Foundations of the UML

Lecture 13: Statecharts

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

14. Dezember 2009

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

Statecharts

@ MSCs are a visual modelling formalism for requirements

o Statecharts is a visual modelling formalism for describing the
behaviour of discrete-event systems

¢ automata + hierarchy + communication 4+ concurrency

@ Developed by David Harel in 1987

o professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.
@ Extensively used in embedded systems, automotive and avionics

@ Variants: UML Statecharts, Stateflow, hierarchical state machines
o supported by Statemate toolset, and Matlab/Simulink

Joost-Pieter Katoen Foundations of the UML 2/31

What are Statecharts?

Statecharts constitute a visual formalism for: [Harel, 1987]
@ Describing states and transitions in a modular way
@ Enabling clustering of states
@ Orthogonality, i.e., concurrency
@ Refinement, and

o Encouraging “zoom capabilities for moving easily back and forth

between levels of abstraction
RWTH

Joost-Pieter Katoen Foundations of the UML 3/31

Informal examples

Statecharts := Mealy machines
-+ State hierarchy
+ Broadcast communication

-+ Orthogonality

Joost-Pieter Katoen Foundations of the UML 4/31

Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, o, %, T, 6,w) with:
@ (@ is a finite set of states with initial state gy € Q
@ Y is the input alphabet
@ [' is the output alphabet
@ 0:Q x X — @ is the deterministic (input) transition function, and

@ w: @ x X — T is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine w : Q — I', output is purely state-based.

Joost-Pieter Katoen Foundations of the UML 5/31

Mealy machines

Mealy machines

@ No final (accepting) states

@ Transitions produce output
@ Deterministic input transition function

= Acceptance of input words is not important, but the generation of
output words from input words is important

o

‘P',:“’-""F‘“ = 12 /o

\'-C("L/c‘ =0 of1 ',"’

Joost-Pieter Katoen Foundations of the UML

Limitations of Mealy machines

@ No support for hierarchy

o all states are arranged in a flat fashion

@ no notion of substates

@ Realistic systems require complex transition structure and huge
number of states

@ scalability problems yields unstructured state diagrams

@ No notion of concurrency

@ need for modeling independent components

@ No notion of communication between automata.

Joost-Pieter Katoen Foundations of the UML

Scalability

A bit unstructured Mealy machine

State hierarchy yields modular, hierarchical and structured models.]

Joost-Pieter Katoen Foundations of the UML

Orthogonality

Two independent components

Image: Sound:
txb.on —m Sound
—jm\]'.—jvidmh\: |
[e
Mealy machine for Image | Sound
babcn -
normn el >
mute =
Soond e Sourd
ok e
normmae
o

Number of states is exponential in size of concurrent components

Joost-Pieter Katoen Foundations of the

Two independent components

Tmage: Secund:
—3 nurm::.L| iv-dcokxt i —ﬂ—/
[cu "
Statechart for Image || Sound

e Stetechavk : "anp skate

{enage . A T seo rt-l
L Bet) o 1

| A Hu::-

>]

4, .
BASic” stale

Concurrency modeled by independence

Joost-Pieter Katoen Foundations of the

Switching on and off the television

~
(=) | -
'Q‘f\‘

off on

L]
neme of Standby
AND shake

Joost-Pieter Katoen Foundations of the

Broadcast

Turn off sound on switching a tv channe

” o h

|
ch1 "T | s‘--/\ ke

\
|

|

L(ckz | ,._@; i

| SRR ‘

i Soond j

==

@ Output is broadcast that can be received by any other component

@ When pushing button 1, channel switches to its state channel 1,
while generating signal sm on which component SM switches off
the sound.

Joost-Pieter Katoen Foundations of the UML

Concurrency

Example concurrency in statecharts

o As long as node X is active, nodes S and T are active
@ Node S is active when either node A or B is active

@ Node T is active if one of C, D or FE is active

Joost-Pieter Katoen Foundations of the UML

Concurrency

Example concurrency in statecharts
> |

Exit behaviour

@ When node X exits, both nodes S and T exit
@ When Y exits, X starts, S starts in A, and 7T starts in C

@ On the occurrence of event e, node X exits (regardless of current
state in S or T')

4
Joost-Pieter Katoen Foundations of the UML 14/31

Swapping two variables

Swapping the value of variables x and y

Fd ‘ﬁ: %
v | !
B ©J
l _J

o If nodes A and C are active, assume x = 1, y = 2
@ On occurrence of event e, B and D are active, and x =2, y = 1

= In Harel’s statecharts, memory is shared, i.e., concurrent
components have access to shared variables.
Joost-Pieter Katoen Foundations of the UML 15/31

What if event e occurs when A and C' are active?

1

(—E e |

| C

Add a priority mechanism that decides whether:
@ inter-level transitions (such as C' — FE), or

@ intra-level transitions (such as A — B)

prevail in case both are enabled.

o’

Joost-Pieter Katoen Foundations of the UML 16/31

Nondeterminism

What if event e and €’ occur in A?

