

Foundations of the UML

Lecture 11: Realising local choice MSGs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

29. November 2009

Definition (Realisability)

- ① MSG G is **realisable** whenever $L(G) = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ② MSG G is **safely realisable** whenever $L(G) = L(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

- Can results be obtained for **larger classes** of MSGs?
- What happens if we allow **synchronisation messages**?
 - recall that weak CFMs do not involve synchronisation messages
- How do we obtain a CFM realising an MSG **algorithmically**?
 - in particular, for non-local choice MSGs
- Are there **simple conditions** on MSGs that guarantee realisability?
 - e.g., easily identifiable subsets of (safe) realisable MSGs

Results so far:

- 1 Conditions for (safe) realisability for finite sets of MSCs.
- 2 Checking these conditions is co-NP complete (in P).
- 3 Regular MSGs are (safely) realisable by \forall -bounded CFMs.
- 4 Checking regularity of MSGs is undecidable.
- 5 Communication-closedness implies regularity, but its check is co-NP complete.
- 6 Local communication-closedness implies regularity, and can be checked in P.

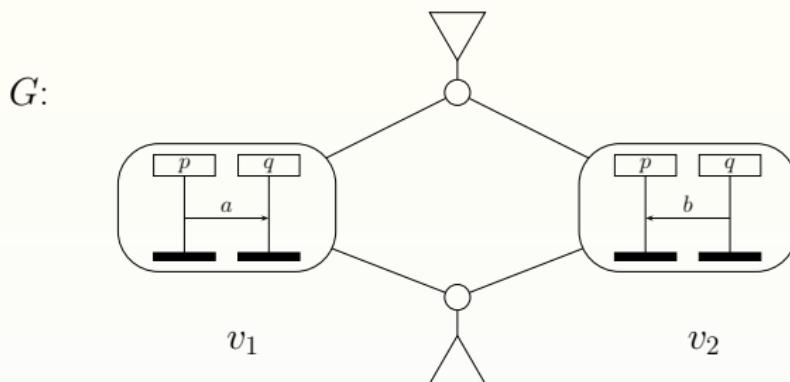
Today's topics

- Today we focus on safe realisability of **local-choice** MSGs.
- By local-choice property, no deadlocks can occur in realising CFM.

Today's topics:

- ❶ Realisability for constrained regular expressions of **local-choice** MSGs
- ❷ An algorithm that generates a CFM (with synchronisation messages) from a **local-choice** MSG

Local choice property (1)



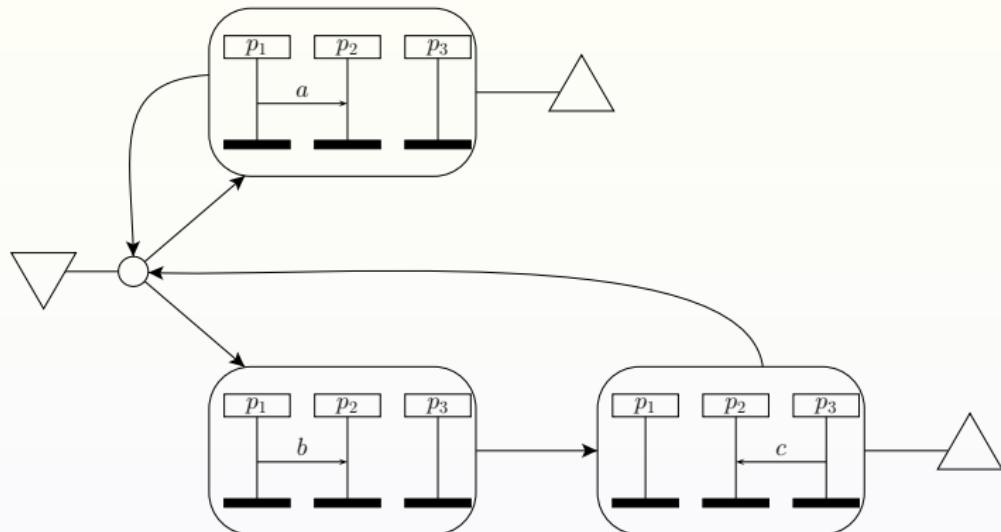
Inconsistency if process p behaves according to v_1
and process q behaves according to v_2

⇒ possible distributed realization may yield a deadlock

Problem:

Subsequent behavior is determined by distinct processes

Example of local-choice MSG



Inconsistency if p_1 sends a and p_3 sends c .

