Foundations of the UML

Lecture 11: Realising local choice MSGs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

29. November 2009

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

Safe realisability

Definition (Realisability)

Q@ MSG G is realisable whenever L(G) = L(A) for some CFM A.

© MSG G is safely realisable whenever L(G) = L(A) for some
deadlock-free CFM A.

Joost-Pieter Katoen Foundations of the UML 2/33

@ Can results be obtained for larger classes of MSGs?

@ What happens if we allow synchronisation messages?
o recall that weak CFMs do not involve synchronisation messages

@ How do we obtain a CFM realising an MSG algorithmically?
@ in particular, for non-local choice MSGs

@ Are there simple conditions on MSGs that guarantee realisability?
e e.g., easily identifiable subsets of (safe) realisable MSGs

Joost-Pieter Katoen Foundations of the UML 3/33

Summary of results

Results so far:

© Conditions for (safe) realisability for finite sets of MSCs.
© Checking these conditions is co-NP complete (in P).

© Regular MSGs are (safely) realisable by V-bounded CFMs.
@ Checking regularity of MSGs is undecidable.

© Communication-closedness implies regularity, but its check is
co-NP complete.

©Q Local communication-closedness implies regularity, and can be
checked in P.

Joost-Pieter Katoen Foundations of the UML 4/33

Today's topics

@ Today we focus on safe realisability of local-choice MSGs.

@ By local-choice property, no deadlocks can occur in realising CFM.

Today's topics:

© Realisability for constrained regular expressions of local-choice
MSGs

@ An algorithm that generates a CFM (with synchronisation
messages) from a local-choice MSG

Joost-Pieter Katoen Foundations of the UML 5/33

Local choice property (1)

Inconsistency if process p behaves according to v;
and process ¢ behaves according to v

— possible distributed realization may yield a deadlock

Problem:

Subsequent behavior is determined by distinct processes

Joost-Pieter Katoen Foundations of the UML

Example of local-choice MSG

Inconsistency if p; sends a and p3 sends c.

Joost-Pieter Katoen Foundations of the UML

Local choice property (2)

@ e is a minimal event wrt. < if ~(Je’ £ e. e <e)

@ pis active in MSC M if E, # &

@ pis active in path vy ... v, in MSG G if p is active in A(v;) for
some ¢

Definition (local choice MSG)
MSG G = (V,—, v, F, A) is local choice if:

Q@ I active p. Vm € Paths(vy).
7 contains a single minimal event e € £,

© V branching vertex v € V. with v — w
3 active p . Vr € Paths(w).
7 contains a single minimal event e € £,
Along every path from an initial or branching vertex there is a single process
deciding how to proceed which can inform the other processes how to proceed.

Joost-Pieter Katoen Foundations of the UML 8/33

Branching vertices

A vertex is branching if:

A

Joost-Pieter Katoen Foundations of the UML

Local choice

Checking whether an MSG is local choice can be done in PTIME. l

How can non-local choice be resolved?

Refine your MSG and add control messages (cf. above example)

Joost-Pieter Katoen Foundations of the UML 10/33

Regular expressions over MSCs

Definition (Asynchronous iteration)
For M1, My C M sets of MSCs, let:

Mie My = {MloMg‘MleMl,MQGMQ}

For M C M let
: {M.} if i=0, where M, denotes the empty MSC
M =
Me M=t ifi>0

The asynchronous iteration of M is now defined by:

M= M.

i>0

Joost-Pieter Katoen Foundations of the UML 11/33

Regular expressions over MSCs

Definition (Regular expressions over MSCs)

The set REXy; of regular expressions over M is given by the grammar:
ax=0 | M | aca-as | o +ay | o

where MSC M € M.

Definition (Semantics of regular expressions, L(.) : REXy — 2)

Joost-Pieter Katoen Foundations of the UML 12/33

Locally accepting CFMs

Definition (Locally accepting CFM)
CFM A = (((Sp, Ap))pep, D, Sinit, F') is locally accepting if

F = H F, where F,CS,.
peEP

An la CFM abbreviates a locally accepting CEFM.

Joost-Pieter Katoen Foundations of the UML 13/33

Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

Example
req ack e
A B C
Consider the following regular expressions over M:
o a;=(A-B)* det. V1-bounded deadlock-free weak la CFM
o ap=(A+ B)* det. 31-bounded la CFM
o az3=(A-O)F not realisable
oas=A-(A+ B)* 31-bounded deadlock-free la CFM
How about realisability of L(c;)?

