

Prof. Dr. Ir. J.-P. Katoen
T. Han & A. Mereacre

Foundations of UML
Winter term 2009
– Assignment 5 –

Hand in the solutions before the exercise class on December 2nd.

Exercise 1 (5 points)

Prove that *deadlock-free CFMs are strictly weaker than CFMs*.

Exercise 2 (10 points)

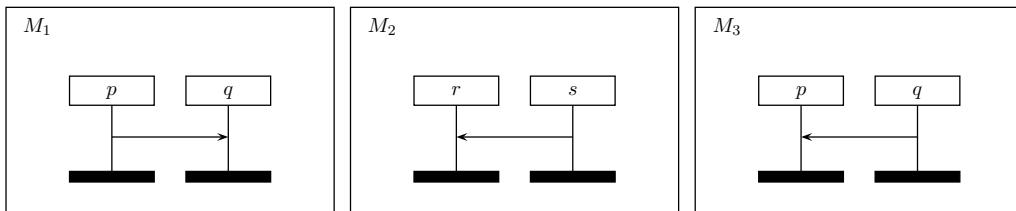
For well-formed language $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let: $L \models^{df} w$ iff $(\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$. Language L is closed under \models^{df} iff $L \models^{df} w$ implies $w \in Pref(L)$.

A language $L \subseteq Act^*$ is closed under \vdash^{df} iff for all $v, w \in Pref(L)$ and all processes $p \in \mathcal{P}$: $(v \upharpoonright p = w \upharpoonright p \text{ and } vx \in Pref(L) \text{ for } x \in Act_p \text{ and } wx \text{ is prefix of a well-formed word})$ implies $wx \in Pref(L)$.

Prove the following statement: *A language L is closed under \models^{df} iff L is closed under \vdash^{df}* .

Exercise 3 (10 points)

Check (i.e., by using the definitions) whether language L_i ($i \in \{1, 2\}$) is closed under \models and \models^{df} :



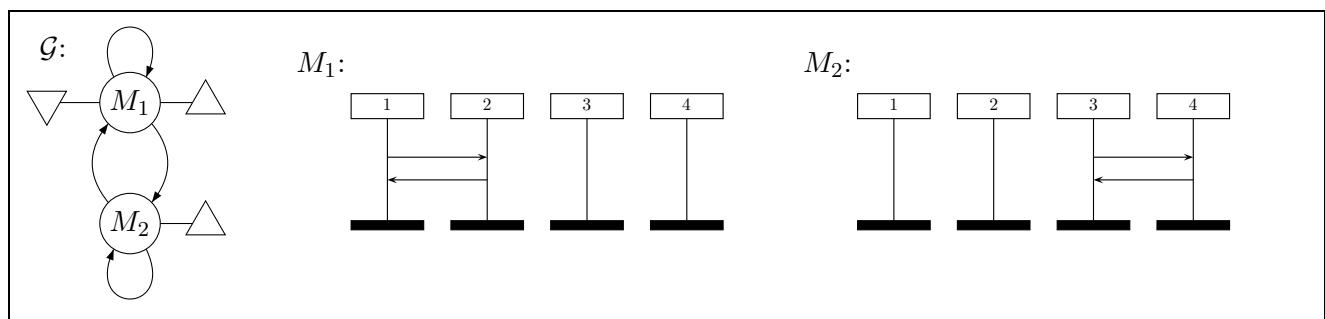
$L_1 = \{w \mid w \in Lin(\{M_1, M_2\})\}$ and $L_2 = \{w \mid w \in Lin(\{M_1, M_3\})\}$

Which of the languages is realizable or even safely realizable? Justify your answers.

(Note that $Lin(\{M, M'\}) = Lin(M \cdot M') \cup Lin(M' \cdot M)$.)

Exercise 4 (5 points)

Reconsider the MSG \mathcal{G} from the lecture:



\mathcal{G} is not communication-closed but the set of traces $Lin(\mathcal{G})$ is regular. Find a regular expression \mathfrak{A} over $\{M_1, M_2\}$ such that the MSG \mathcal{G}' induced by \mathfrak{A} is communication-closed and recognizes the same language as \mathcal{G} . For your solution write down \mathfrak{A} , \mathcal{G}' and argue why \mathcal{G}' is communication-closed and $L(\mathcal{G}) = L(\mathcal{G}')$.