Local choice property (2)

- e is a minimal event wrt. \preceq if $\neg(\exists e' \neq e. e' \preceq e)$
- p is **active** in MSC M if $E_p \neq \emptyset$
- p is **active** in path $v_1 \dots v_n$ in MSG G if p is active in $\lambda(v_i)$ for some i

Definition (local choice MSG)

MSG $G = (V, \rightarrow, v_0, F, \lambda)$ is **local choice** if:

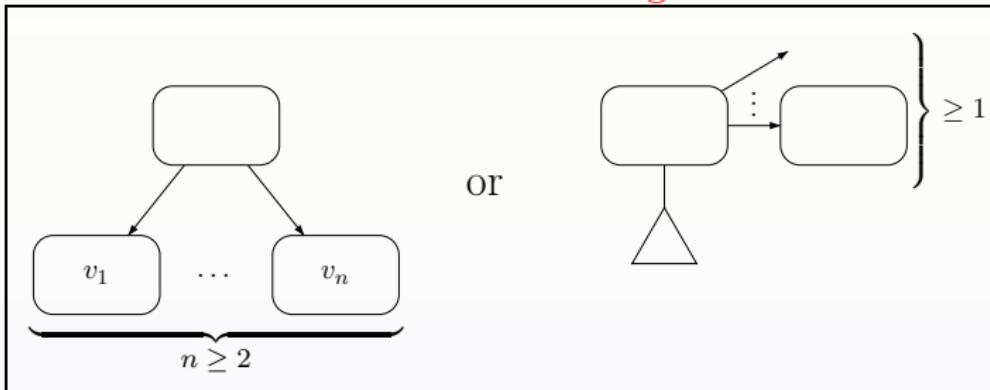
- ① \exists active p . $\forall \pi \in \text{Paths}(v_0)$.
 π contains a single minimal event $e \in E_p$
- ② \forall branching vertex $v \in V$. with $v \rightarrow w$
 \exists active p . $\forall \pi \in \text{Paths}(w)$.
 π contains a single minimal event $e \in E_p$

Intuition:

Along every path from an initial or branching vertex there is a single process deciding how to proceed which can inform the other processes how to proceed.

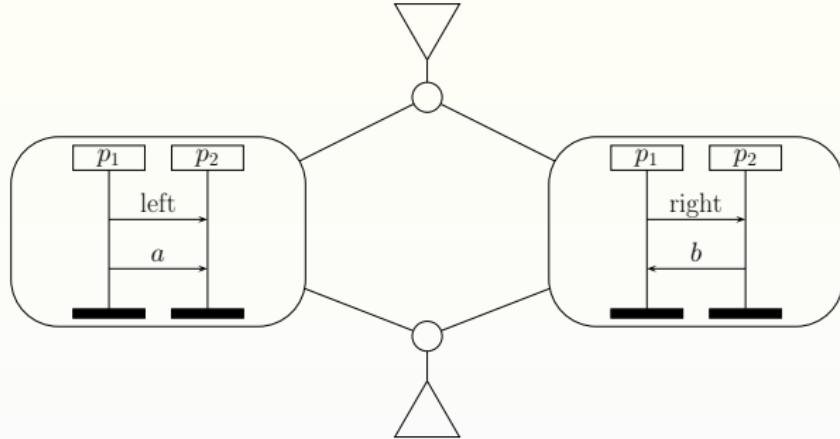
Branching vertices

A vertex is **branching** if:



Local choice

G :



Note:

Checking whether an MSG is local choice can be done in PTIME.

How can non-local choice be resolved?

