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A logic for MSCs

@ This lecture will be devoted to a logic that is interpreted over MSCs

@ The logic is used to express properties of MSCs
o does a given MSC M satisfy the logical formula ?

@ And to characterise a set of MSCs by means of a logical formula
o all MSCs that satisfy the formula ¢

@ Our logic is a variant of propositional dynamic logic (PDL) [Fischer
& Ladner, 1979|
@ combines easy-to-grasp concepts such as regular expressions and
Boolean operators

@ We consider syntax, semantics, examples and the membership
problem. RWTH
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Informal examples

© The (unique) maximal event of M is labeled by ?(2,1,a) Yes. No.
@ The maximal event on process 2 is labeled by 7(2,1,a) Yes. Yes.

© No two consecutive events are labeled with 7(2, 3, ¢) No. Yes.
© The number of send events at process 3 is odd. No. No.
RWTH.
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Local formulas

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar
of local formulas is given by:

o u=true | o | o | pVo | (e | (@7l

Definition (Derived operators)

false = —true
1 A w2 = (=1 Vo)
P12 = 1V
[l = —(a)¢
[e] ' = ) p
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Path expressions

Definition (Syntax of path expressions)

For local formula ¢, the grammar of path expressions is given by:

a = {p} | proc | msg | ;;a | ata | o

Definition (Syntax of PDL formulas)

For local formula ¢, the grammar of PDL formulas is given by:
O =Jp | @ | PV

and we define Vo = —d-p.
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Intuitive meaning of local formulas

@ Local formulas are interpreted over MSC events

o Event e satisfies !(p, ¢, a) iff e is labeled with action !(p, g, a)
—— ——

o o

@ Path expression a defines a binary relation between events:

@ {©} is the set of pairs (e, e’) such that e satisfies ¢

Q (e,¢) = prociff e and €’ reside at the same process and ¢’ is a direct
successor of e wrt. <,

© (e,€¢') E msg iff € is the matching event of e, i.e., ¢/ = m(e)
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Intuitive meaning of local formulas

o Event e satisfies ()¢ iff there is an event €’ such that (e, ¢’)
satisfies o and €’ satisfies ¢

@ The interpretation of (o) !¢ is dual, i.e., e satisfies it iff there is an

event €' such that (¢’,e) satisfies o and ¢’ satisfies ¢

@ The composition «; 3 defines the set of pairs (e, e’) for which there
exists event e’ such that (e,e”) | « and (¢”,¢€') =

@ « + [ denotes the union of the relations o and

@ o denotes the reflexive and transitive closure of the relation o
RWTH
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Intuition of PDL formulas

o MSC M satisfies Jip if it has some event e satisfying ¢

o MSC M satisfies ()¢ if from some event e in M, there exists an
a-labeled path from e to an event €, say, satisfying ¢

@ MSC M satisfies J[a]y if from some event e in M, any event that
can be reached via an a-labeled path satisfies ¢
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i) 21 3]

u

Q uFE!(1,2,a) u is labeled with the action !(1,2,a)
Q u = [proc]~! false u is the first event on the process line

© u = ((proc + msg)*)?(2,1,a)  event u happens before the event v
RWTH
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Example (1)

@ The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.

@ YV ({(proc + msg)*)([proc] false AN?7(2,1,a))) Yes. No.
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Example (2)

@ The maximal event on process 2 is labeled by 7(2,1,a) VYes. Yes.

@ J([proc] false N7(2,1,a)) Yes. Yes.
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Example (3)

@ No two consecutive events are labeled with 7(2,3, ¢) No. Yes.
e YV ([?(2,3,¢); proc; 7(2, 3, ¢)] false) No. Yes.
RWTH
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Example (4)

@ The number of send events at process 3 is odd. No. No.

@ See next slide
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MSC M has an even number of messages sent from process 1 to 2:

V(  [proc]™! false — {a) [proc] false )
———— ——
minimal event on process maximal event on process

a = (({?2};proc)*; {!1}; proc; ({?2}; proc)™; {11 }; proc; ({72 }; proc)™)*

where 7 abbreviates !(1,2,a) and 79 stands for 7(2,1,a), and
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Semantics of local formulas (1)

Definition (Semantics of simple local formulas)

Let M = (P,E,C,l,m,<) € M be an MSC and e € E.

Relation = is defined such that ((M,e), ) € |= iff local formula ¢ holds
in event e of MSC M.

M, e |= true forallee E
M,el=o iff I(e) =0
M,el=—p iff not M,el= ¢
M,el=p1 Voo iff Miel i or Mye = ¢

Notes:

© If M is clear from context we write e = ¢ instead of M, e = .

© It remains to define the semantics for local formulas with path

expressions.
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Semantics of local formulas (2)

Definition (Semantics of local formulas with path expressions)
Let M = (P,E,C,l,m,<) € M be an MSC and e € E.
((M,e),p) €| iff local formula ¢ holds in event e of MSC M.

e (Whe iff eFwandely

o iff IJpeP,ecEe<pedande =o
¢ iff 3’ € E.¢/ =me)and € = ¢

e (a;a2)p HE e {a){az)e

el {on i 1 e = (erplor e = {oal

e iff IneN.eE ((a)"¢

Where e <, €’ iff e <, € and ~(3e”. e <, €’ <, €'), i.e., € is a direct
successor of e under <,,.
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Semantics of local formulas (3)

Definition (Semantics of local formulas with path expressions)

Let M = (P,E,C,l,m,<) € M be an MSC and e € E.
((M,e),p) €[ iff local formula ¢ holds in event e of MSC M.
el={vh) e iff eFyandeyp
e = (proc)~ty iff IpeP,e € E.¢ <peand e o
ek {msg)~ly iff Je'€ E.d/ =m~l(e) and € | ¢
el={a;a2) e iff e = (o) Hao) e
e (a1 +a2) e iff el () porel=(a) Tty
eE(a*)ly if IneNekE (1) "¢
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Semantics of PDL formulas

Definition (Semantics of PDL formulas)

Let M = (P, E,C,l,m,<) € M be an MSC.
(M, ®) € = iff PDL formula & holds in MSC M.

