

Foundations of the UML

Lecture 13: Statecharts

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

14. Dezember 2009

- MSCs are a visual modelling formalism for requirements
- Statecharts is a visual modelling formalism for describing the behaviour of discrete-event systems
 - automata + hierarchy + communication + concurrency
- Developed by David Harel in 1987
 - professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.
- Extensively used in embedded systems, automotive and avionics
- Variants: UML Statecharts, Stateflow, hierarchical state machines
 - supported by Statemate toolset, and Matlab/Simulink

What are Statecharts?

Statecharts constitute a **visual** formalism for:

[Harel, 1987]

- Describing states and transitions in a **modular** way
- Enabling **clustering** of states
- **Orthogonality**, i.e., concurrency
- **Refinement**, and
- Encouraging “**zoom**“ **capabilities** for moving easily back and forth between levels of abstraction

Statecharts := Mealy machines

- + State hierarchy
- + Broadcast communication
- + Orthogonality

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A **Mealy machine** $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:

- Q is a finite set of states with initial state $q_0 \in Q$
- Σ is the input alphabet
- Γ is the output alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the deterministic (input) transition function, and
- $\omega : Q \times \Sigma \rightarrow \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces **output** on a transition, based on current input and state.

Moore machines

In a Moore machine $\omega : Q \rightarrow \Gamma$, output is purely state-based.

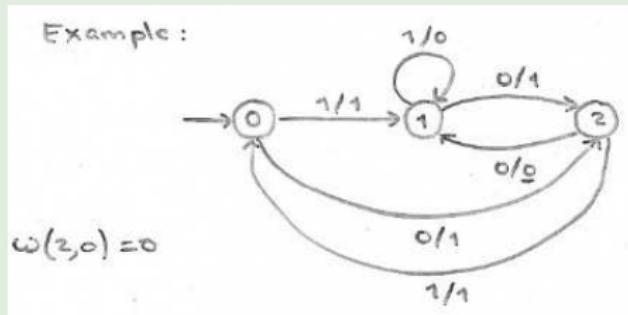
Mealy machines

Mealy machines

- No final (accepting) states
- Transitions produce output
- Deterministic input transition function

⇒ Acceptance of input words is not important, but the **generation of output words** from input words is important

Example

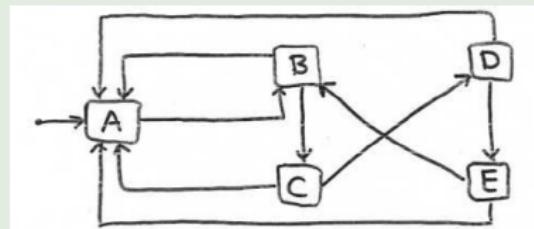


Limitations of Mealy machines

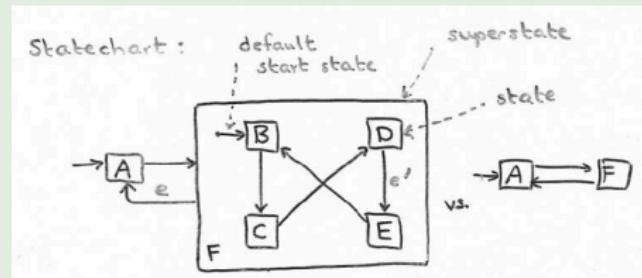
- No support for **hierarchy**
 - all states are arranged in a flat fashion
 - no notion of substates
- Realistic systems require complex transition structure and huge number of states
 - scalability problems yields unstructured state diagrams
- No notion of concurrency
 - need for modeling independent components
- No notion of **communication** between automata.

Scalability

A bit unstructured Mealy machine



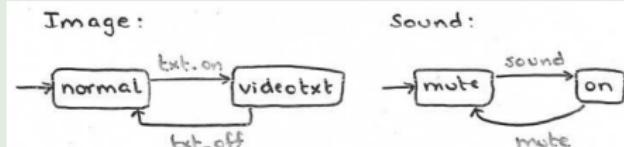
An equivalent statechart



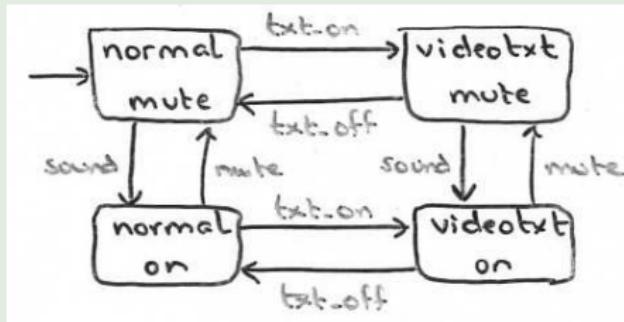
State hierarchy yields modular, hierarchical and structured models.

