

Foundations of UML
 Winter term 2009

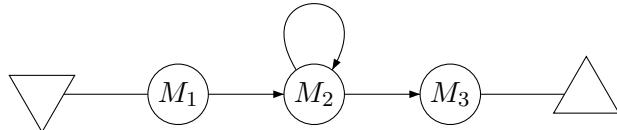
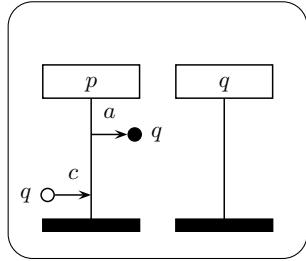
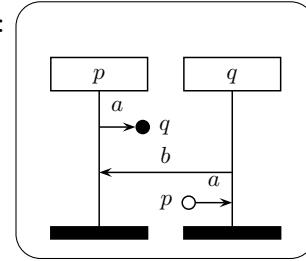
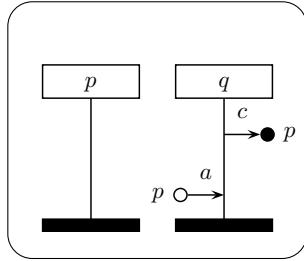
– Assignment 3a –

 Hand in the solutions before the exercise class on November 18th.

Exercise 1

(10 points)

 Given the CMSG G as follows:

 $G :$

 $M_1 :$

 $M_2 :$

 $M_3 :$

 a) Construct the pushdown automata corresponding to G .

 b) Determine whether all accepting paths of G are safe.

Exercise 2

(14 points)

Consider the (C)MSGs on the next page:

 a) Prove or disprove the following properties for the MSGs \mathcal{G}_1 , \mathcal{G}_2 and \mathcal{G}_3 :

- (a) local-choice (as defined in the lecture)
- (b) regularity (as defined in Definition 3 at the end of this assignment)

 b) Prove or disprove the following property for the CMSG \mathcal{G}_4 :

- (a) safety (as defined in Definition 4 at the end of this assignment)

In each case justify your answer in detail. If there are several reasons why a property does not hold, state at least two of them.

Definition 1: Let $Act = \biguplus_{p \in \mathcal{P}} Act_p$ be the set of actions for an MSC M . If $w = w_1 \dots w_n$ is a linearization of M then we call $w' \in Act^*$ with $w' = l(w_1) \dots l(w_n)$ an *action linearization* of M .

The set of all action linearizations of an MSC M is called $ActLin(M)$.

Definition 2: The *communication graph* CG of a CMSC $M = \langle \mathcal{P}, E, \mathcal{C}, \ell, m, \prec \rangle$ is defined as the graph $CG(M) = \langle V, \rightarrow \rangle$ (with the set of nodes $V := \mathcal{P} \setminus \{p \in \mathcal{P} \mid E_p = \emptyset\}$ and the edge relation $\rightarrow := \{(p_1, p_2) \mid p_1!p_2(c), p_2?p_1(c) \in \ell(E), c \in \mathcal{C}\}$).

Definition 3: A Message Sequence Graph \mathcal{G} is *regular* if each MSC labeling a loop in \mathcal{G} has a strongly connected communication graph.

Definition 4: A compositional Message Sequence Graph \mathcal{G} is called *safe* if every sequence of CMSCs (using the concatenation defined in the lecture) describing an accepting path in \mathcal{G} results in an MSC.

