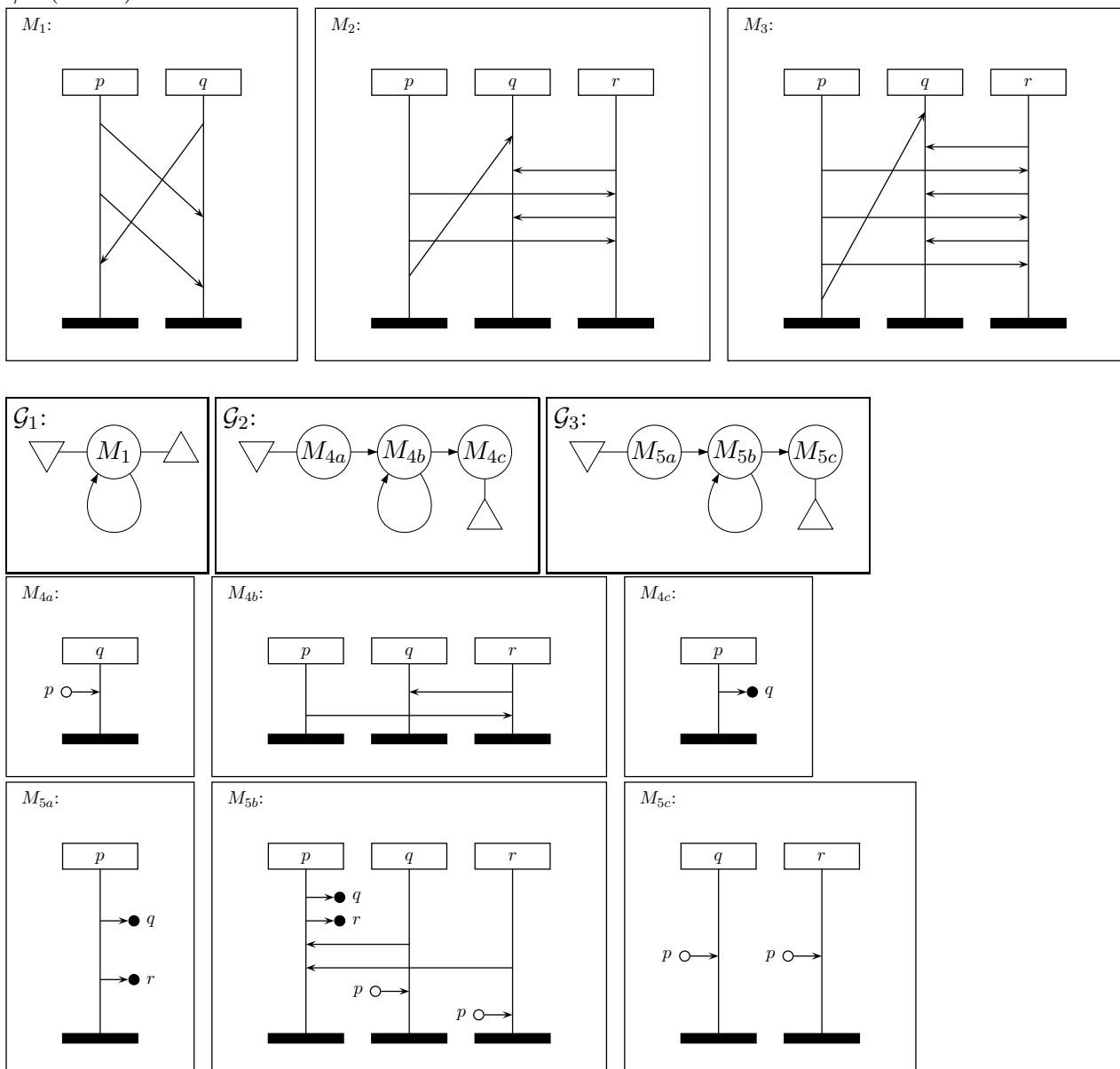


Foundations of the UML

Winter Term 07/08


– Assignment 4 –

Hand in until December 19th before the exercise class.

