
Foundations of the UML
Lecture 13: Statecharts

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

14. Dezember 2009

Joost-Pieter Katoen Foundations of the UML 1/31

http://moves.rwth-aachen.de/i2/370

Statecharts

MSCs are a visual modelling formalism for requirements

Statecharts is a visual modelling formalism for describing the
behaviour of discrete-event systems

automata + hierarchy + communication + concurrency

Developed by David Harel in 1987

professor at Weizmann Institute (Israel); co-founder of I-Logix Inc.

Extensively used in embedded systems, automotive and avionics

Variants: UML Statecharts, Stateflow, hierarchical state machines

supported by Statemate toolset, and Matlab/Simulink

Joost-Pieter Katoen Foundations of the UML 2/31

What are Statecharts?

Statecharts constitute a visual formalism for: [Harel, 1987]

Describing states and transitions in a modular way

Enabling clustering of states

Orthogonality, i.e., concurrency

Refinement, and

Encouraging “zoom“ capabilities for moving easily back and forth
between levels of abstraction

Joost-Pieter Katoen Foundations of the UML 3/31

Informal examples

Statecharts := Mealy machines

+ State hierarchy

+ Broadcast communication

+ Orthogonality

Joost-Pieter Katoen Foundations of the UML 4/31

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A Mealy machine A = (Q, q0,Σ,Γ, δ, ω) with:

Q is a finite set of states with initial state q0 ∈ Q

Σ is the input alphabet

Γ is the output alphabet

δ : Q × Σ → Q is the deterministic (input) transition function, and

ω : Q × Σ → Γ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines

In a Moore machine ω : Q → Γ, output is purely state-based.

Joost-Pieter Katoen Foundations of the UML 5/31

Mealy machines

Mealy machines

No final (accepting) states

Transitions produce output

Deterministic input transition function

⇒ Acceptance of input words is not important, but the generation of
output words from input words is important

Example

Joost-Pieter Katoen Foundations of the UML 6/31

Limitations of Mealy machines

No support for hierarchy

all states are arranged in a flat fashion

no notion of substates

Realistic systems require complex transition structure and huge
number of states

scalability problems yields unstructured state diagrams

No notion of concurrency

need for modeling independent components

No notion of communication between automata.

Joost-Pieter Katoen Foundations of the UML 7/31

Scalability

A bit unstructured Mealy machine

An equivalent statechart

State hierarchy yields modular, hierarchical and structured models.

Joost-Pieter Katoen Foundations of the UML 8/31

Orthogonality

Two independent components

Mealy machine for Image || Sound

Number of states is exponential in size of concurrent components

Joost-Pieter Katoen Foundations of the UML 9/31

Orthogonality

Two independent components

Statechart for Image || Sound

Concurrency modeled by independence

Joost-Pieter Katoen Foundations of the UML 10/31

Hierarchy

Switching on and off the television

Joost-Pieter Katoen Foundations of the UML 11/31

Broadcast

Turn off sound on switching a tv channe

Output is broadcast that can be received by any other component

When pushing button 1, channel switches to its state channel 1,
while generating signal sm on which component SM switches off
the sound.

Joost-Pieter Katoen Foundations of the UML 12/31

Concurrency

Example concurrency in statecharts

Active

As long as node X is active, nodes S and T are active

Node S is active when either node A or B is active

Node T is active if one of C,D or E is active

Joost-Pieter Katoen Foundations of the UML 13/31

Concurrency

Example concurrency in statecharts

Exit behaviour

When node X exits, both nodes S and T exit

When Y exits, X starts, S starts in A, and T starts in C

On the occurrence of event e, node X exits (regardless of current
state in S or T)

Joost-Pieter Katoen Foundations of the UML 14/31

Swapping two variables

Swapping the value of variables x and y

If nodes A and C are active, assume x = 1, y = 2

On occurrence of event e, B and D are active, and x = 2, y = 1

⇒ In Harel’s statecharts, memory is shared, i.e., concurrent
components have access to shared variables.

Joost-Pieter Katoen Foundations of the UML 15/31

Priority

What if event e occurs when A and C are active?

Solution:

Add a priority mechanism that decides whether:

inter-level transitions (such as C → E), or

intra-level transitions (such as A → B)

prevail in case both are enabled.

Joost-Pieter Katoen Foundations of the UML 16/31

Nondeterminism

What if event e and e′ occur in A?

Solution:

Choice is resolved nondeterministically, i.e., the next state is either B or
C, but not both.

Joost-Pieter Katoen Foundations of the UML 17/31

Negation of events

Priority of events by negated events

Note:

In UML statecharts, negated events do not occur

Joost-Pieter Katoen Foundations of the UML 18/31

Semantic problems with Statecharts

Synchrony hypothesis (or: zero response time)

Self-triggering

Negated trigger events

Transition effect is contradicting its cause

Interrupts

Note: [von der Beeck, 1994]

Due to all these problems, hundred(s) (!) of different semantics for
Statecharts have been defined in the literature.

