

Foundations of UML
 Winter term 2009

– Assignment 2 –

 November 4th

Exercise 1

(5 points)

As presented in the second lecture, the (weak) concatenation of two MSCs M_1 and M_2 (with $M_i = \langle \mathcal{P}_i, E_i, \mathcal{C}_i, \ell_i, m_i, \prec_i \rangle$ for $i \in \{1, 2\}$) intuitively is realized by gluing the process lines together such that M_1 is situated on top of MSC M_2 (cf. Figure 1).

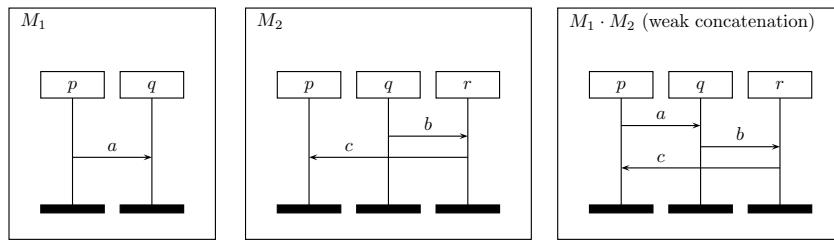


Abbildung 1: Two MSCs and their weak concatenation

Define the so-called *strong concatenation* \cdot_s of two MSCs M_1 and M_2 , i.e., all events of MSC M_1 have to be executed before the first event of M_2 . For this purpose determine a structure $M = M_1 \cdot_s M_2 = \langle \mathcal{P}, E, \mathcal{C}, \ell, m, \prec \rangle$, that (in terms of M_1 and M_2) results from concatenating the two MSCs strongly.

Exercise 2

(7 × 0.5 + 7 × 0.5 = 7 points)

Formally prove or disprove the correctness of the following statements for i) MSGs (i.e., $M_i \in \mathbb{M}$, $i \in \{1, 2, 3\}$) and ii) CMSGs (i.e., $M_i \in \mathbb{CM}$, $i \in \{1, 2, 3\}$):

(remember: $\mid \hat{=}$ choice, $\times \hat{=}$ (weak) sequence, $\ast \hat{=}$ iteration, $= \hat{=}$ language equality)

- a) $M_1|M_2 = M_2|M_1$
- b) $M_1 \times M_2 = M_2 \times M_1$
- c) $(M_1 \times M_2) \times M_3 = M_1 \times (M_2 \times M_3)$
- d) $(M_1|M_2)|M_3 = M_1|(M_2|M_3)$
- e) $(M_1 \times M_2)|M_3 = (M_1|M_3) \times (M_2|M_3)$
- f) $(M_1|M_2) \times M_3 = (M_1 \times M_3)|(M_2 \times M_3)$
- g) $M_1^\ast|M_2^\ast = (M_1|M_2)^\ast$

Exercise 3

(1 + 1 + 1 + 1 + 1 + 1 = 6 points)

Let $Act = \biguplus_{p \in \mathcal{P}} Act_p$ be the set of actions for an MSC M . If $w = w_1 \dots w_n$ is a linearization of M then we call $w' \in Act^*$ with $w' = l(w_1) \dots l(w_n)$ an *action linearization* of M . The set of all action linearizations

of an MSC M is called $ActLin(M)$.

Let $\mathcal{W} = ActLin(\mathbb{M})$ be the set of so-called *well-formed and complete* words over Act . Define a function $MSC : \mathcal{W} \rightarrow \mathbb{M}$ which determines for $w \in \mathcal{W}$ the corresponding MSC $MSC(w)$ such that, for any MSC M and any $w \in ActLin(M)$, we have $MSC(w) = M$

(Hint: the function MSC has to calculate all MSC components $\langle \mathcal{P}, E, \mathcal{C}, \ell, m, \prec \rangle$ subject to w).