Refine your MSG and add control messages (cf. above example)

Regular expressions over MSCs

Definition (Asynchronous iteration)

For $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathbb{M}$ sets of MSCs, let:

$$\mathcal{M}_1 \bullet \mathcal{M}_2 = \{ M_1 \bullet M_2 \mid M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2 \}$$

For $\mathcal{M} \subseteq \mathbb{M}$ let

$$\mathcal{M}^i = \begin{cases} \{M_\epsilon\} & \text{if } i=0, \text{ where } M_\epsilon \text{ denotes the empty MSC} \\ \mathcal{M} \bullet \mathcal{M}^{i-1} & \text{if } i > 0 \end{cases}$$

The **asynchronous iteration** of \mathcal{M} is now defined by:

$$\mathcal{M}^* = \bigcup_{i \geq 0} \mathcal{M}^i.$$

Regular expressions over MSCs

Definition (Regular expressions over MSCs)

The set $\text{REX}_{\mathbb{M}}$ of **regular expressions** over \mathbb{M} is given by the grammar:

$$\alpha ::= \emptyset \mid M \mid \alpha_1 \cdot \alpha_2 \mid \alpha_1 + \alpha_2 \mid \alpha^*$$

where MSC $M \in \mathbb{M}$.

Definition (Semantics of regular expressions, $L(\cdot) : \text{REX}_{\mathbb{M}} \rightarrow 2^{\mathbb{M}}$)

- $L(\emptyset) = \emptyset$
- $L(M) = \{ M \}$
- $L(\alpha_1 \cdot \alpha_2) = L(\alpha_1) \bullet L(\alpha_2)$
- $L(\alpha_1 + \alpha_2) = L(\alpha_1) \cup L(\alpha_2)$
- $L(\alpha^*) = L(\alpha)^*$

Definition (Locally accepting CFM)

CFM $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ is **locally accepting** if

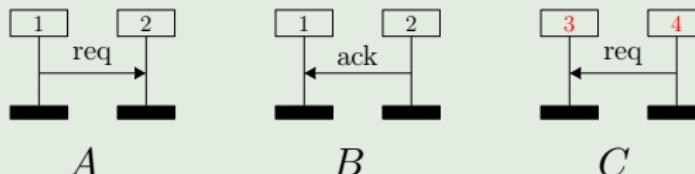
$$F = \prod_{p \in \mathcal{P}} F_p \quad \text{where} \quad F_p \subseteq S_p.$$

An la CFM abbreviates a locally accepting CFM.

Regular expressions for MSCs

Let $\mathcal{P} = \{1, 2, 3, 4\}$ and $\mathcal{C} = \{\text{req}, \text{ack}\}$.

Example



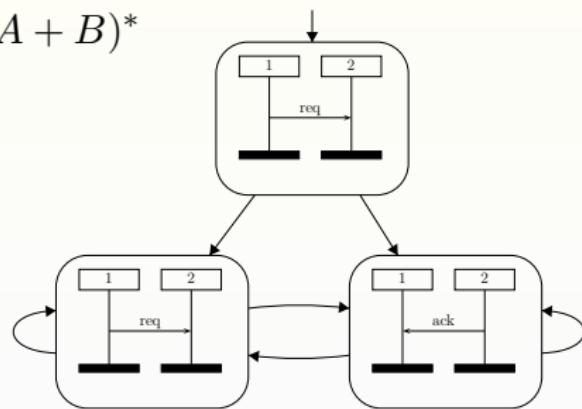
Consider the following regular expressions over \mathbb{M} :

- $\alpha_1 = (A \cdot B)^*$ det. \forall 1-bounded deadlock-free weak la CFM
- $\alpha_2 = (A + B)^*$ det. \exists 1-bounded la CFM
- $\alpha_3 = (A \cdot C)^*$ not realisable
- $\alpha_4 = A \cdot (A + B)^*$ \exists 1-bounded deadlock-free la CFM

How about realisability of $L(\alpha_i)$?