Orthogonality

Two independent components



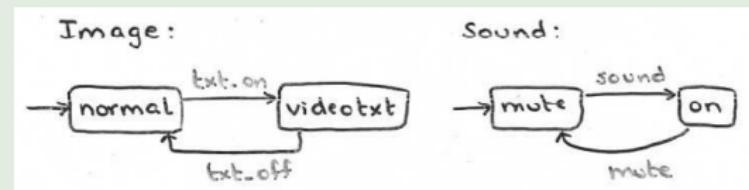
Mealy machine for *Image* || *Sound*



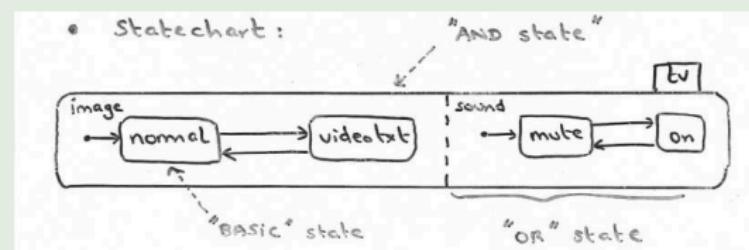
Number of states is exponential in size of concurrent components

Orthogonality

Two independent components



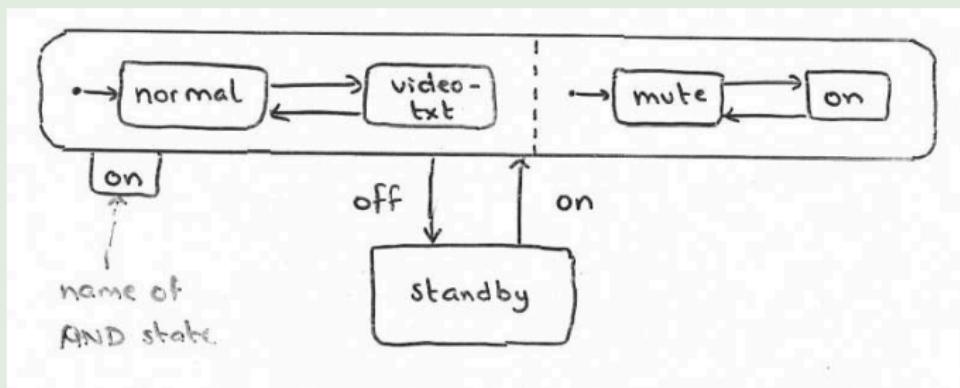
Statechart for $\text{Image} \parallel \text{Sound}$



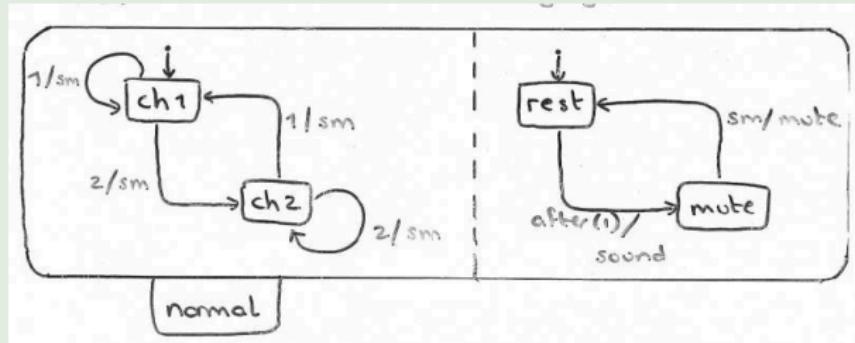
Concurrency modeled by independence

Hierarchy

Switching on and off the television

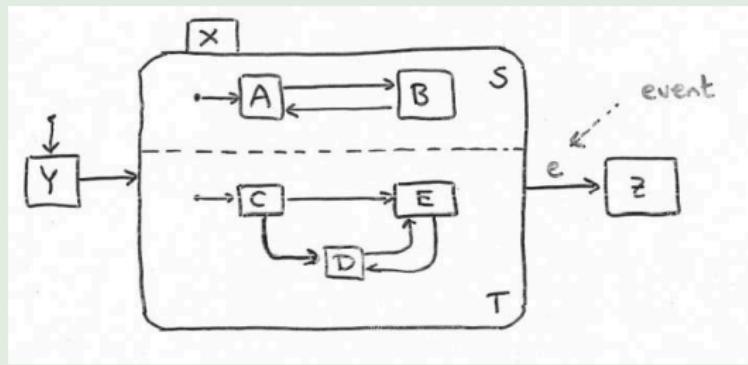


Turn off sound on switching a tv channel



- Output is broadcast that can be received by any other component
- When pushing button 1, channel switches to its state channel 1, while generating signal *sm* on which component *SM* switches off the sound.

