Foundations of the UML

Lecture 12: A Logic for MSCs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

7. Dezember 2009

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

A logic for MSCs

@ This lecture will be devoted to a logic that is interpreted over MSCs

@ The logic is used to express properties of MSCs
o does a given MSC M satisfy the logical formula ?

@ And to characterise a set of MSCs by means of a logical formula
o all MSCs that satisfy the formula ¢

@ Our logic is a variant of propositional dynamic logic (PDL) [Fischer
& Ladner, 1979|
@ combines easy-to-grasp concepts such as regular expressions and
Boolean operators

@ We consider syntax, semantics, examples and the membership
problem. RWTH

Joost-Pieter Katoen Foundations of the UML 2/26

Informal examples

© The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.
@ The maximal event on process 2 is labeled by 7(2,1,a) Yes. Yes.

© No two consecutive events are labeled with 7(2, 3, ¢) No. Yes.
© The number of send events at process 3 is odd. No. No.
RWTH.

Joost-Pieter Katoen Foundations of the UML 3/26

Local formulas

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar
of local formulas is given by:

o u=true | o | o | pVo | (e | (@7l

Definition (Derived operators)

false = —true
1 A w2 = (=1 Vo)
P12 = 1V
[l = —(a)¢
[e] ' =) p

Joost-Pieter Katoen Foundations of the UML 4/26

Path expressions

Definition (Syntax of path expressions)

For local formula ¢, the grammar of path expressions is given by:

a = {p} | proc | msg | ;;a | ata | o

Definition (Syntax of PDL formulas)

For local formula ¢, the grammar of PDL formulas is given by:
O =Jp | @ | PV

and we define Vo = —d-p.

Joost-Pieter Katoen Foundations of the UML 5/26

Intuitive meaning of local formulas

@ Local formulas are interpreted over MSC events

o Event e satisfies !(p, ¢, a) iff e is labeled with action !(p, g, a)
—— ——

o o

@ Path expression a defines a binary relation between events:

@ {©} is the set of pairs (e, e’) such that e satisfies ¢

Q (e,¢) = prociff e and €’ reside at the same process and ¢’ is a direct
successor of e wrt. <,

© (e,€¢') E msg iff € is the matching event of e, i.e., ¢/ = m(e)

Joost-Pieter Katoen Foundations of the UML 6/26

Intuitive meaning of local formulas

o Event e satisfies ()¢ iff there is an event €’ such that (e, ¢’)
satisfies o and €’ satisfies ¢

@ The interpretation of (o) !¢ is dual, i.e., e satisfies it iff there is an

event €' such that (¢’,e) satisfies o and ¢’ satisfies ¢

@ The composition «; 3 defines the set of pairs (e, e’) for which there
exists event e’ such that (e,e”) | « and (¢”,¢€') =

@ « + [denotes the union of the relations o and

@ o denotes the reflexive and transitive closure of the relation o
RWTH

Joost-Pieter Katoen Foundations of the UML 7/26

Intuition of PDL formulas

o MSC M satisfies Jip if it has some event e satisfying ¢

o MSC M satisfies ()¢ if from some event e in M, there exists an
a-labeled path from e to an event €, say, satisfying ¢

@ MSC M satisfies J[a]y if from some event e in M, any event that
can be reached via an a-labeled path satisfies ¢

Joost-Pieter Katoen Foundations of the UML 8/26

i) 21 3]

u

Q uFE!(1,2,a) u is labeled with the action !(1,2,a)
Q u = [proc]~! false u is the first event on the process line

© u = ((proc + msg)*)?(2,1,a) event u happens before the event v
RWTH

Joost-Pieter Katoen Foundations of the UML

Example (1)

@ The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.

@ YV ({(proc + msg)*)([proc] false AN?7(2,1,a))) Yes. No.

Joost-Pieter Katoen Foundations of the UML 10/26

Example (2)

@ The maximal event on process 2 is labeled by 7(2,1,a) VYes. Yes.

@ J([proc] false N7(2,1,a)) Yes. Yes.