Choice is resolved nondeterministically, i.e., the next state is either B or
C, but not both.

Joost-Pieter Katoen Foundations of the UML

Negation of events

Priority of events by negated events

In UML statecharts, negated events do not occur l

Joost-Pieter Katoen Foundations of the UML

Semantic problems with Statecharts

@ Synchrony hypothesis (or: zero response time)
o Self-triggering

@ Negated trigger events

@ Transition effect is contradicting its cause

@ Interrupts

Due to all these problems, hundred(s) (!) of different semantics for
Statecharts have been defined in the literature.

Joost-Pieter Katoen Foundations of the UML 19/31

Synchrony hypothesis

Event may yield chain of reactions

A

T
:
a/b ',
L
A

(A1}
y . 1
R

o If A1, B1 and C'1 are active and event a occurs, a chain of
reactions occurs: transition ¢; triggers to, and to triggers t3

@ But transitions t1, to, t3 occur at the same time as events do not
take time (except for after(d) events with real d)

Joost-Pieter Katoen Foundations of the UML 20/31

Negated events and synchrony may yield paradox

A @g’

]
J

! L/a
I

|

1

|

(&

_/

The paradox:

@ Assume events a and b are not alive

@ Transition t can be taken, generating event b

@ Transition ¢’ can be taken, generating event a

@ But then ¢ should not have taken place as it is not enabled
°

°

But then ¢’ cannot be taken since b does not occur

Hence, a does not occur and ¢ cannot be taken

Joost-Pieter Katoen Foundations of the UML 21/31

Simplifications in UML statecharts

© No shared variables
@ No negated and no compound events (like e A €)

© Two-party communication rather than broadcast

© No synchrony hypothesis:

@ events generated in step ¢ can only be consumed in step i+1,
@ and die otherwise, i.e., when they are not consumed in step i+1,
events disappear

Joost-Pieter Katoen Foundations of the UML 22/31

Statecharts

Definition (Statecharts)
A statechart SC'is a triple (N, E, Edges) with:

© N is a set of nodes (or: states) structured in a tree

Q@ FE is a set of events

o pseudo-event after(d) denotes a delay of d € Rx(time units
e | ¢ F stands for “no event required”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts

(SCh,...,SCy).

Joost-Pieter Katoen Foundations of the UML 23/31

Syntactic sugar

this is an elementary form; the UML allows more constructs

that can be defined in terms of these basic elements

@ Deferred events simulate by regeneration
@ Parametrised events simulate by set of parameter-less events
@ Activities that take time simulate by start and end event
@ Dynamic choice points simulate by intermediate state
@ Synchronization states use a hyperedge with a counter
o History states (re)define an entry point
RWTH

Joost-Pieter Katoen Foundations of the UML

Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Partial order <

The partial order < C N x N is defined by:
oeVre N.xz<x
o Vx,y € N.x Jy iff x € children(y)
oVr,yze Nedy ANy<z =z

x <y means that z is a descendant of y, or equivalently, y is an ancestor
of . If x Jy or y <z, nodes x and y are ancestrally related.

Root node
There is a unique root with no ancestors, and forallz € N.z <root.

Joost-Pieter Katoen Foundations of the UML

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
@ type(root) = OR
o type(x) = BASIC iff children(x) = &, i.e., z is a leaf
o type(z) = AND implies (Vy € children(z). type(y) = OR)

Default nodes

default : N — N is a partial function on domain
{x € N | type(xz) = OR } such that

default(z) =y implies y € children(x).

The function default assigns to each OR-node x one of its children as
default node that becomes active once z becomes active.

Joost-Pieter Katoen Foundations of the UML 26/31

Example

Example statechart

4 7))

J [6]
-_—’f\/@ .

—[EE)
O .

S

Joost-Pieter Katoen Foundations of the UML

Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y), denoted X —=— /A,y with:
@ X C N is a set of source nodes with X # @&
e € NU{ L} is the trigger event

@ A C Act is a set of actions

@ such as v := expr or local variable v and expression expr
e or send j.e, i.e., send event e to statechart SC;

©

©

Guard g is a Boolean expression over all variables in (SCy, ..., SCy)
@ Y C N is a set of target nodes with Y # &

The sets X and Y may contain nodes at different depth in the node tree. |

Joost-Pieter Katoen Foundations of the UML 28/31

Example (1)

Example statechart

Cosc=cR-N

Tt

el:x‘;cg]/ =0

edge 1{C} L [true]/{x:=1} {D}
edge 2: { D} -z=20/4=0} 4 o)

Joost-Pieter Katoen Foundations of the UML

Example (2)

Example statechart

H?—@——ﬂ)

Ki=2

edge 1: {A}M{B}
edge 2: {B}M{root}

Joost-Pieter Katoen Foundations of the UML

Example (3)

Example statechart

edge : {A,B}—>{C}

Joost-Pieter Katoen Foundations of the UML 31/31

	Lecture 13: Statecharts