Example concurrency in statecharts

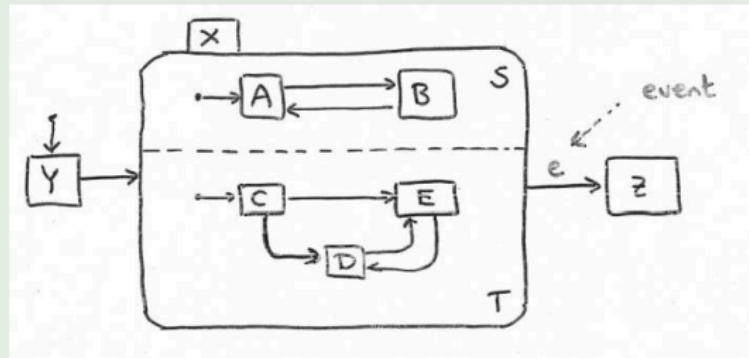


Active

- As long as node X is **active**, nodes S and T are active
- Node S is active when either node A or B is active
- Node T is active if one of C, D or E is active

Concurrency

Example concurrency in statecharts

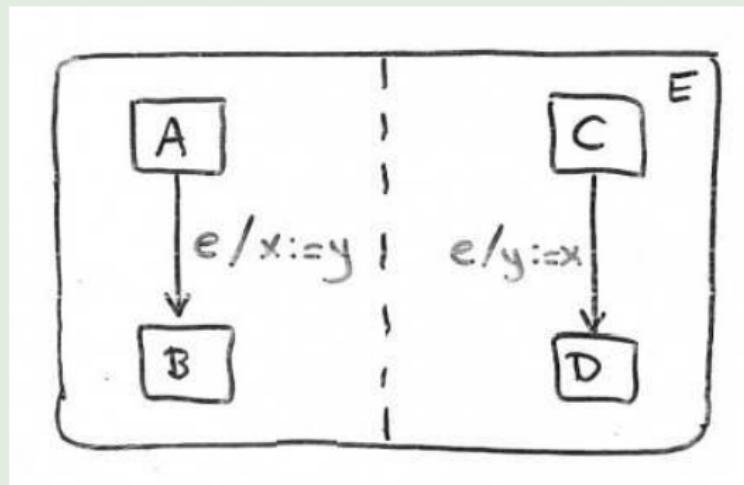


Exit behaviour

- When node X exits, both nodes S and T exit
- When Y exits, X starts, S starts in A , and T starts in C
- On the occurrence of event e , node X exits (regardless of current state in S or T)

Swapping two variables

Swapping the value of variables x and y

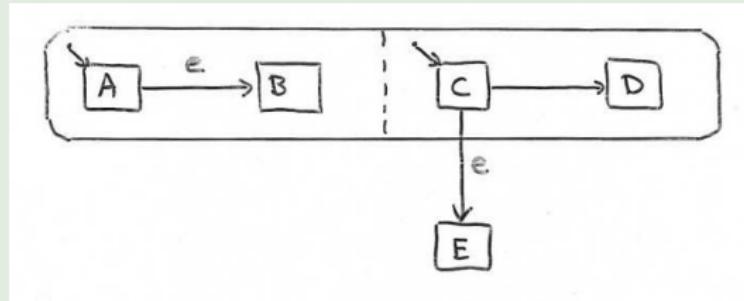


- If nodes A and C are active, assume $x = 1, y = 2$
- On occurrence of event e , B and D are active, and $x = 2, y = 1$

⇒ In Harel's statecharts, memory is shared, i.e., concurrent components have access to shared variables.

Priority

What if event e occurs when A and C are active?