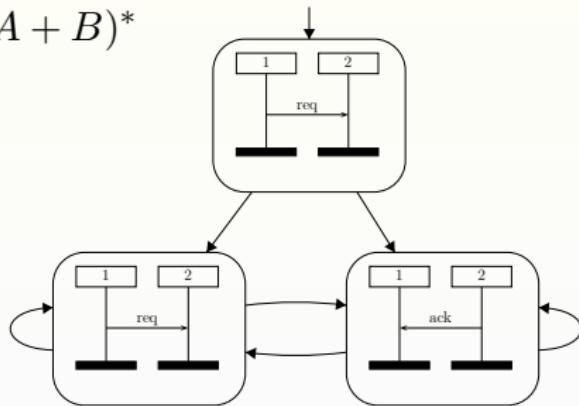
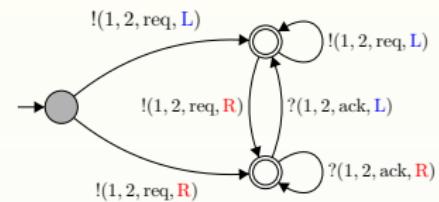
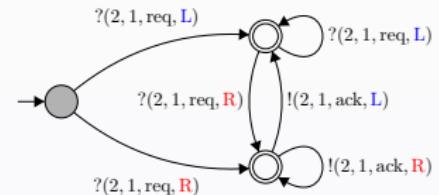
Realising local-choice expressions by deadlock-free CFMs

$$A \cdot (A + B)^*$$



Realising local-choice expressions by deadlock-free CFMs

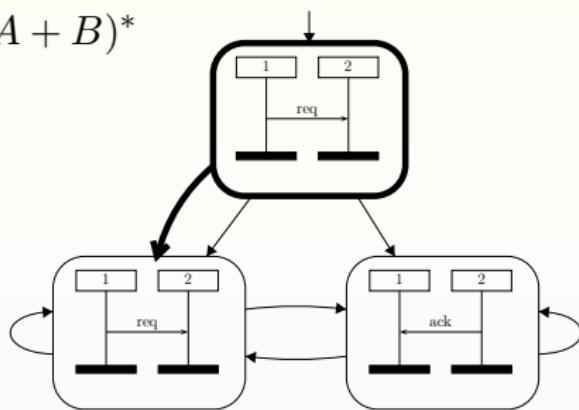
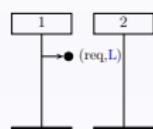
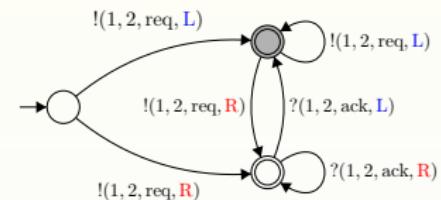
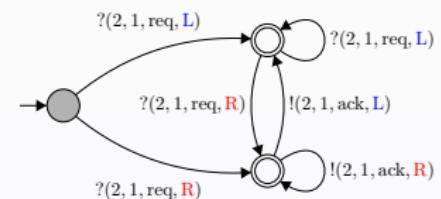
$$A \cdot (A + B)^*$$



$1 \rightarrow 2 :$
$2 \rightarrow 1 :$

Realising local-choice expressions by deadlock-free CFMs

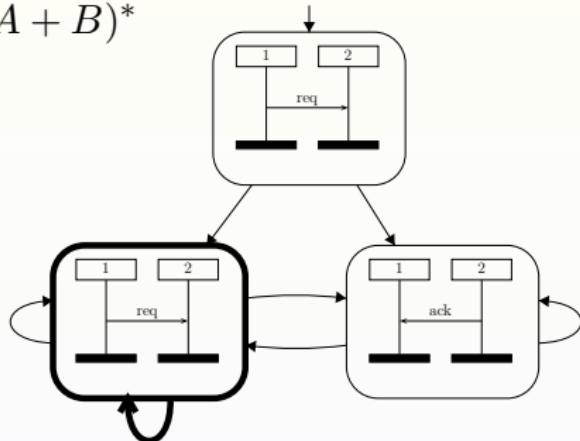
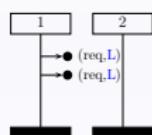
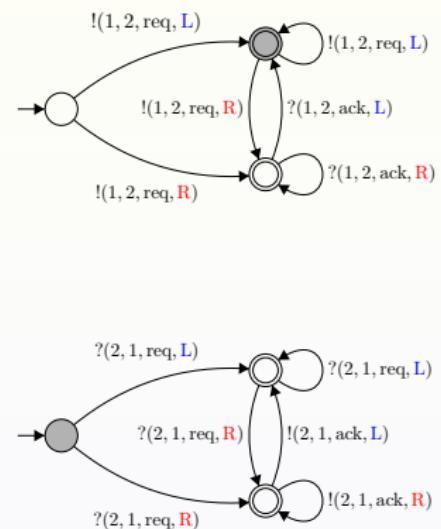
$$A \cdot (A + B)^*$$