Exercise 1

(10 points)

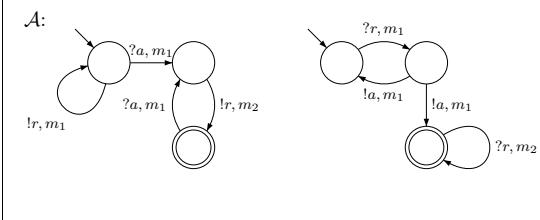
Determine for each of the following MSCs (M_1, M_2, M_3) and MSGs ($\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$), respectively, if they are existentially (\exists -) or universally (\forall -) bounded. In case an MSC or MSG is \exists/\forall -bounded, determine the smallest B such that the MSC or MSG, respectively, is \exists/\forall - B -bounded and argue why it cannot be \exists/\forall -($B - 1$)-bounded.

Note that, in contrast to the definition in the lecture, in \mathcal{G}_2 we allow a node containing a receive event to occur before the node of the corresponding send event.

Exercise 2

(10 points)

Let the following two MPA \mathcal{A}_1 and \mathcal{A}_2 be given: (The two MPA only contain 2 local automata, each. For readability purposes the sending and receiving processes were omitted. Thus, for example, executing action $!a$ in one local automaton corresponds to sending a message a to the other local automaton)


Answer the following questions for $i \in \{1, 2\}$ and give a detailed justification.

- Is the MPA \mathcal{A}_i strongly- B -bounded? (if the answer is *yes* find the smallest such B)
- Is the MPA \mathcal{A}_i a product MPA?
- Is the MPA \mathcal{A}_i deterministic?
- Is the MPA \mathcal{A}_i deadlock-free?

Exercise 3

(10 points)

Given the following MPA \mathcal{A} :

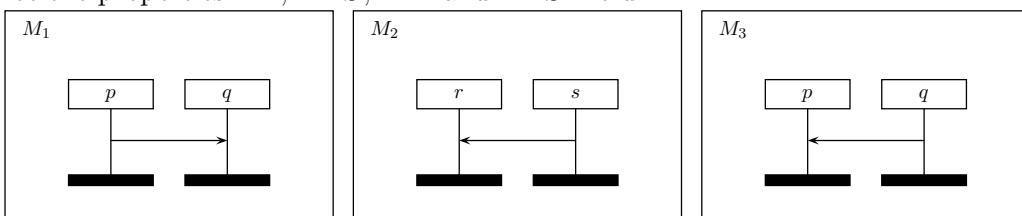
Show that \mathcal{A} is not safe by finding a configuration that is reachable from the initial configuration γ_0 of \mathcal{A} and from which a final configuration γ_e cannot be obtained. Justify your answer by indicating the sequence of configurations leading from the initial configuration γ_0 to the deadlock configuration γ_d and arguing why a final configuration is not reachable from γ_d .

Exercise 4

(10 points)

Let ABS' be the following property of a language L :

A language $L \subseteq Act^*$ fulfills property ABS' if for all $v, w \in pref(L)$ and all processes $p \in \mathcal{P}$: if $[v \upharpoonright p = w \upharpoonright p \text{ and } vx \in pref(L) \text{ for } x \in Act_p \text{ and } wx \text{ is prefix of a well-formed word}]$ then $wx \in pref(L)$.


Prove the following statement:

A language L fulfills property $ABS \iff L$ fulfills property ABS' .

Exercise 5

(10 points)

Check (i.e., by using the definitions) for language L_1 whether or not property AB and for L_2 whether or not the properties AB , ABS , AB' and ABS' hold:

- $L_1 = \{w \mid w \in Traces(\{M_1, M_2\})\}$
- $L_2 = \{w \mid w \in Traces(\{M_1, M_3\})\}$

Which of the languages is realizable or even safely realizable? Justify your answers.