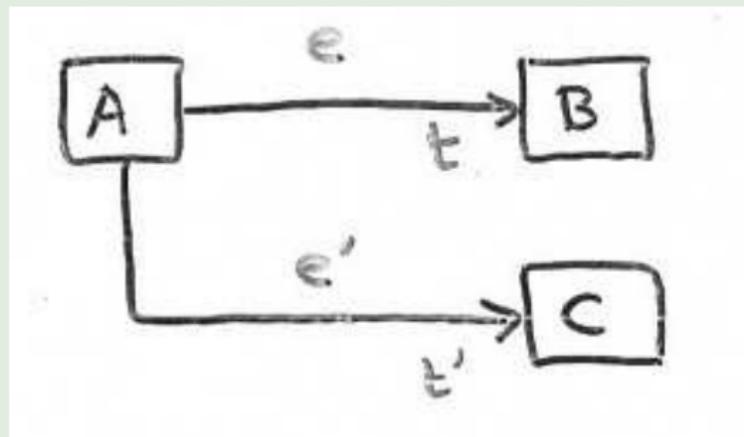
Solution:

Add a **priority** mechanism that decides whether:

- **inter-level** transitions (such as $C \rightarrow E$), or
- **intra-level** transitions (such as $A \rightarrow B$)

prevail in case both are enabled.

What if event e and e' occur in A ?

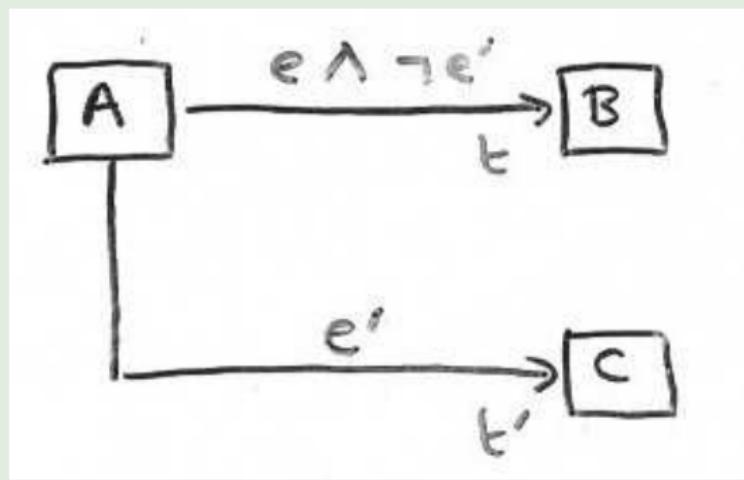


Solution:

Choice is resolved nondeterministically, i.e., the next state is either B or C , but not both.

Negation of events

Priority of events by negated events



Note:

In UML statecharts, negated events do not occur

Semantic problems with Statecharts

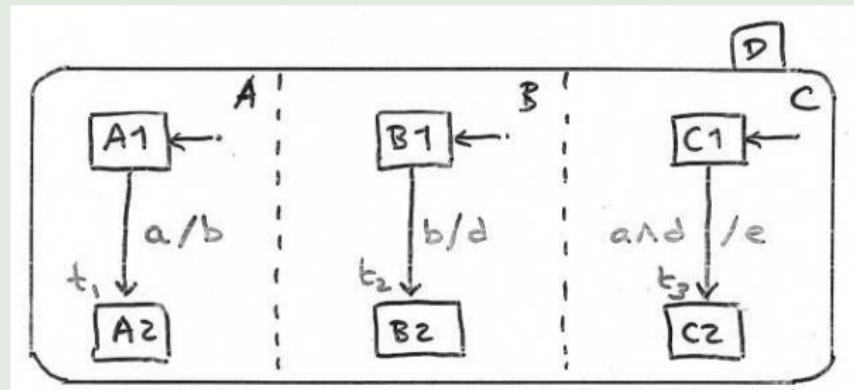
- Synchrony hypothesis (or: zero response time)
- Self-triggering
- Negated trigger events
- Transition effect is contradicting its cause
- Interrupts

Note: [von der Beeck, 1994]

Due to all these problems, hundred(s) (!) of different semantics for Statecharts have been defined in the literature.