1 → 2 : (req, L)
2 → 1 :

Realising local-choice expressions by deadlock-free CFMs

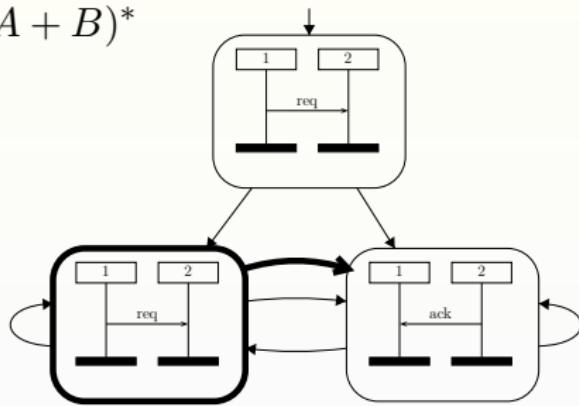
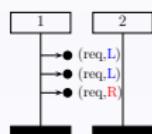
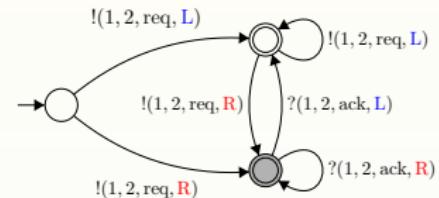
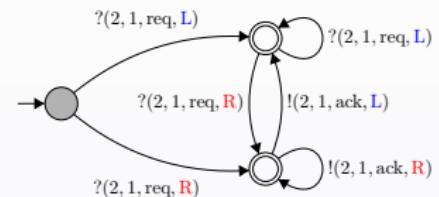
$$A \cdot (A + B)^*$$



1 → 2 : (req,L) (req,L)
2 → 1 :

Realising local-choice expressions by deadlock-free CFMs

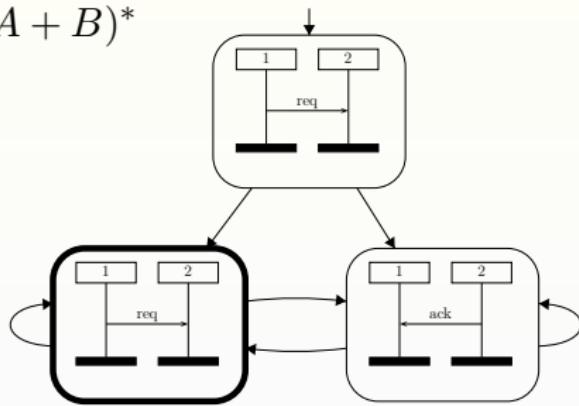
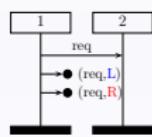
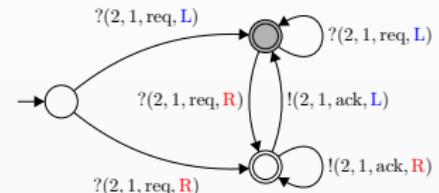
$$A \cdot (A + B)^*$$



$1 \rightarrow 2 : (\text{req}, \text{L})$ (req, L) (req, R)
 $2 \rightarrow 1 :$

