

RWTH (MOVES) Foundations of the UML November 19, 2007 77 / 104



Message-passing automata
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12(D . 172(ack)
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Message-passing automata
Example

112( req )

172(ack) 271( req )

12(D . 172(ack)

®

112(req) i—»g 271(req)
211(ack)
112(req)
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Message-passing automata
Example

112( req )

172(ack) 271( req )

12(D . 172(ack)

®

112(req) i::§ 271(req)
211(ack)
112(req) 271(req)

ack

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req)
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Message-passing automata

Example

e () o 2
112(req) 271(req)
172(ack) 271( req ) 211(ack) 211(ack)

12(D . 172(ack)

®
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Message-passing automata

Example

112( req ‘@ 112(req) ill((:ﬁg
112(req) 271(req)
271( req ) 211(ack)

172(ack)
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Message-passing automata

Example

112( req ‘@ )
112(req)
172(ack) 271( req )
e 172(ack)
112(req)

12(EZ) 172(ack)

ack

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!2(req)

271(req)
211(ack)
271(req)
211 (ack)
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Message-passing automata

Example

112(req 271(req
112( ‘@ e 2!1((ack;
112(req) 271(req)
211(ack)
172(ack)
112(req)
V2(EEEP | |172(ack) 172(ack)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!2(req) 172(ack)
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Message-passing automata

Example

112(re 271(re
112(req ‘@ e 2!1((353;
112(req) 271(req)
172(ack) 271( req ) 211(ack)
e 172(ack)
112(req)
12(D | |172(ack) 172(ack)
112(req)

®

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 112(req) 1?2(ack) 1!2(req)
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Message-passing automata

Example

112( req ‘@ s
112(req)

172(ack)
172(ack)
112(req)
V2(EEEP | |172(ack) 172(ack)
112(req)

271(req)
211(ack)
271(req)
211 (ack)

271(req)

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 112(req) 1?2(ack) 1!2(req) 2?1(req)
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Message-passing automata

Example
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271( req )

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!12(req) 172(ack) 1!2(req) 2?1(req) 2?1(req)

112(req) 271(req)
211(ack)

112(req) 271(req)
211 (ack)

172(ack)
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Message-passing automata

Example
(1] 2
req
112( req ‘@
req
172(ack) ack
ack
req
(D) e
| ]

112(req) 112(req) 2?1(req) 2!1(ack) 2?1(req) 2!1(ack) 1?72(ack) 1!12(req) 1?72(ack) 1!2(req) 2?1(req) 2?1(req)

o
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Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}
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Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Confy x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7), plq(a), m,(5',1)) € =4 if
(5lpl, pla(a), m,'[p]) € Ap
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Interpretation of MPAs

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over P and C.
Definition

configurations of A: Confg :=S4 x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf g x Act x ID x Conf 4 is defined as follows:
@ sending a message: ((3,7), plq(a), m,(5',1)) € =4 if
(5lp. pla(a). m. 5]) € B
n' = nl(p,q)/(a;m) -n((p, q))]
s[r]=53[r] forall r e P\ {p}
@ receipt of a message: ((5,7),p?q(a), m,(3',7)) € =4 if
(5lpl, p?a(a), m,5'[p]) € A,
n="1n'l(q.p)/n'((q,p)) - (2, m)]
s[r]=5[r] forall r e P\ {p}
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Linearizations of an MPA

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over over P and C.

Definition
A run of Aon oy...0, € Act™ is a sequence p =Y M1 Y1 ---VYn—1 MnVn
such that

® 0 = (Sinit, M) with 7. mapping any channel to ¢

0 i1 2L 4 forany i € {1,...,n}
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Linearizations of an MPA

Let A= (((Sp,Ap))per, D, Sinit, F) be an MPA over over P and C.

Definition
A run of Aon oy...0, € Act™ is a sequence p =Y M1 Y1 ---VYn—1 MnVn
such that

® 0 = (Sinit, M) with 7. mapping any channel to ¢
0 i1 2L~ forany i € {1,...,n}

Run p is accepting if v, € F x {n.}.

Definition
The set of linearizations of A:

Lin(A) := {w € Act” | there is an accepting run of A on w}
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Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

o
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Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

Lin(A) = {W € Act” | there is n > 1 such that:
w 1= (112(req))" (172(ack) 112(req))"”
w2 = (271(req) 2!1(ack))” (271(req))”
for any u € Pref(w) and (p, q) € Ch:

Z |“‘p!Q(a) - Z |U|q?p(a) 2 0}

aeC acC

o
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Linearizations of an example MPA

Example

MPA A over
{1,2} and {req, ack}

@ 1!2(req) and 2!1(ack) are always independent.

@ 112(req) and 172(ack) are always dependent.

