

Foundations of UML
 Winter term 2009

– Assignment 4 –

 November 25th

Exercise 1

(10 points)

Given the following specification \mathcal{S} where a producer p and a consumer c are the acting units:

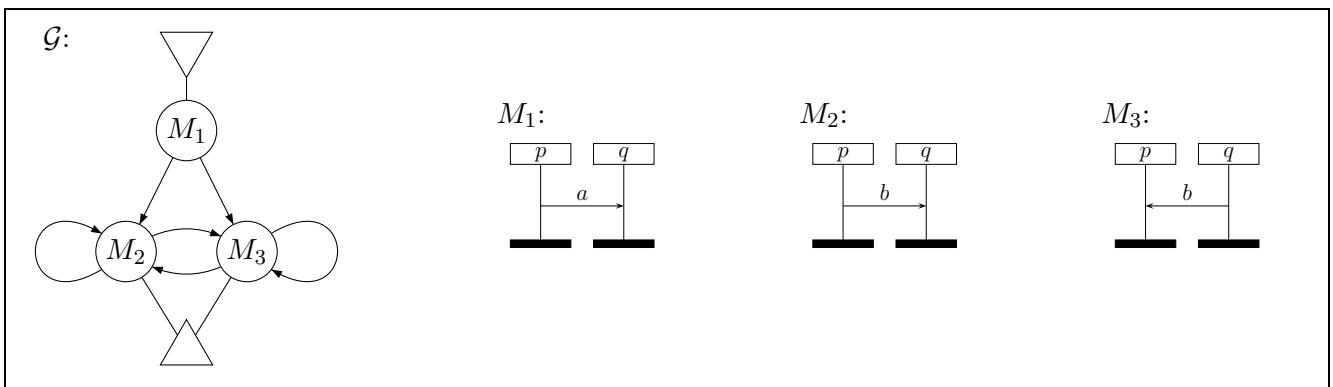
- The producer p starts sending messages with content 0 (one bit) to the consumer c until he receives an acknowledgement message a from the consumer. In that case the bit is swapped to 1 and p starts sending messages with content 1 to c until the next a is received. Then again the bit is inverted and the procedure can continue as before.
- The consumer process c , however, starts by receiving at least one 0. After that he may receive more 0s until finally he sends an a to p . After this acknowledgement the remaining 0s in the buffer (p, c) have to be received. Then process c starts receiving 1s (if p sent at least one). Having received at least one message with content 1, c may send an a after any of the succeeding 1s. Having sent the a , the remaining 1s have to be processed before another round of receiving 0s may start.
- The system may accept directly after any a that is received by process p (as long as the empty-buffer condition is fulfilled).

Question: Find a CFM implementation for \mathcal{S} .

Exercise 2

(10 points)

Consider the following MSG \mathcal{G} .



Construct a CFM \mathcal{A} which exactly recognizes $\mathcal{L}(\mathcal{G})$ (i.e., where $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{G})$).