Realising local-choice expressions by deadlock-free CFMs

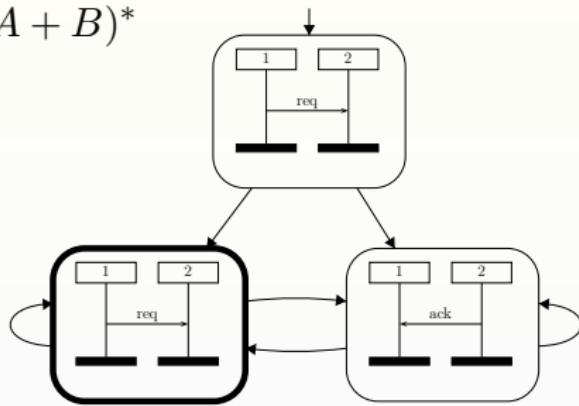
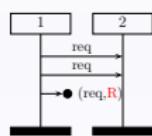
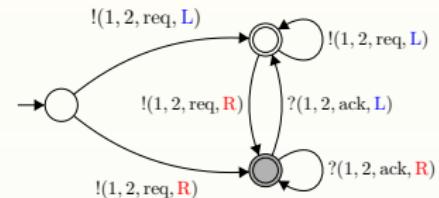
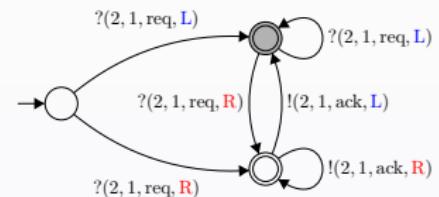
$$A \cdot (A + B)^*$$



1 → 2 : (req,L) (req,R)
2 → 1 :

Realising local-choice expressions by deadlock-free CFMs

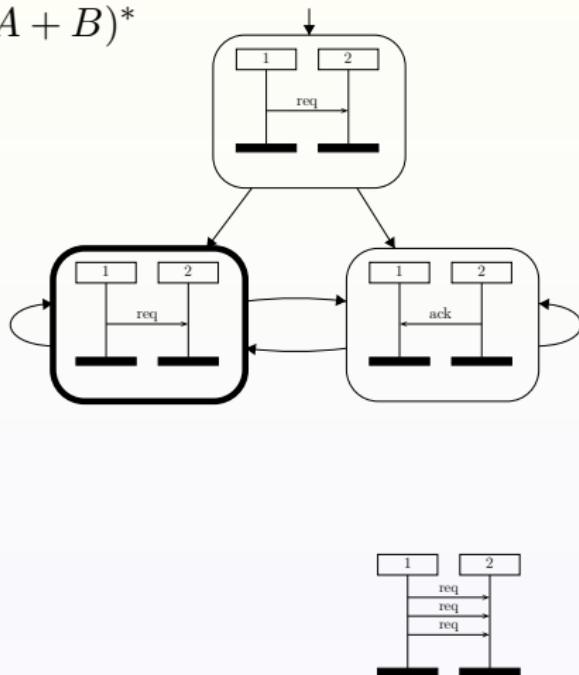
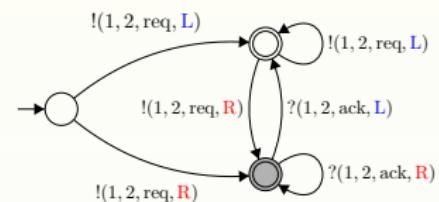
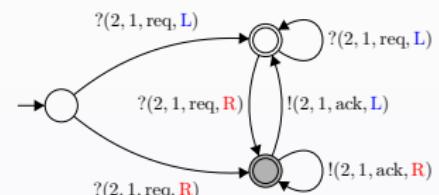
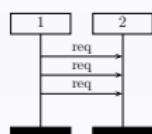
$$A \cdot (A + B)^*$$