Synchrony hypothesis

Event may yield chain of reactions

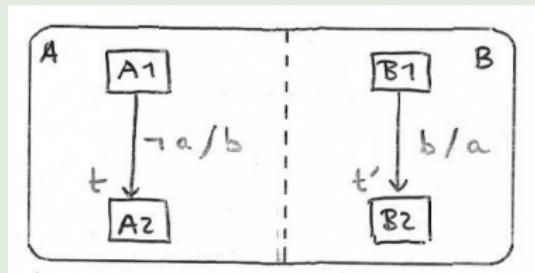


Note:

- If A_1 , B_1 and C_1 are active and event a occurs, a **chain** of reactions occurs: transition t_1 triggers t_2 , and t_2 triggers t_3
- But transitions t_1 , t_2 , t_3 occur at the same time as events do not take time (except for *after(d)* events with real d)

Paradox

Negated events and synchrony may yield paradox



The paradox:

- Assume events a and b are not alive
- Transition t can be taken, generating event b
- Transition t' can be taken, generating event a
- But then t should not have taken place as it is not enabled
- But then t' cannot be taken since b does not occur
- Hence, a does not occur and t cannot be taken

- ➊ No shared variables
- ➋ No negated and no compound events (like $e \wedge e'$)
- ➌ Two-party communication rather than broadcast
- ➍ No synchrony hypothesis:
 - events generated in step i can only be consumed in step $i+1$,
 - and die otherwise, i.e., when they are not consumed in step $i+1$, events disappear

Definition (Statecharts)

A **statechart** SC is a triple (N, E, Edges) with:

- ① N is a set of **nodes** (or: states) structured in a **tree**
- ② E is a set of **events**
 - pseudo-event $\text{after}(d)$ denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\perp \notin E$ stands for “no event required”
- ③ Edges is a set of (hyper-) **edges**, defined later on.

Definition (System)

A **system** is described by a finite collection of statecharts (SC_1, \dots, SC_k) .

Syntactic sugar

*this is an elementary form; the UML allows more constructs
that can be defined in terms of these basic elements*

- Deferred events simulate by regeneration
- Parametrised events simulate by set of parameter-less events
- Activities that take time simulate by start and end event
- Dynamic choice points simulate by intermediate state
- Synchronization states use a hyperedge with a counter
- History states (re)define an entry point

Tree structure

Function *children*

Nodes obey a **tree structure** defined by function $\text{children} : N \rightarrow 2^N$ where $x \in \text{children}(y)$ means that x is a child of y , or equivalently, y is the parent of x .

Partial order \trianglelefteq

The partial order $\trianglelefteq \subseteq N \times N$ is defined by:

- $\forall x \in N. x \trianglelefteq x$
- $\forall x, y \in N. x \trianglelefteq y$ iff $x \in \text{children}(y)$
- $\forall x, y, z \in N. x \trianglelefteq y \wedge y \trianglelefteq z \Rightarrow x \trianglelefteq z$

$x \trianglelefteq y$ means that x is a **descendant** of y , or equivalently, y is an **ancestor** of x . If $x \trianglelefteq y$ or $y \trianglelefteq x$, nodes x and y are ancestrally related.

Root node

There is a unique **root** with no ancestors, and $\forall x \in N. x \trianglelefteq \text{root}$.

Functions on nodes

The type of nodes

Nodes are **typed**, $\text{type}(x) \in \{\text{BASIC, AND, OR}\}$ such that for $x \in N$:

- $\text{type}(\text{root}) = \text{OR}$
- $\text{type}(x) = \text{BASIC}$ iff $\text{children}(x) = \emptyset$, i.e., x is a leaf
- $\text{type}(x) = \text{AND}$ implies $(\forall y \in \text{children}(x). \text{type}(y) = \text{OR})$

Default nodes

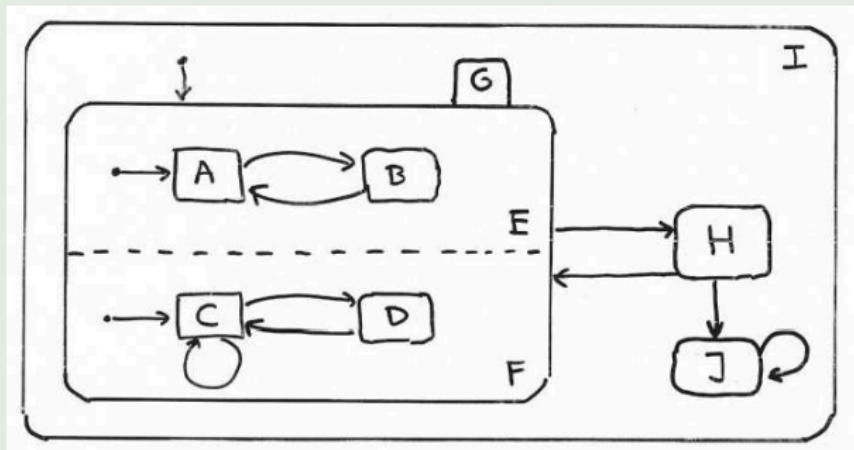
$\text{default} : N \rightarrow N$ is a partial function on domain
 $\{x \in N \mid \text{type}(x) = \text{OR}\}$ such that

$$\text{default}(x) = y \quad \text{implies} \quad y \in \text{children}(x).$$

The function default assigns to each OR-node x one of its children as **default** node that becomes active once x becomes active.