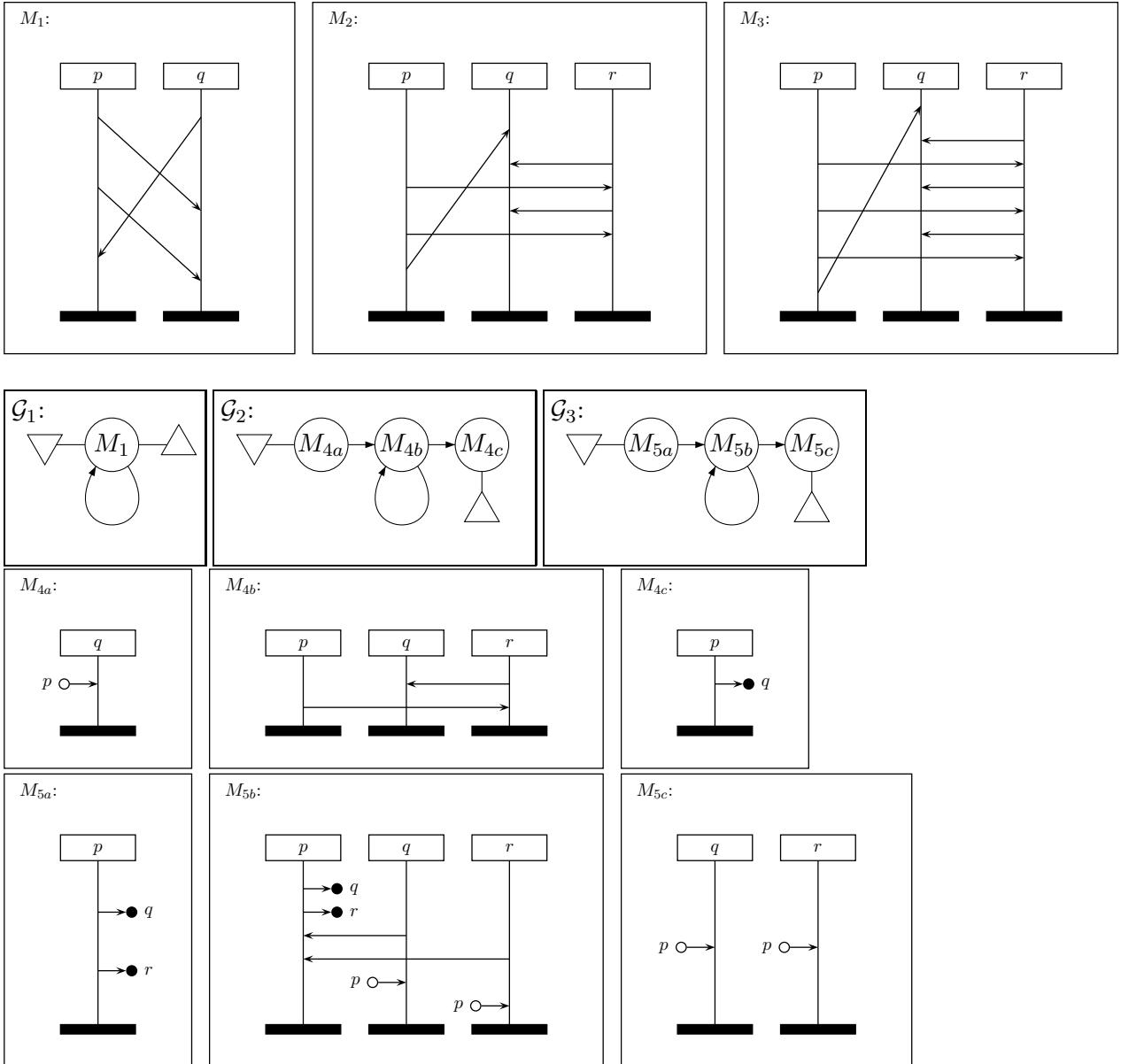
Note: Pay attention to avoid non-local-choice which would result in unwanted behavior such as deadlocks.

Exercise 3

(10 points)

Determine for each of the following MSCs (M_1, M_2, M_3) and MSGs ($\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$), respectively, if they are existentially (\exists -) or universally (\forall -) bounded. In case an MSC or MSG is \exists/\forall -bounded, determine the

smallest B such that the MSC or MSG, respectively, is \exists/\forall - B -bounded and argue why it cannot be \exists/\forall - $(B - 1)$ -bounded.

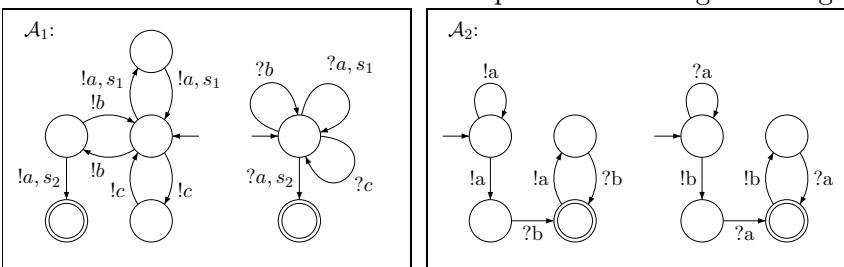


Note that, in contrast to the definition in the lecture, in \mathcal{G}_2 we allow a node containing a receive event to occur before the node of the corresponding send event.

Exercise 4

(10 points)

Let the following two CFMs \mathcal{A}_1 and \mathcal{A}_2 be given: (The two CFMs only contain 2 local automata, each. For readability purposes the sending and receiving processes were omitted. Thus, for example, executing action $!a$ in one local automaton corresponds to sending a message a to the other local automaton)



Answer the following questions for $i \in \{1, 2\}$ and give a detailed justification.

- Is the CFM \mathcal{A}_i strongly- B -bounded? (if the answer is *yes* find the smallest such B)
- Is the CFM \mathcal{A}_i a product CFM?
- Is the CFM \mathcal{A}_i deterministic?

d) Is the CFM \mathcal{A}_i deadlock-free?

Definition 1: A CFM \mathcal{A} is strongly B -bounded if, for any $u \in Act^*$: if there is a run of \mathcal{A} on u , then u is B -bounded.