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Realisabiliy and safe realisability

Definition (Realisability)

1 MSC M is realisable whenever {M} = L(A) for some CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some CFM A.

3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Definition (Safe realisability)

Same as above except that the CFM should be deadlock-free
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Summary of results

Approach so far:

The (safe) realisation of a (finite) set of MSCs by a weak CFM is the
one where the automaton Ap of process p generates the projections of
these MSCs on p.

Results so far:
1 Conditions for (safe) realisability for languages obtained by finite

sets of MSCs.

2 Checking safe realisability for such languages is in P.

3 Checking realisability for such languages is co-NP complete.
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Some remaining questions

Can results be obtained for larger classes of MSGs?

What happens if we allow synchronisation messages?

recall that weak CFMs in fact do not involve synchronisation
messages

How do we obtain a CFM realising an MSG algorithmically?

in particular, for non-local choice MSGs

Are there simple conditions on MSGs that guarantee realisability?

e.g., easily identifiable subsets of (safe) realisable MSGs
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Regular MSCs

Let M be the set of MSCs over P and C.

Definition (Regular)

1 M = {M1, . . . ,Mn } with n ∈ N ∪ {∞} is called regular if
Lin(M) =

⋃n
i=1 Lin(Mi) is a regular word language over Act

∗.

2 MSG G is regular if Lin(G) is a regular word language over Act
∗.

3 CFM A is regular if Lin(A) is a regular word language over Act
∗.

Note that M itself is not regular.

Obviously we have:

Any ∀-bounded CFM is regular.
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Examples

On the black board.
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A decidability result

Theorem [Henriksen et. al, 2005]

The decision problem “does a regular language L ⊆ Act
∗ represent a set

of well-formed words“? —that is, does L represent a set of MSCs?— is
decidable.

Proof

Since L is regular, there exists a minimal DFA A = (S,Act , s0, δ, F )
that accepts L. Consider the productive states in this DFA, i.e., all
states from which some state in F can be reached. We label any
productive state s with a channel-capacity function Ks : Ch → N such
that 4 constraints (cf. next slide) are fulfilled. Then: L is a regular set of
well-formed words iff each productive state in the DFA A can be labeled
with Ks satisfying these constraints. In fact, if a state-labeling violates
any of these constraints, it is due to a word that is not well-formed.
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Constraints on state-labelling

Constraints on channel-capacity function Ks for state s:

1 If s ∈ F ∪ {s0}, then Ks((p, q)) = 0 for any channel (p, q)

2 If s, s′ ∈ S are productive and δ(s, !(p, q, a)) = s′, then
Ks′((p, q)) := Ks((p, q)) + 1, and Ks′ = Ks for all other channels

3 If s, s′ ∈ S are productive and δ(s, ?(p, q, a)) = s′, then
Ks((q, p)) > 0, Ks′((q, p)) := Ks((q, p)) − 1, and Ks′ = Ks for all
other channels

4 (The “diamond“ property).
If δ(s, α) = s1 and δ(s1, β) = s2 with α ∈ Actp and β ∈ Actq, p 6= q,
then if:

not (α 6= !(p, q, a) and β 6= ?(q, p, a)), or Ks((p, q)) > 0

then δ(s, β) = s′1 and δ(s′1, α) = s2 for some s′1 ∈ S.
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Example

On the black board.
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Boundedness and regularity

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act
∗ is called B-bounded if for any

prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Corollary:

For any regular, well-formed language L, there exists B ∈ N and B > 0
such that any w ∈ L is B-bounded.

Proof

The bound is the largest value attained by the channel-capacity
functions assigned to productive states in the proof of the previous
theorem.
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Regularity and realisability

Theorem: [Henriksen et al., 2005, Baudru & Morin, 2007]

For any set L of well-formed words, the following statements are
equivalent:

1 L is regular.

2 L is realisable by a ∀-bounded CFM.

3 L is realisable by a deterministic ∀-bounded CFM.

4 L is safely realisable by a ∀-bounded CFM.

Note:

The maximal size of the CFM realising L is such that for each process p, |Sp|,

the number of states of local automaton Ap, is double exponential in the

bound B, and n2 where n = |P|, and exponential in m log m where m is the

size of a minimal DFA representing L.
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Regularity for MSGs is undecidable

Theorem [Henriksen et. al, 2005]

The decision problem “is MSG G regular“? is undecidable.