$1 \rightarrow 2 : (\text{req}, \text{R})$
 $2 \rightarrow 1 :$

Realising local-choice expressions by deadlock-free CFMs

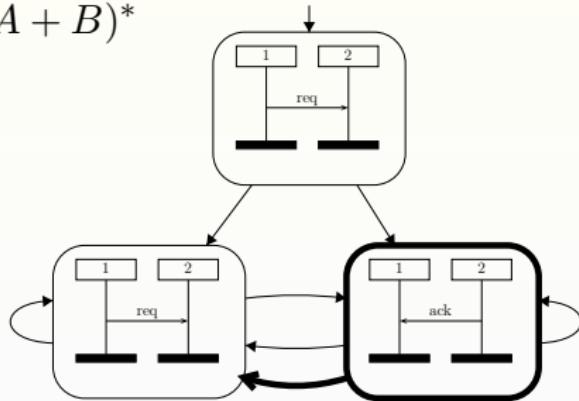
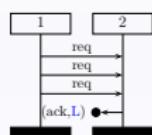
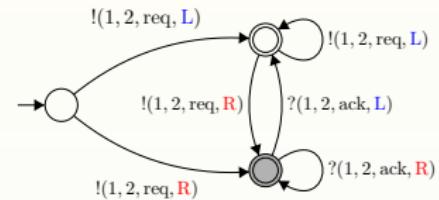
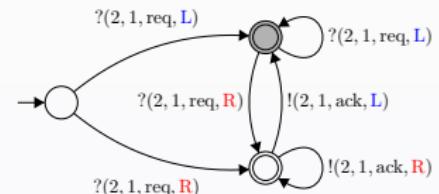
$$A \cdot (A + B)^*$$



$1 \rightarrow 2 :$
 $2 \rightarrow 1 :$

Realising local-choice expressions by deadlock-free CFMs

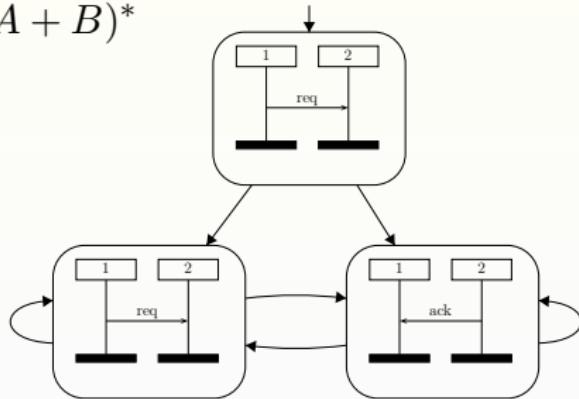
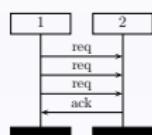
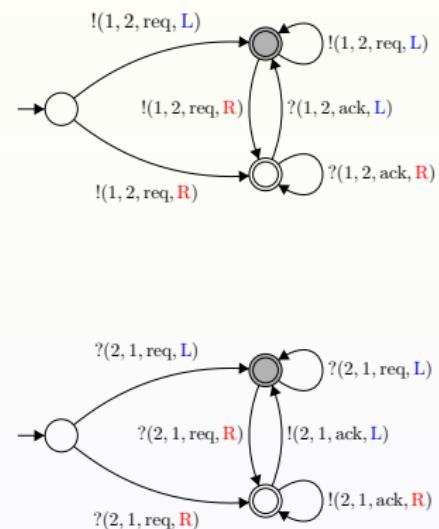
$$A \cdot (A + B)^*$$



1 → 2 :
2 → 1 : (ack,L)

Realising local-choice expressions by deadlock-free CFMs

$$A \cdot (A + B)^*$$



$1 \rightarrow 2 :$
 $2 \rightarrow 1 :$

Definition (Connected MSC)

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ is **connected** if:

$$\forall e, e' \in E. e <^* e' \quad \text{or} \quad e' <^* e.$$

Examples on the black board.

Definition (Star-connected)

We call $\alpha \in \text{REX}_{\mathbb{M}}$ **star-connected** if, for any subexpression β^* of α , $L(\beta)$ is a set of connected MSCs.

Examples on the black board.

Regular expressions vs. CFMs

Definition (Finitely generated)

Set of MSCs $\mathcal{M} \subseteq \mathbb{M}$ is **finitely generated** if there is a finite set of MSCs $\widehat{\mathcal{M}} \subseteq \mathbb{M}$ such that $\mathcal{M} \subseteq \widehat{\mathcal{M}}^*$.

Theorem

[Genest et al. 2006]

Finitely generated \mathcal{M} is realisable

iff

there exists a star-connected regular expression α with $L(\alpha) = \mathcal{M}$.

An example local-choice MSG on black board.

