Software Modeling and Verification

Lehrstuhl fiir Informatik 2 Prof. Dr. Ir. J.-P. Katoen

RWTH Aachen University C. Kern
Foundations of the UML
Winter Term 07/08
— Assignment 7 —
Hand in until February 6" before the exercise class.
Exercise 1 (10 points)

Let the following class diagram be given:

Order Event

' N * | capacity:int
Sudm.ll?g? numFreeSeats:int
orderID:Int orders events| ayentID:int
add(numTickets:int, e:Event) : Boolean

0..1 | order 1| event
Ticket
* price:Real 1.
tickets | ticketiD:Int tickets

It is part of a ticket reservation system where a user can order tickets for events like cinema films or
theater or cabaret performances.

a) Describe the following statements as OCL invariants:

i) The attribute sum must not be negative.

ii) The attribute sum is 0 if no tickets are ordered.

iii) The attribute sum exactly describes the prize of the tickets ordered.

Each Event has at least 0 free seats.

)
)
iv) Different instances of Ticket have different order numbers.
V)
)

vi) An Event’s capacity (i.e., the total number of seats) is greater than the number of all ordered
tickets of this event.

b) Describe the pre- and post conditions of method add, which adds a number of num tickets to the
order if there are still enough free seats and in this case increases the sum correctly. In case there
are not enough seats nothing is done.

Exercise 2 (10 points)

Given the class diagram from exercise 1, a concrete instance of the system is being created. There are two
events: a film Dumbo and a theater performance called The Magic Flute. The film has got two categories:
two cheap tickets for 5 Euro, each and two more expensive ones for 10 Euros, each. The theater seats are
divided into 5 categories. There is a ticket for 20, 40, 60, 80 and 100 Euros. The film has got a capacity
of 4 but there are already two seats occupied by an order Oy which includes a ticket for 5 and one for
10 Euros. Moreover Oy contains the most expensive ticket for the theater event. From now on cheaper
tickets are sold first (e.g., the first ticket to be sold for the film Dumbo is a 5 Euro ticket).

a) Draw the system’s “initial” configuration which is described above.
b) Draw the system’s configuration after each of the following actions:

(a) A new order O is created. For this order:
i) Buy a ticket for The Magic Flute.
ii) Buy a ticket for the film Dumbo.
(b) A new order Oj is created. For this order:
iii) Buy two tickets for the film Dumbo.
iv) Buy three tickets for The Magic Flute.

Exercise 3 (20 points)

Given the following, slightly extended, version of the class diagram from the lecture:

Hotel Room
numOfFloors:Int floorNumber:Int
numOfRooms:Int rooms | roomNumber:Int
numOfCleanRooms:Int hotel 1 | numOfBeds:Int
numOfBeds:Int clean:Bool

0..1
checkin(g:Guest) : Room
checkOut(g:Guest) : Room room
cleanRoom(r:Room) : Boolean
changeRoom(g:Guest,r:Room) : Boolean

0.1 | hotel * | guests

Guest

guestCode:Int
age:Int
* | numOfNights:Int

guests

Determine the formal semantics of the following OCL statements (i.e., translate the OCL statements into
BOTL according to the rules from the lecture).

a) invariant:
context Hotel
inv: guests—size < numOfBeds

b) invariant:
context Hotel
inv: num0fBeds = rooms—iterate(r; x=0|x+r.num0fBeds)

c¢) pre and post condition:
context Hotel::cleanRoom(r:Room)
pre: (not r.clean = tt) and r.guests—size = 0
post: r.clean = tt and
numOfCleanRooms = numOfCleanRooms@pre + 1

d) pre and post condition:
context Hotel::changeRoom(g:Guest, r:Room)
pre: guests—contains(g) and r.guests—size < r.num0OfBeds
post: g.room.guests—size = g.room.guests@pre—size - 1 and

r.guests—size = r.guests@pre—size + 1 and
g.room = r

