
Foundations of the UML
Lecture 11: Realising local choice MSGs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

29. November 2009

Joost-Pieter Katoen Foundations of the UML 1/33

http://moves.rwth-aachen.de/i2/370

Safe realisability

Definition (Realisability)

1 MSG G is realisable whenever L(G) = L(A) for some CFM A.

2 MSG G is safely realisable whenever L(G) = L(A) for some
deadlock-free CFM A.

Joost-Pieter Katoen Foundations of the UML 2/33

Questions

Can results be obtained for larger classes of MSGs?

What happens if we allow synchronisation messages?

recall that weak CFMs do not involve synchronisation messages

How do we obtain a CFM realising an MSG algorithmically?

in particular, for non-local choice MSGs

Are there simple conditions on MSGs that guarantee realisability?

e.g., easily identifiable subsets of (safe) realisable MSGs

Joost-Pieter Katoen Foundations of the UML 3/33

Summary of results

Results so far:
1 Conditions for (safe) realisability for finite sets of MSCs.

2 Checking these conditions is co-NP complete (in P).

3 Regular MSGs are (safely) realisable by ∀-bounded CFMs.

4 Checking regularity of MSGs is undecidable.

5 Communication-closedness implies regularity, but its check is
co-NP complete.

6 Local communication-closedness implies regularity, and can be
checked in P.

Joost-Pieter Katoen Foundations of the UML 4/33

Today’s topics

Today we focus on safe realisability of local-choice MSGs.

By local-choice property, no deadlocks can occur in realising CFM.

Today’s topics:

1 Realisability for constrained regular expressions of local-choice
MSGs

2 An algorithm that generates a CFM (with synchronisation
messages) from a local-choice MSG

Joost-Pieter Katoen Foundations of the UML 5/33

Local choice property (1)

p q

a

p q

b

G:

v1 v2

Inconsistency if process p behaves according to v1

and process q behaves according to v2

=⇒ possible distributed realization may yield a deadlock

Problem:

Subsequent behavior is determined by distinct processes

Joost-Pieter Katoen Foundations of the UML 6/33

Example of local-choice MSG

p1 p2 p3

a

p1 p2 p3

b

p1 p2 p3

c

Inconsistency if p1 sends a and p3 sends c.

Joost-Pieter Katoen Foundations of the UML 7/33

Local choice property (2)

e is a minimal event wrt. � if ¬(∃e′ 6= e. e′ � e)
p is active in MSC M if Ep 6= ∅

p is active in path v1 . . . vn in MSG G if p is active in λ(vi) for
some i

Definition (local choice MSG)

MSG G = (V,→, v0, F, λ) is local choice if:

1 ∃ active p. ∀π ∈ Paths(v0).
π contains a single minimal event e ∈ Ep

2 ∀ branching vertex v ∈ V. with v → w

∃ active p . ∀π ∈ Paths(w).
π contains a single minimal event e ∈ Ep

Intuition:
Along every path from an initial or branching vertex there is a single process

deciding how to proceed which can inform the other processes how to proceed.

Joost-Pieter Katoen Foundations of the UML 8/33

Branching vertices

A vertex is branching if:

v1 vn. . .

...

or

︸ ︷︷ ︸
n ≥ 2





≥ 1

Joost-Pieter Katoen Foundations of the UML 9/33

Local choice

p1 p2

left

a

p1 p2

right

b

G:

Note:

Checking whether an MSG is local choice can be done in PTIME.

How can non-local choice be resolved?

Refine your MSG and add control messages (cf. above example)

Joost-Pieter Katoen Foundations of the UML 10/33

Regular expressions over MSCs

Definition (Asynchronous iteration)

For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 • M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mǫ} if i=0, where Mǫ denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃

i>0

Mi.

Joost-Pieter Katoen Foundations of the UML 11/33

Regular expressions over MSCs

Definition (Regular expressions over MSCs)

The set REXM of regular expressions over M is given by the grammar:

α ::= ∅ | M | α1 · α2 | α1 + α2 | α∗

where MSC M ∈ M.

Definition (Semantics of regular expressions, L(.) : REXM → 2M)

L(∅) = ∅

L(M) = {M }

L(α1 · α2) = L(α1) • L(α2)

L(α1 + α2) = L(α1) ∪ L(α2)

L(α∗) = L(α)∗

Joost-Pieter Katoen Foundations of the UML 12/33

Locally accepting CFMs

Definition (Locally accepting CFM)

CFM A = (((Sp,∆p))p∈P , D, sinit , F) is locally accepting if

F =
∏

p∈P

Fp where Fp ⊆ Sp.

An la CFM abbreviates a locally accepting CFM.

Joost-Pieter Katoen Foundations of the UML 13/33

Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.

Example

1 2

req

A

1 2

ack

B

3 4

req

C

Consider the following regular expressions over M:

α1 = (A · B)∗ det. ∀1-bounded deadlock-free weak la CFM

α2 = (A + B)∗ det. ∃1-bounded la CFM

α3 = (A · C)∗ not realisable

α4 = A · (A + B)∗ ∃1-bounded deadlock-free la CFM

How about realisability of L(αi)?