Proof

By a reduction from the (undecidable) problem to determine whether
the trace-closure of a regular language L over alphabet Σ with respect
to an independence relation I ⊆ Σ × Σ.
(Proof omitted in this lecture.)
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Towards structural conditions for regular MSGs

MSG G is regular if Lin(G) is a regular language

Regularity yields deterministic, or safe, but bounded CFMs

But, “is MSG G regular“? is unfortunately undecidable

Is it possible to impose structural conditions on MSGs that
guarantee regularity?

Yes we can. For instance, by constraining:
1 the communication structure of the MSCs in loops of G, or
2 the structure of rational expressions describing the MSCs in G
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Communication graph

Definition (Communication graph)

The communication graph of the MSC M = (P, E, C, l,m,<) is the
directed graph (V,→) with:

V = P \ { p ∈ P | Ep = ∅ }, the set of active processes

(p, q) ∈ → if and only if l(e) =!(p, q, a) for some e ∈ E

Example

p1 p2 p3 p4

a
b
a

b a

an example

MSC

p1 p2 p3 p4

its communication graph
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Communication closedness

Definition

Communication graph MSG G is communication-closed if for any loop
π = v1v2 . . . vn (with v1 = vn) in G, the MSC M(π) has a strongly
connected communication graph.

Example

On the black board.
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Communication-closed vs. regularity

Theorem:

Any communication-closed MSG G is regular.

Example

Example on the black board.

Note:

The converse does not hold (cf. next slide).
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Communication-closed vs. regularity

Communication-closedness is not a necessary condition for regularity:

p1 p2 p3 p4

a

b

p1 p2 p3 p4

a

b

G:

MSG G is not communication-closed, but Lin(G) is regular.
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Communication-closed vs. regularity

Definition (Asynchronous iteration)

For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 • M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mǫ} if i=0, where Mǫ denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃

i>0

Mi.
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Communication-closed vs. regularity

Definition (Finitely generated)

Set of MSCs M ⊆ M is finitely generated if there is a finite set of MSCs
M̂ ⊆ M such that M ⊆ M̂∗.

Notes:
1 Each set of MSCs defined by MSG G is finitely generated.

2 Not every regular language of well-formed words is finitely
generated.

3 Not every finitely generated set of MSCs is regular.

4 It is decidable to check whether a set of MSCs is finitely generated.
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Communication-closed vs. regularity

Theorem: [Henriksen et. al, 2005]

Let M be a set of MSCs. Then:

M is finitely generated and regular

iff

M = L(G) for communication-closed MSG G.
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed” is co-NP
complete.

Proof
1 Membership in co-NP can be proven in a standard way: guess a subgraph

of G, check in polynomial time whether this subgraph has a loop passing

through all its vertices, and check whether its communication graph is

not strongly connected.

2 It can be shown that the problem is co-NP hard by a reduction from the

3-SAT problem.
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Local communication-closedness

Definition (Local communication-closedness)

MSG G is locally communication-closed if for each vertex (v, v′) in G,
the MSCs λ(v1), λ(v2) and λ(v1) • λ(v2) have weakly connected
communication graphs.

Notes:
1 A directed graph is weakly connected if its induced undirected

graph is strongly connected.

2 Checking whether MSG G is locally communication-closed can be
done in linear time.

Theorem:

For any locally communication-closed MSG G, there exists a CFM A
with L(A) = L(G) of size nO(|P|) where n is the number of vertices in G.
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Summary of realisability [Lohrey, 2003]

Computability and complexity results for FIFO communication:

finite MSGs∗ communication- general MSGs

closed MSGs

realisabilty co-NP complete undecidable undecidable

safe realisability PTIME EXPSPACE-complete undecidable

∗ MSG G is finite if L(G) is a finite set of MSCs.

Computability and complexity results for non-FIFO communication:

finite MSGs∗ communication- general MSGs

closed MSGs

realisabilty co-NP complete PSPACE-hard undecidable

safe realisability PTIME EXPSPACE-complete undecidable
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