Joost-Pieter Katoen Foundations of the UML 11/26

Example (3)

@ No two consecutive events are labeled with 7(2,3, ¢) No. Yes.
e YV ([?(2,3,¢); proc; 7(2, 3, ¢)] false) No. Yes.
RWTH

Joost-Pieter Katoen Foundations of the UML 12/26

Example (4)

@ The number of send events at process 3 is odd. No. No.

@ See next slide

Joost-Pieter Katoen Foundations of the U

MSC M has an even number of messages sent from process 1 to 2:

V([proc]™! false — {a) [proc] false)
———— ——
minimal event on process maximal event on process

a = (({?2};proc)*; {!1}; proc; ({?2}; proc)™; {11 }; proc; ({72 }; proc)™)*

where 7 abbreviates !(1,2,a) and 79 stands for 7(2,1,a), and

Joost-Pieter Katoen Foundations of the UML 14/26

Semantics of local formulas (1)

Definition (Semantics of simple local formulas)

Let M = (P,E,C,l,m,<) € M be an MSC and e € E.

Relation = is defined such that ((M,e),) € |= iff local formula ¢ holds
in event e of MSC M.

M, e |= true forallee E
M,el=o iff I(e) =0
M,el=—p iff not M,el= ¢
M,el=p1 Voo iff Miel i or Mye = ¢

Notes:

© If M is clear from context we write e = ¢ instead of M, e = .

© It remains to define the semantics for local formulas with path

expressions.

Joost-Pieter Katoen Foundations of the UML 15/26

Semantics of local formulas (2)

Definition (Semantics of local formulas with path expressions)
Let M = (P,E,C,l,m,<) € M be an MSC and e € E.
((M,e),p) €| iff local formula ¢ holds in event e of MSC M.

e (Whe iff eFwandely

o iff IJpeP,ecEe<pedande =o
¢ iff 3’ € E.¢/ =me)and € = ¢

e (a;a2)p HE e {a){az)e

el {on i 1 e = (erplor e = {oal

e iff IneN.eE ((a)"¢

Where e <, €’ iff e <, € and ~(3e”. e <, €’ <, €'), i.e., € is a direct
successor of e under <,,.

Joost-Pieter Katoen Foundations of the UML 16/26

Semantics of local formulas (3)

Definition (Semantics of local formulas with path expressions)

Let M = (P,E,C,l,m,<) € M be an MSC and e € E.
((M,e),p) €[iff local formula ¢ holds in event e of MSC M.
el={vh) e iff eFyandeyp
e = (proc)~ty iff IpeP,e € E.¢ <peand e o
ek {msg)~ly iff Je'€ E.d/ =m~l(e) and € | ¢
el={a;a2) e iff e = (o) Hao) e
e (a1 +a2) e iff el () porel=(a) Tty
eE(a*)ly if IneNekE (1) "¢

Joost-Pieter Katoen Foundations of the UML 17/26

Semantics of PDL formulas

Definition (Semantics of PDL formulas)

Let M = (P, E,C,l,m,<) € M be an MSC.
(M, ®) € = iff PDL formula & holds in MSC M.

ME3Jp iff Jee E.M,el=¢p
ME-® iff not M =@
M):‘I)l\/q)g iff M’:@]_OI'M):(pQ

MEVpif M |E-3-¢iff -(Je€ E.M,e =) iff Ve € E. M, e |= ¢.

Joost-Pieter Katoen Foundations of the UML 18/26

Examples revisited

Some example formulas with formal semantics on black board.

Joost-Pieter Katoen Foundations of the UML

Membership problem for MSCs

Given a PDL formula ® and an MSC M, the decision problem “does
M = ®7?” can be solved in O(|E| - |®|?) time where |E| denotes the
number of events in M and |®| the length of .

Let ® be the given PDL formula. In subformulae ()¢ and (a)~ 1o of ®, we
consider « as regular expression over some finite alphabet { proc, msg, {p1},
.., {on} } with local formulae ;. Any such expression can be transformed
into a corresponding finite automaton of linear size. We proceed by inductively
labeling events of the given MSC with states of the finite automata. This state
information is then used to discover whether or not an event of M satisfies a
subformula ()¢ and (a)~'¢ which yields labelings in { 0,1 }. Boolean

combinations and Jp are then handled in a straightforward manner.