ME3Jp iff Jee E.M,el=¢p
ME-® iff not M =@
M):‘I)l\/q)g iff M’:@]_OI'M):(pQ

MEVpif M |E-3-¢iff -(Je€ E.M,e =) iff Ve € E. M, e |= ¢.
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Examples revisited

Some example formulas with formal semantics on black board.
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Membership problem for MSCs

Given a PDL formula ® and an MSC M, the decision problem “does
M = ®7?” can be solved in O(|E| - |®|?) time where |E| denotes the
number of events in M and |®| the length of .

Let ® be the given PDL formula. In subformulae ()¢ and (a)~ 1o of ®, we
consider « as regular expression over some finite alphabet { proc, msg, {p1},
.., {on} } with local formulae ;. Any such expression can be transformed
into a corresponding finite automaton of linear size. We proceed by inductively
labeling events of the given MSC with states of the finite automata. This state
information is then used to discover whether or not an event of M satisfies a
subformula ()¢ and (a)~'¢ which yields labelings in { 0,1 }. Boolean

combinations and Jp are then handled in a straightforward manner.
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Algorithm for PDL membership problem (1)

LOCAL FORMULA CHECK:
1 v=A{0,.  nl}

3 boolean[| Sat{LocalFormula f) {

4 boolean(] sat = new boolean(n];
5 switch(f) {

[§} case Not(f1):

7 boolean|] satl = Sat(f1);

8 for (int 1 = 0;1 < n; i++)

9 sat[i] = lsatl[i];

10 break;

11 case Or(f1, £2):

12 boolean|] satl = Sat(f1);
13 boolean|| sat2 = Sat(f2);
14 for (int i = 0;1 < n; i++)
15 satfi] = satifi] || sat2[i;
16 break;

17 case Event(..):

18 for (int 1 = 0;1 < n; i++)
19 sat[i] = (V[i].event.equals(f));
20 break:

Joost-Pieter Katoen Foundations of the



Algorithm for PDL membership problem (2)

21 case <pl> f2:

22 boolean[][] transl = Trans(pl);
23 boolean|] sat2 = Sat({2);

24 for (int i =051 < n; i++4) {

25 sat[i] = false;

26 for (int j = 0;j < n; j++)
27 if(trans[i][j])

28 sat[i] = sat2[j];

20

30 break;

31 case <pl=>—1 2

32 boolean[][] transl = TransBack(p1);
33 boolean|] sat2 = Sat({2);

M for (int i=10;1 < n;i++) {

35 satl[i] = false;

26 for (int j = 0; ] < n; j++)
a7 if(trans[i][j])

38 sat[i] = sat2[j];

39 }

40 break;

41 1

42} RWTH.
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Algorithm for PDL membership problem (3)

FORWARD PATH EXPRESSION CHECK:

1 boolean[][] Trans(PathFormula p) {
2 boolean|][] trans = new boolean[n][n];
3 switch(p) {
4 case (pl; p2):
5 boolean[ ][] transl = Trans(pl);
6 boolean([ ][] trans2 = Trans(p2);
T for (inti=0;i< n;it++)
2 for (int k = 0; k < n; k4++4) {
9 transi][k] = false;
10 for (int j = 0;j < n; j++)
11 if(transl[i][j] && trans1[j][k])
12 transfi][k] = true;
13 }
14 break;
15 case pl + p2:
16 boolean[ ][] transl = Trans(pl);
17 boolean([ ][] trans2 = Trans(p2);
18 for (int i =051 < n; i++4)
19 for (int j =05 < n; j++)
20 transfi][j] = trans1[i][j] || trans2[i][j];
21 break; RWTH
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Algorithm for PDL membership problem (4)

22 case pl*:

23 boolean[ ][] transl = Trans(pl);

24 for (inti=0;i< n;i++)

25 for (int j = 0; j < n; j++)

26 star[i][j] = (i==i);

27 while (true) {

28 for (inti=0;i < n; i++)

20 for (int j = 0;j < n; j++)

30 it (trans1[i][j])

31 for (int k = 0; k < n; k++)
32 if (Mtrans[i][k] && transi[j][k]) {
33 trans[i][k] = true;

34 continue;

35 1

36 break;

ar }

38 break;

39

40 3}
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Satisfiability problem for MSCs

Given a PDL formula ®, the decision problem “does M |= ® holds for
some MSC M?” is undecidable.
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Other PDL decision problems

Let ® be a PDL formula. Then:
© The decision problem “does there exist a CFM A such that for any
MSC M € L(A) we have M = ®” is undecidable.

© The decision problem “does there exist a CFM A such that for
some existentially B-bounded MSC M € L(A) we have M = ®” is
decidable in PSPACE.

© The decision problem “for MSG G, is there an MSC M € L(G)
such that M | ®” is NP-complete.
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