Theorem

[Genest et. al., 2005]

Any local-choice (C)MSG G is safely realisable by a CFM with additional synchronisation data which is of size linear in G .

Proof

As MSG G is local choice, at every branch v of G there is a unique process, $p(v)$, say, such that on every path from v the unique minimal event occur at $p(v)$. Then:

- 1 Process $p(v)$ determines the successor vertex of v .
- 2 Process $p(v)$ informs all other processes about its decision by adding synchronisation data to the exchanged messages.
- 3 Synchronisation data is the path (in G) from v to the next branching vertex along the direction chosen by $p(v)$.

Maximal non-branching paths

Definition (Maximal non-branching paths)

For MSG $G = (V, \rightarrow, v_0, F, \lambda)$, let $nbp : V \rightarrow V^*$ be defined by:

$$nbp(v) = \begin{cases} v & \text{if } v \in F \text{ or } v \text{ is a branching vertex} \\ v_1 \dots v_n & \text{otherwise} \end{cases}$$

where the path $v_1 \dots v_n \in V^*$ satisfies:

- ① $v_i = v$ for some i , $0 < i \leq n$, and
- ② $v_n \in F$ or is a branching vertex, and
- ③ v_1 is a direct successor of a branching vertex, and
- ④ $v_2, \dots, v_{n-1} \notin F$ and are all non-branching vertices

Intuition

$nbp(v)$ is the maximal non-branching path to which v belongs.

Structure of the CFM of local choice MSG G

Let MSG $G = (V, \rightarrow, v_0, \mathcal{F}, \lambda)$ be local choice.

Define the CFM $\mathcal{A}_G = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, \mathcal{F}')$ with:

- ① Local automaton $\mathcal{A}_p = (S_p, \Delta_p)$ as defined on next slides
- ② $\mathbb{D} = \{ npb(v) \mid v \in V \}$
synchronisation data = maximal non-branching paths in G
- ③ $s_{init} = \{ (v_0, \emptyset) \}^n$ where $n = |\mathcal{P}|$
each local automaton \mathcal{A}_p starts in initial state (v_0, \emptyset) , i.e.,
in initial vertex v_0 while no events of p have been performed
- ④ $\bar{s} \in \mathcal{F}'$ iff for all $p \in \mathcal{P}$, local state $\bar{s}[p] = (v, E)$ with $E \subseteq E_p$ and:
 - ① $v \in \mathcal{F}$ and E contains a maximal event wrt. $<_p$ in MSC $\lambda(v)$, or
 - ② $v \notin \mathcal{F}$ and $\pi = v \dots w$ is a path in G and E contains a maximal event wrt. $<_p$ in MSC $\lambda(\pi)$.

State space of local automaton \mathcal{A}_p

- $S_p = V \times E_p$ such that for any $s = (v, E) \in S_p$:

$$\forall e, e' \in \lambda(v). (e <_p e' \text{ and } e' \in E \text{ implies } e \in E)$$

that is, E is downward-closed with respect to $<_p$ in MSC $\lambda(v)$

- Intuition: a state (v, E) means that process p is currently in vertex v of G and has already performed the events E of $\lambda(v)$
- Initial state of \mathcal{A}_p is $\overline{s_{init}}[p] = (v_0, \emptyset)$

Transition relation of local automaton \mathcal{A}_p

- Executing events within a vertex of the MSG G :

$$\frac{e \in E_p \cap \lambda(v)}{(v, E) \xrightarrow{l(e), nbp(v)}_p (v, E \cup \{e\})}$$

Note: since $E \cup \{e\}$ is downward-closed wrt. $<_p$, e is enabled

- Changing vertex of the MSG G :

$$\frac{E = E_p \cap \lambda(v) \text{ and } e \in E_p \cap \lambda(w) \text{ and} \\ vu_0 \dots u_n w \in V^* \text{ with } p \text{ not active in } u_0 \dots u_n}{(v, E) \xrightarrow{l(e), nbp(w)}_p (w, \{e\})}$$

Note: vertex w is the first successor vertex of v on which p is active

Examples

A couple of examples on the black board.