@ 112(req) and 271(req) are sometimes independent.
~ non-regular (word) languages

~ actually more complicated than framework of traces

o
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Linearizations and MSCs of an example MPA

Example

MPA A over
{1,2} and {req, ack}

Lin(A) = {W € Act” | there is n > 1 such that:
w 1= (112(req))" (172(ack) 112(req))"”
w2 = (271(req) 2!1(ack))” (271(req))”
for any u € Pref(w) and (p, q) € Ch:

Z |ulpg(a) = Z |ulgzp(a) = 0}

aeC acC
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Linearizations and MSCs of an example MPA

Example

MPA A over
{1,2} and {req, ack}

L(A) = {M € M | there is n > 1 such that:
M1 = (1!2(req))” (172(ack) 1!12(req))”
M2 = (271(req) 2'1(ack))" (2?1(req))”}

o
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Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

INPUT: MPA A over P and C
QUESTION: Is L(A) empty?
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Elementary questions are undecidable for MPA ...

Proposition (Brand & Zafiropulo 1983)

The following problem is undecidable (even if C is a singleton):

INPUT: MPA A over P and C
QUESTION: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine

™ = (Q,%,A,, qo, gr) to emptiness for MPA with two processes. Build
MPA A = ((A1, A), D, sinit, F) over {1,2} and some singleton set such
that L(A) # 0 iff TM can reach gr.

@ Process 1 sends current configurations to process 2.

@ Process 2 chooses successor configurations and sends them back to 1.

o D= ((ZU{D}) x (QU{1) U {#)

<
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An MPA simulating a Turing machine
Proof (contd.)

7
qdo
Frm
a1
1w
a2
Frm

2]
R
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An MPA simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(g2,a,2', L, g3) is applied so that process 2

sends b unchanged back to process 1

detects (receives) a < g

sends a’ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with g3

receives # so that the symbol [0 < g3 has to be inserted before
returning #

<
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An MPA simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of the Turing machine and to alter it
correspondingly. In the example, the left-moving transition
(g2,a,2', L, g3) is applied so that process 2

sends b unchanged back to process 1

detects (receives) a < g

sends a’ to process 1 entering a state indicating that the symbol to be
sent next has to be equipped with g3

receives # so that the symbol [0 < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right before
the head is. For example, provided process 2 decided in favor of
(92, 4,2, R, g3) while reading the b, it would have to

send b < g3 instead of just b, entering some state t(a < ¢)
receive a «<— g (no other symbol can be received in state t(a < ¢2))
send a’ back to process 1
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An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).
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An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).
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An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into tf and to empty the channel (1,2)
as soon as it receives a letter ¢ < g for some c.
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An MPA simulating a Turing machine

Proof (contd.)

@ Introduce local final states sf and tr, one for process 1 and one for
process 2, respectively (i.e., F = {(sf, tr)} and A is locally accepting).

@ At any time, process 1 may switch into s¢, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into tf and to empty the channel (1,2)
as soon as it receives a letter ¢ < g for some c.

@ As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. O
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Towards subclasses of MPA: Boundedness
Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprg(a) — Z lulgrp(a) < B

aeC aeC
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Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprg(a) — Z lulgrp(a) < B

acC aeC

Example

112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.
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Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |ulprga) — Z lulgrp(a) < B

acC aeC

Example
112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)
Let B>1. An MSC M € M is called

@ universally B-bounded (VB-bounded) if Lin(M) = Lin®(M)
where LinB(M) := {w € Lin(M) | w is B-bounded}.

4
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Towards subclasses of MPA: Boundedness

Definition (B-bounded words)

Let B> 1. A word w € Act” is called B-bounded if, for any u € Pref(w)
and any channel (p, q) € Ch:

Z |u|p!q(a) - Z |u|q?p(a) <B

acC aeC

Example
112(a) 112(b) 271(a) 2?1(b) is 2-bounded but not 1-bounded.

Definition (bounded MSCs)
Let B>1. An MSC M € M is called

@ universally B-bounded (VB-bounded) if Lin(M) = Lin®(M)
where LinB(M) := {w € Lin(M) | w is B-bounded}.
@ existentially B-bounded (3B-bounded) if Lin(M) N Lin® (M) # .
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Bounded MSCs

Example
(| 2]
req 1] [2]
ack 1] 21
red req ack req
ack
req re
e ack 9
re
eq 2ck q ack req
e req
req -
req
— —
S — ——
— —
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Bounded MSCs

Example
1] [2]
req 1] [2]
ack [ ] [2]
req req ack req
ack
red req
ack
req 2ck (=g ack req
red req
req
req req
req
— —
req) — —
— —
V4-bounded
32-bounded

not J1-bounded

RWTH (MOVES) Foundations of the UML

November 19, 2007

87 / 104



Bounded MSCs

Example
1] 2]
req 1] [2]
ack [1] [2]
red req ack req
ack
=t req
ack
req 2ck (=g ack req
req req
req req -
req
reql——— | —— —— | |
| |
V4-bounded V3-bounded
J2-bounded J1-bounded

not J1-bounded
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Bounded MSCs

Example
1] 2]
req 1] [2]
ack [1] [2]
red req ack req
ack
=t req
e ack o
2ck q ack req
req req
req req -
req
reql——— | —— —— | |
| |
V4-bounded V3-bounded V5-bounded
J2-bounded J1-bounded J1-bounded

not J1-bounded
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A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called
@ VB-bounded if L(A) C Myg.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs
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A zoo of MPA
Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs
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A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs
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A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs

v
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A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per: D, sinit, F) over P and C is called
@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on u, then u is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.

o locally accepting if F =[] ,cp Fp for some sets F, C Sp, p € P.