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1—2:
2—1:

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

® (req,L)

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1—2: (req,L)
2—1:

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

® (req,L)
® (req L)
(req,R)

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1— 2: (req,L) (req,L) (req,R)
2—1:

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1— 2: (req,L) (req,R)
2—1:

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

(e (req.R)

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1—2: (req,R)
2—1:

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1,ack, R)

?(2,1,req, R)

=
teq
1—-2:
L 2 — 1 .

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1—-2:
2 —1: (ack,L)

Joost-Pieter Katoen Foundations of the UML

Realising local-choice expressions by deadlock-free CFMs

1(1,2,req,L)

1(1,2,req, L)

I(1,2,req, R)

2(2,1,req, L)

I(2,1, ack, R)
?(2,1,req, R)

1—2:
2—1:

Joost-Pieter Katoen Foundations of the UML

Star-connected

Definition (Connected MSC)

An MSC M = (P,E,C,l,m,<) € M is connected if:

Ve, € BE.e<*e or € <*e.

Examples on the black board. J

Definition (Star-connected)

We call o € REXyy star-connected if, for any subexpression 8* of «,
L(p) is a set of connected MSCs.

Examples on the black board.]

Joost-Pieter Katoen Foundations of the UML 25/33

Regular expressions vs. CFMs

Definition (Finitely generated)

Set of MSCs M C M is finitely generated if there is a finite set of MSCs
M C M such that M C M*.

Finitely generated M is realisable
iff

there exists a star-connected regular expression o with L(a) = M.

Joost-Pieter Katoen Foundations of the UML 26/33

Local choice MSGs

An example local-choice MSG on black board. J

Joost-Pieter Katoen Foundations of the UML 27/33

Realising local choice (C)MSGs

Any local-choice (C)MSG G is safely realisable by a CFM with
additional synchronisation data which is of size linear in G.

Proof

As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

© Process p(v) determines the successor vertex of v.

@ Process p(v) informs all other processes about its decision by
adding synchronisation data to the exchanged messages.

© Synchronisation data is the path (in G) from v to the next
branching vertex along the direction chosen by p(v).

Joost-Pieter Katoen Foundations of the UML 28/33

Maximal non-branching paths

Definition (Maximal non-branching paths)
For MSG G = (V, —,vg, F, \), let nbp : V.— V* be defined by:

v if v € F or v is a branching vertex
nbp(v) =

v1...U, otherwise

where the path vy ...v, € V* satisfies:
@ v; = v for some i, 0 < i < n, and
©Q v, € F or is a branching vertex, and

© v is a direct successor of a branching vertex, and

Q vy,...,v,—1 € F and are all non-branching vertices

nbp(v) is the maximal non-branching path to which v belongs.

Joost-Pieter Katoen Foundations of the UML 29/33

Structure of the CFM of local choice MSG (G

Let MSG G = (V, —,vg, F', \) be local choice.
Define the CFM Ag = (((Sp, Ap))per, D, Sinit, F') with:
© Local automaton A, = (S, A,) as defined on next slides

Q@D = {npbv) |veV}

synchronisation data = maximal non-branching paths in G

Q Sinit = { (vo,?) }" where n = |P|
each local automaton A, starts in initial state (vo, @), i.e.,
in initial vertex vy while no events of p have been performed

Q 5 € I iff for all p € P, local state S[p| = (v, E) with E C E, and:
® v € I and F contains a maximal event wrt. <, in MSC A(v), or
Q@ v¢g Fand m=wv...wis a path in G and F contains a maximal
event wrt. <, in MSC A(w). i

Joost-Pieter Katoen Foundations of the UML 30/33

State space of local automaton A4,

@ S, =V x E, such that for any s = (v, E) € Sp:
Ve,e' € A(v). (e <p ¢’ and ¢ € E implies e € E)

that is, £ is downward-closed with respect to <, in MSC A(v)

o Intuition: a state (v, E') means that process p is currently in vertex
v of G and has already performed the events E of A(v)

o Initial state of A, is Sini[p] = (vo, @)

Joost-Pieter Katoen Foundations of the UML 31/33

Transition relation of local automaton A,

o Executing events within a vertex of the MSG G:
e€ E, N A(v)
(v, B) AL, (v, BU{e})

Note: since F'U {e} is downward-closed wrt. <, e is enabled
o Changing vertex of the MSG G:

E =E, N Av) and e € E, N A(w) and
vUg - . . upw € V* with p not active in ug ... uy,

(v, B) HEBRUD, ") (1)

Note: vertex w is the first successor vertex of v on which p is active

Joost-Pieter Katoen Foundations of the UML 32/33

A couple of examples on the black board. J

Joost-Pieter Katoen Foundations of the UML

ieter Katoen Foundations of the

	Lecture 11: Realising local choice MSGs