Joost-Pieter Katoen Foundations of the UML 14/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

Joost-Pieter Katoen Foundations of the UML 15/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 :
2 → 1 :

Joost-Pieter Katoen Foundations of the UML 16/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 : (req,L)
2 → 1 :

1 2

(req,L)

Joost-Pieter Katoen Foundations of the UML 17/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 : (req,L) (req,L)
2 → 1 :

1 2

(req,L)

(req,L)

Joost-Pieter Katoen Foundations of the UML 18/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 : (req,L) (req,L) (req,R)
2 → 1 :

1 2

(req,L)

(req,L)

(req,R)

Joost-Pieter Katoen Foundations of the UML 19/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 : (req,L) (req,R)
2 → 1 :

1 2

req

(req,L)

(req,R)

Joost-Pieter Katoen Foundations of the UML 20/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 : (req,R)
2 → 1 :

1 2

req

req

(req,R)

Joost-Pieter Katoen Foundations of the UML 21/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 :
2 → 1 :

1 2

req

req

req

Joost-Pieter Katoen Foundations of the UML 22/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 :
2 → 1 : (ack,L)

1 2

req

req

req

(ack,L)

Joost-Pieter Katoen Foundations of the UML 23/33

Realising local-choice expressions by deadlock-free CFMs

A · (A + B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req, R)

?(2, 1, req, L)

?(2, 1, req, R)

!(1, 2, req, L)

?(2, 1, req, L)

!(1, 2, req, R)

?(2, 1, req, R)

?(1, 2, ack, L)

!(2, 1, ack, L)

?(1, 2, ack, R)

!(2, 1, ack, R)

1 → 2 :
2 → 1 :

1 2

req

req

req

ack

Joost-Pieter Katoen Foundations of the UML 24/33

Star-connected

Definition (Connected MSC)

An MSC M = (P, E, C, l,m,<) ∈ M is connected if:

∀e, e′ ∈ E. e <∗ e′ or e′ <∗ e.

Examples on the black board.

Definition (Star-connected)

We call α ∈ REXM star-connected if, for any subexpression β∗ of α,
L(β) is a set of connected MSCs.

Examples on the black board.

Joost-Pieter Katoen Foundations of the UML 25/33

Regular expressions vs. CFMs

Definition (Finitely generated)

Set of MSCs M ⊆ M is finitely generated if there is a finite set of MSCs
M̂ ⊆ M such that M ⊆ M̂∗.

Theorem [Genest et al. 2006]

Finitely generated M is realisable

iff

there exists a star-connected regular expression α with L(α) = M.

Joost-Pieter Katoen Foundations of the UML 26/33

Local choice MSGs

An example local-choice MSG on black board.

Joost-Pieter Katoen Foundations of the UML 27/33

Realising local choice (C)MSGs

Theorem [Genest et. al., 2005]

Any local-choice (C)MSG G is safely realisable by a CFM with
additional synchronisation data which is of size linear in G.

Proof

As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

1 Process p(v) determines the successor vertex of v.

2 Process p(v) informs all other processes about its decision by
adding synchronisation data to the exchanged messages.

3 Synchronisation data is the path (in G) from v to the next
branching vertex along the direction chosen by p(v).

Joost-Pieter Katoen Foundations of the UML 28/33

Maximal non-branching paths

Definition (Maximal non-branching paths)

For MSG G = (V,→, v0, F, λ), let nbp : V → V ∗ be defined by:

nbp(v) =

{
v if v ∈ F or v is a branching vertex

v1 . . . vn otherwise

where the path v1 . . . vn ∈ V ∗ satisfies:

1 vi = v for some i, 0 < i 6 n, and

2 vn ∈ F or is a branching vertex, and

3 v1 is a direct successor of a branching vertex, and

4 v2, . . . , vn−1 6∈ F and are all non-branching vertices

Intuition

nbp(v) is the maximal non-branching path to which v belongs.

Joost-Pieter Katoen Foundations of the UML 29/33

Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F , λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P , D, sinit , F
′) with:

1 Local automaton Ap = (Sp,∆p) as defined on next slides

2 D = {npb(v) | v ∈ V }

synchronisation data = maximal non-branching paths in G

3 sinit = { (v0, ∅) }n where n = |P|

each local automaton Ap starts in initial state (v0, ∅), i.e.,
in initial vertex v0 while no events of p have been performed

4 s ∈ F ′ iff for all p ∈ P, local state s[p] = (v,E) with E ⊆ Ep and:
1 v ∈ F and E contains a maximal event wrt. <p in MSC λ(v), or
2 v 6∈ F and π = v . . . w is a path in G and E contains a maximal

event wrt. <p in MSC λ(π).

Joost-Pieter Katoen Foundations of the UML 30/33

State space of local automaton Ap

Sp = V × Ep such that for any s = (v,E) ∈ Sp:

∀e, e′ ∈ λ(v).
(
e <p e′ and e′ ∈ E implies e ∈ E

)

that is, E is downward-closed with respect to <p in MSC λ(v)

Intuition: a state (v,E) means that process p is currently in vertex
v of G and has already performed the events E of λ(v)

Initial state of Ap is sinit [p] = (v0, ∅)

Joost-Pieter Katoen Foundations of the UML 31/33

Transition relation of local automaton Ap

Executing events within a vertex of the MSG G:

e ∈ Ep ∩ λ(v)

(v,E)
l(e),nbp(v)

−−−−−−−−→p (v,E ∪ { e })

Note: since E ∪ {e} is downward-closed wrt. <p, e is enabled

Changing vertex of the MSG G:

E = Ep ∩ λ(v) and e ∈ Ep ∩ λ(w) and
vu0 . . . unw ∈ V ∗ with p not active in u0 . . . un

(v,E)
l(e),nbp(w)

−−−−−−−−→p (w, {e})

Note: vertex w is the first successor vertex of v on which p is active

Joost-Pieter Katoen Foundations of the UML 32/33

Examples

A couple of examples on the black board.

Joost-Pieter Katoen Foundations of the UML 33/33

Joost-Pieter Katoen Foundations of the UML 33/33

	Lecture 11: Realising local choice MSGs

