
Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
C. Kern

Foundations of the UML

Winter Term 07/08

– Assignment 1 –
Hand in until November 07th before the exercise class.

Exercise 1 (5 points)

Let the following pictures M1,M2,M3 be given:

p q r

a

b

c
d

f

M1

e

p q r

a

a
a

a

a

M2

p q r s

a
b

c
d

e

f

M3

a) Write down the formal description of MSC M1 as it was presented in the lecture.

b) Prove or disprove that M2 and M3 are MSCs.

Exercise 2 (5 points)

Determine all linearizations of the following MSC M :

p q r

a
b

c

M

Exercise 3 (10 points)

In this exercise we consider words over sending and receiving actions, only (i.e., there are no local actions).
Write down a pseudo-code function that, given a word w ∈ Act∗, determines whether w is a linearization
of an MSC. If w is not a linearization of an MSC the algorithm has to terminate at the first location
where a contradiction to an MSC linearization occurs. The header of the function to implement looks as
follows:

boolean isMSCLinearization(Act[] w)

Use the following methods to ease your work:

Class ChannelSystem:

A ChannelSystem is a collection of channels.
ChannelSystem(Process from, Process to)

//constructor for an empty channel system

boolean addChannel(Process from, Process to)

//creates a new channel (from,to) (if it does not exist, yet) and

//returns true iff new channel was created

void putToChannelEnd(Process from, Process to, Message m)

//appends m to channel (from,to) if channel exists

Message lookAtChannelHead(Process from, Process to)

//peeks at head of channel without removing the element and returns message

//content of head element

void removeFromChannelHead(Process from, Process to)

//removes the element at the head of buffer (from,to)

boolean allChannelsEmpty()

//returns true iff all channels within the channel system are empty

boolean channelExists(Process from, Process to)

//returns true iff channel (from,to) exists

Class Act :

boolean isSending()

//returns true iff this action is of type sending

boolean isReceiving()

//returns true iff this action is of type receiving

Process getSendingProcess()

//returns the sending process of this action

Process getReceivingProcess()

//returns the receiving process of this action

Message getMessage()

//returns the message content of this action

Class Message:

boolean equals(Message m)

//returns whether this message is equal to m

Exercise 4 (5 points)

As presented in the second lecture, the weak concatenation of two MSCs M1 and M2 (with Mi =
〈Pi, Ei, Ci, ℓi,mi, <i〉 for i ∈ {1, 2}) intuitively is realized by gluing the process lines together such that
M1 is situated on top of MSC M2 (cf. Figure 1).

p q

a

M1

p q r

b
c

M2

p q r

a

b
c

M1 · M2 (weak concatenation)

Figure 1: Two MSCs and their weak concatenation

Define the so-called strong concatenation ·s of two MSCs M1 and M2, i.e., all events of MSC M1 have
to be executed before the first event of M2. For this purpose determine a structure M = M1 ·s M2 =
〈P, E, C, ℓ,m,<〉, that (in terms of M1 and M2) results from concatenating the two MSCs strongly.

Exercise 5 (10 points)

Formally prove or disprove the correctness of the following statements for i) MSGs (i.e., Mi ∈ MSC,
i ∈ {1, 2, 3}) and ii) CMSGs (i.e., Mi ∈ CMSC, i ∈ {1, 2, 3}):
(remember: | =̂ choice, × =̂ (weak) sequence, ∗ =̂ iteration)

a) M1|M2 = M2|M1

b) M1 × M2 = M2 × M1

c) (M1 × M2) × M3 = M1 × (M2 × M3)

d) (M1|M2)|M3 = M1|(M2|M3)

e) (M1 × M2)|M3 = (M1|M3) × (M2|M3)

f) (M1|M2) × M3 = (M1 × M3)|(M2 × M3)

g) M∗

1
|M∗

2
= (M1|M2)

∗