Joost-Pieter Katoen Foundations of the UML 19/31

Synchrony hypothesis

Event may yield chain of reactions

Note:

If A1, B1 and C1 are active and event a occurs, a chain of
reactions occurs: transition t1 triggers t2, and t2 triggers t3

But transitions t1, t2, t3 occur at the same time as events do not
take time (except for after(d) events with real d)

Joost-Pieter Katoen Foundations of the UML 20/31

Paradox

Negated events and synchrony may yield paradox

The paradox:

Assume events a and b are not alive

Transition t can be taken, generating event b

Transition t′ can be taken, generating event a

But then t should not have taken place as it is not enabled

But then t′ cannot be taken since b does not occur

Hence, a does not occur and t cannot be taken

Joost-Pieter Katoen Foundations of the UML 21/31

Simplifications in UML statecharts

1 No shared variables

2 No negated and no compound events (like e ∧ e′)

3 Two-party communication rather than broadcast

4 No synchrony hypothesis:

events generated in step i can only be consumed in step i+1,
and die otherwise, i.e., when they are not consumed in step i+1,
events disappear

Joost-Pieter Katoen Foundations of the UML 22/31

Statecharts

Definition (Statecharts)

A statechart SC is a triple (N,E,Edges) with:

1 N is a set of nodes (or: states) structured in a tree
2 E is a set of events

pseudo-event after(d) denotes a delay of d ∈ R>0 time units
⊥ 6∈ E stands for “no event required”

3 Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts
(SC1, . . . ,SCk).

Joost-Pieter Katoen Foundations of the UML 23/31

Syntactic sugar

this is an elementary form; the UML allows more constructs

that can be defined in terms of these basic elements

Deferred events simulate by regeneration

Parametrised events simulate by set of parameter-less events

Activities that take time simulate by start and end event

Dynamic choice points simulate by intermediate state

Synchronization states use a hyperedge with a counter

History states (re)define an entry point

Joost-Pieter Katoen Foundations of the UML 24/31

Tree structure

Function children

Nodes obey a tree structure defined by function children : N → 2N

where x ∈ children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Partial order E

The partial order E ⊆ N × N is defined by:

∀x ∈ N.x E x

∀x, y ∈ N.x E y iff x ∈ children(y)

∀x, y, z ∈ N.x E y ∧ y E z ⇒ x E z

x E y means that x is a descendant of y, or equivalently, y is an ancestor
of x. If x E y or y E x, nodes x and y are ancestrally related.

Root node

There is a unique root with no ancestors, and forallx ∈ N.x E root.
Joost-Pieter Katoen Foundations of the UML 25/31

Functions on nodes

The type of nodes

Nodes are typed, type(x) ∈ {basic,and,or } such that for x ∈ N :

type(root) = or

type(x) = basic iff children(x) = ∅, i.e., x is a leaf

type(x) = and implies (∀y ∈ children(x). type(y) = or)

Default nodes

default : N → N is a partial function on domain
{x ∈ N | type(x) = or } such that

default(x) = y implies y ∈ children(x).

The function default assigns to each or-node x one of its children as
default node that becomes active once x becomes active.

Joost-Pieter Katoen Foundations of the UML 26/31

Example

Example statechart

Joost-Pieter Katoen Foundations of the UML 27/31

Edges

Definition (Edges)

An edge is a quintuple (X, e, g,A, Y), denoted X
e[g]/A

−−−−→Y with:

X ⊆ N is a set of source nodes with X 6= ∅

e ∈ N ∪ {⊥} is the trigger event

A ⊆ Act is a set of actions

such as v := expr or local variable v and expression expr
or send j.e, i.e., send event e to statechart SCj

Guard g is a Boolean expression over all variables in (SC1, . . . ,SCk)

Y ⊆ N is a set of target nodes with Y 6= ∅

The sets X and Y may contain nodes at different depth in the node tree.

Joost-Pieter Katoen Foundations of the UML 28/31

Example (1)

Example statechart

edge 1: {C }
⊥[true]/{x:=1 }

−−−−−−−−−−−→{D }

edge 2: {D }
e[x>0]/{x:=0 }

−−−−−−−−−−→{A,C }

Joost-Pieter Katoen Foundations of the UML 29/31

Example (2)

Example statechart

edge 1: {A }
e[true]/∅

−−−−−−→{B }

edge 2: {B }
⊥[true]/{x:=1 }

−−−−−−−−−−−→{ root }

Joost-Pieter Katoen Foundations of the UML 30/31

Example (3)

Example statechart

edge : {A,B } ...−−→{C }

Joost-Pieter Katoen Foundations of the UML 31/31

	Lecture 13: Statecharts