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs
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@ VB-bounded if L(A) C Myg.

@ strongly B-bounded if, for any u € Act™:
if there is a run of A on v, then v is B-bounded.

@ dB-bounded if L(A) C Mzp.
@ a product MPA if |D| = 1.
@ locally accepting if F = [],cp Fp for some sets F, C S, p € P.

@ deadlock-free if from every reachable configuration a final
configuration is reachable

hereby: Myp is the set of VB-bounded MSCs
Mg is the set of 3B-bounded MSCs
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A zoo of MPA

Definition
An MPA A = (((Sp, Ap))per, D, sinit, F) over P and C is called

@ VB-bounded if L(A) C Myg.

strongly B-bounded if, for any u € Act™:
if there is a run of A on v, then v is B-bounded.

3B-bounded if L(A) C M3g.
a product MPA if |D| = 1.
locally accepting if £ =[],cp Fp for some sets F, C Sp, p € P.

©

¢ 6 ¢ ¢

deadlock-free if from every reachable configuration a final
configuration is reachable

©

deterministic if the following holds:

. p'q(a),m p'q(a),m>

if s ———,s1 and s p 52, then sy = s, and my = my
. p?q(a),m p?q(a),m

if s ——=—, s and s p 52, then s =5

v
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A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) I(req) ng 7777777 é@ ?(req)
?(ack) ?(req )| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
777777777 (D)
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A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) !(req>Q%> ——————— CSQ ?(req)
?(ack) ?(req )| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
————————— E{( r<q )]

not 3B-bounded f.a. B

not a product MPA
locally accepting

not safe

not deterministic
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A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) I(req) ng 7777777 é@ ?(req)
?(ack) ?(req )| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
777777777 (D)

not IB-bounded f.a. B strongly V3-bounded

not a product MPA product MPA
locally accepting locally accepting
not safe safe
not deterministic deterministic
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A zoo of MPA

Example
Ax: A Ax: Az Ar: Az
I(req) !(req>Q%> ——————— CSQ ?(req)
?(ack) ?(req )| |!(ack) I(req) ?(req)| |!(ack)
@D |7 {(ack) ()| J7(ack) " |2(ea)
————————— E{( r<q )]

not IB-bounded f.a. B
not a product MPA
locally accepting
not safe
not deterministic

strongly V3-bounded
product MPA
locally accepting
safe
deterministic

not VB-bound.f.a.B
J1-bounded
product MPA
locally accepting
safe
deterministic
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MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

RWTH (MOVES) Foundations of the UML



MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.

For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:
@ M1 =(112(req))™ (172(ack) 1!2(req))"
@ M2 =(271(req) 2!1(ack))"” (271(req))”

O
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MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.

For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:
@ M1 =(112(req))™ (172(ack) 1!2(req))"
@ M2 =(271(req) 2!1(ack))"” (271(req))”

There is no product MPA over {1,2} and {req, ack} whose language is
L={M(n,n)|n>1}.

O

v

RWTH (MOVES) Foundations of the UML November 19, 2007 90 / 104



MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ M1 =(112(req))™ (172(ack) 1!2(req))"

@ M2 =(271(req) 2!1(ack))"” (271(req))”
There is no product MPA over {1,2} and {req, ack} whose language is
L={M(n,n) | n=>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n).

O
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MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1

O
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MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1
@ A, visits a cycle of length j > 1 to read the last n letters of M(n, n) |2
O
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MPA vs. product MPA

Lemma
Product MPA are less expressive than MPA.

Proof.
For m,n > 1, let M(m, n) € M over ({1,2}, {req, ack}) be given by:

@ MT[1=(1!2(req))™ (172(ack) 112(req))"”

@ M[2=(271(req) 2!1(ack))” (271(req))™
There is no product MPA over {1,2} and {req, ack} whose language is
L ={M(n,n) | n>1}. Suppose there is a product MPA
A= ((A1, A2), D, sipit, F) with L(A) = L. For any n > 1, there is an
accepting run of A on M(n, n). If n is sufficiently large, then

@ A, visits a cycle of length/ > 1 to read the first n letters of M(n, n) |1
@ A, visits a cycle of length j > 1 to read the last n letters of M(n, n) |2
But then, there is an accepting run of A on M(n+ (i -j),n) & L. O
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