Software Modeling and Verification Dot Dr. I b K
Lehrstuhl fiir Informatik 2 rof. Dr. Ir. J.- -C 3;20611
RWTH Aachen University . Kern

Foundations of the UML
Winter Term 07/08

— Assignment 1 —

Hand in until November 07 before the exercise class.

Exercise 1 (5 points)

Let the following pictures My, My, M3 be given:

My M, M
[»][« J[] [» J[e J[r] e JLe JLr J[s]
b a
a a b
fe a

a) Write down the formal description of MSC M as it was presented in the lecture.
b) Prove or disprove that My and Mj are MSCs.

Exercise 2 (5 points)

Determine all linearizations of the following MSC M:

M

e 1L 1]

a

b

C

Exercise 3 (10 points)

In this exercise we consider words over sending and receiving actions, only (i.e., there are no local actions).
Write down a pseudo-code function that, given a word w € Act”, determines whether w is a linearization
of an MSC. If w is not a linearization of an MSC the algorithm has to terminate at the first location
where a contradiction to an MSC linearization occurs. The header of the function to implement looks as
follows:

boolean isMSCLinearization(Act[] w)

Use the following methods to ease your work:

Class ChannelSystem:

A ChannelSystem is a collection of channels.
ChannelSystem(Process from, Process to)
//constructor for an empty channel system

boolean addChannel (Process from, Process to)
//creates a new channel (from,to) (if it does not exist, yet) and
//returns true iff new channel was created
void putToChannelEnd(Process from, Process to, Message m)
//appends m to channel (from,to) if channel exists
Message lookAtChannelHead(Process from, Process to)
//peeks at head of channel without removing the element and returns message
//content of head element
void removeFromChannelHead (Process from, Process to)
//removes the element at the head of buffer (from,to)
boolean allChannelsEmpty ()
//returns true iff all channels within the channel system are empty
boolean channelExists(Process from, Process to)
//returns true iff channel (from,to) exists

Class Act:
boolean isSending()
//returns true iff this action is of type sending

boolean isReceiving()
//returns true iff this action is of type receiving

Process getSendingProcess()
//returns the sending process of this action

Process getReceivingProcess()
//returns the receiving process of this action

Message getMessage()
//returns the message content of this action

Class Message:

boolean equals(Message m)
//returns whether this message is equal to m

Exercise 4 (5 points)
As presented in the second lecture, the weak concatenation of two MSCs M; and My (with M; =
(Pi, Ei,Ciy biymy, <;) for i € {1,2}) intuitively is realized by gluing the process lines together such that
M is situated on top of MSC My (cf. Figure 1).

My Mo M - M, (weak concatenation)
p g L» JLe 1] Lr JLe 1]
b a ,
a c ¢
N EE—— I N I N

Figure 1: Two MSCs and their weak concatenation

Define the so-called strong concatenation -5 of two MSCs My and Mo, i.e., all events of MSC M; have
to be executed before the first event of Ms. For this purpose determine a structure M = My -3 My =
(P,E,C,t,m,<), that (in terms of M; and Ms) results from concatenating the two MSCs strongly.

Exercise 5 (10 points)

Formally prove or disprove the correctness of the following statements for i) MSGs (i.e., M; € MSC,
i € {1,2,3}) and ii) CMSGs (i.e., M; € CMSC, i € {1,2,3}):
(remember: | = choice, x = (weak) sequence, * = iteration)

a M1|M2:M2|M1
b M1><M2:M2XM1
C M1XM2)XM3:M1X(M2XM3)
€

M1 X Mg)‘Mg = (Ml‘Mg) X (MQ‘M;),)

f

)
)
) (

d) (My|Mz)|Ms = M |(Ma|Ms)
) (
) (M7|Msy) x M3 = (My x Ms)|(Ms x Ms)
)

g) MY|M3 = (M| Ma)*