Example

Example statechart



Definition (Edges)

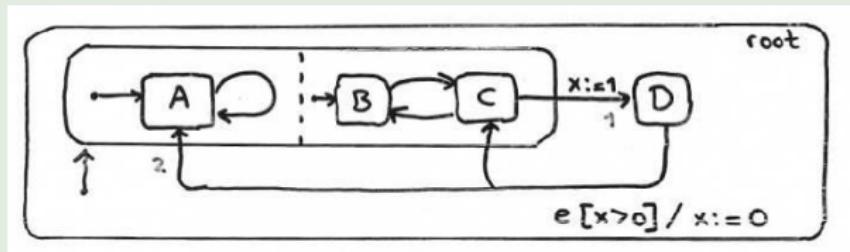
An **edge** is a quintuple (X, e, g, A, Y) , denoted $X \xrightarrow{e[g]/A} Y$ with:

- $X \subseteq N$ is a set of **source** nodes with $X \neq \emptyset$
- $e \in N \cup \{\perp\}$ is the **trigger** event
- $A \subseteq Act$ is a set of **actions**
 - such as $v := \text{expr}$ or local variable v and expression expr
 - or *send j.e*, i.e., send event e to statechart SC_j
- **Guard** g is a Boolean expression over all variables in (SC_1, \dots, SC_k)
- $Y \subseteq N$ is a set of **target** nodes with $Y \neq \emptyset$

The sets X and Y may contain nodes at different depth in the node tree.

Example (1)

Example statechart

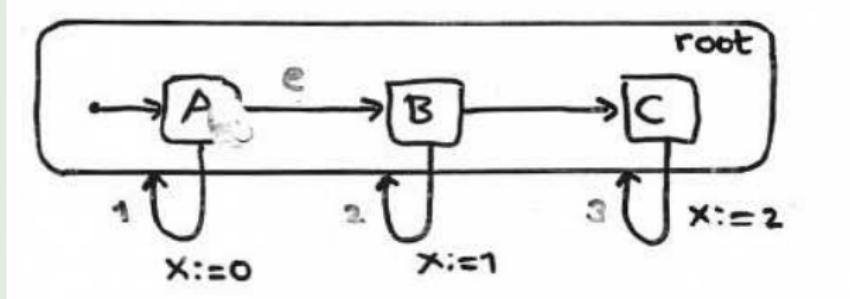


edge 1: $\{ C \} \xrightarrow{\perp[\text{true}]/\{ x:=1 \}} \{ D \}$

edge 2: $\{ D \} \xrightarrow{e[x>0]/\{ x:=0 \}} \{ A, C \}$

Example (2)

Example statechart

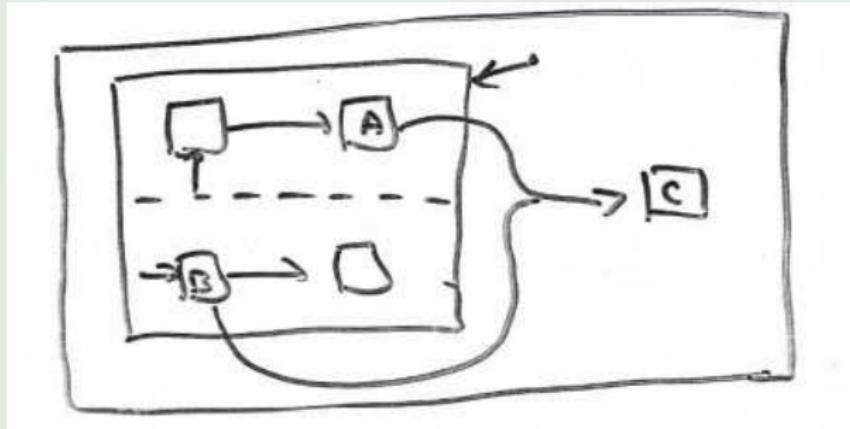


edge 1: $\{ A \} \xrightarrow{e[\text{true}]/\emptyset} \{ B \}$

edge 2: $\{ B \} \xrightarrow{\perp[\text{true}]/\{ x:=1 \}} \{ \text{root} \}$

Example (3)

Example statechart



edge : { A, B } \longrightarrow { C }