Joost-Pieter Katoen Foundations of the UML 20/26

Algorithm for PDL membership problem (1)

LOCAL FORMULA CHECK:
1 v=A{0,. nl}

3 boolean[| Sat{LocalFormula f) {

4 boolean(] sat = new boolean(n];
5 switch(f) {

[§} case Not(f1):

7 boolean|] satl = Sat(f1);

8 for (int 1 = 0;1 < n; i++)

9 sat[i] = lsatl[i];

10 break;

11 case Or(f1, £2):

12 boolean|] satl = Sat(f1);
13 boolean|| sat2 = Sat(f2);
14 for (int i = 0;1 < n; i++)
15 satfi] = satifi] || sat2[i;
16 break;

17 case Event(..):

18 for (int 1 = 0;1 < n; i++)
19 sat[i] = (V[i].event.equals(f));
20 break:

Joost-Pieter Katoen Foundations of the

Algorithm for PDL membership problem (2)

21 case <pl> f2:

22 boolean[][] transl = Trans(pl);
23 boolean|] sat2 = Sat({2);

24 for (int i =051 < n; i++4) {

25 sat[i] = false;

26 for (int j = 0;j < n; j++)
27 if(trans[i][j])

28 sat[i] = sat2[j];

20

30 break;

31 case <pl=>—1 2

32 boolean[][] transl = TransBack(p1);
33 boolean|] sat2 = Sat({2);

M for (int i=10;1 < n;i++) {

35 satl[i] = false;

26 for (int j = 0;] < n; j++)
a7 if(trans[i][j])

38 sat[i] = sat2[j];

39 }

40 break;

41 1

42} RWTH.

Joost-Pieter Katoen Foundations of the UML

Algorithm for PDL membership problem (3)

FORWARD PATH EXPRESSION CHECK:

1 boolean[][] Trans(PathFormula p) {
2 boolean|][] trans = new boolean[n][n];
3 switch(p) {
4 case (pl; p2):
5 boolean[][] transl = Trans(pl);
6 boolean([][] trans2 = Trans(p2);
T for (inti=0;i< n;it++)
2 for (int k = 0; k < n; k4++4) {
9 transi][k] = false;
10 for (int j = 0;j < n; j++)
11 if(transl[i][j] && trans1[j][k])
12 transfi][k] = true;
13 }
14 break;
15 case pl + p2:
16 boolean[][] transl = Trans(pl);
17 boolean([][] trans2 = Trans(p2);
18 for (int i =051 < n; i++4)
19 for (int j =05 < n; j++)
20 transfi][j] = trans1[i][j] || trans2[i][j];
21 break; RWTH

Joost-Pieter Katoen Foundations of the UML

Algorithm for PDL membership problem (4)

22 case pl*:

23 boolean[][] transl = Trans(pl);

24 for (inti=0;i< n;i++)

25 for (int j = 0; j < n; j++)

26 star[i][j] = (i==i);

27 while (true) {

28 for (inti=0;i < n; i++)

20 for (int j = 0;j < n; j++)

30 it (trans1[i][j])

31 for (int k = 0; k < n; k++)
32 if (Mtrans[i][k] && transi[j][k]) {
33 trans[i][k] = true;

34 continue;

35 1

36 break;

ar }

38 break;

39

40 3}

Joost-Pieter Katoen Foundations of the UML

Satisfiability problem for MSCs

Given a PDL formula ®, the decision problem “does M |= ® holds for
some MSC M?” is undecidable.

Joost-Pieter Katoen Foundations of the UML 25/26

Other PDL decision problems

Let ® be a PDL formula. Then:
© The decision problem “does there exist a CFM A such that for any
MSC M € L(A) we have M = ®” is undecidable.

© The decision problem “does there exist a CFM A such that for
some existentially B-bounded MSC M € L(A) we have M = ®” is
decidable in PSPACE.

© The decision problem “for MSG G, is there an MSC M € L(G)
such that M | ®” is NP-complete.

Joost-Pieter Katoen Foundations of the UML 26/26

	Lecture 12: A Logic for MSCs

