
Foundations of the UML
Lecture 15: Statecharts Semantics (2)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

11. Januar 2010

Joost-Pieter Katoen Foundations of the UML 1/19

http://moves.rwth-aachen.de/i2/370

Statecharts

Definition (Statecharts)

A statechart SC is a triple (N,E,Edges) with:

1 N is a set of nodes (or: states) structured in a tree
2 E is a set of events

pseudo-event after(d) denotes a delay of d ∈ R>0 time units
⊥ 6∈ E stands for “no event available”

3 Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is a finite collection of statecharts (SC1, . . . ,SCn).

Joost-Pieter Katoen Foundations of the UML 2/19

Tree structure

Function children

Nodes obey a tree structure defined by function children : N → 2N

where x ∈ children(y) means that x is a child of y, or equivalently, y is
the parent of x.

Partial order E

The partial order E ⊆ N × N is defined by:

∀x ∈ N.x E x

∀x, y ∈ N.x E y if x ∈ children(y)

∀x, y, z ∈ N.x E y ∧ y E z ⇒ x E z

x E y means x is a descendant of y, or equivalently, y is an ancestor of x.

Root node

There is a unique root with no ancestors, and ∀x ∈ N.x E root.

Joost-Pieter Katoen Foundations of the UML 3/19

Functions on nodes

The type of nodes

Nodes are typed, type(x) ∈ {basic,and,or } such that for x ∈ N :

type(root) = or

type(x) = basic iff children(x) = ∅, i.e., x is a leaf

type(x) = and implies (∀y ∈ children(x). type(y) = or)

Default nodes

default : N → N is a partial function on {x ∈ N | type(x) = or } with

default(x) = y implies y ∈ children(x).

The function default assigns to each or-node x one of its children as
default node that becomes active once x becomes active.

Joost-Pieter Katoen Foundations of the UML 4/19

Edges

Definition (Edges)

An edge is a quintuple (X, e, g,A, Y), denoted X
e[g]/A

−−−−→Y with:

X ⊆ N is a set of source nodes with X 6= ∅

e ∈ E ∪ {⊥} is the trigger event

Guard g is a Boolean expression over all variables in (SC1, . . . ,SCn)

A ⊆ Act is a set of actions

such as v := expr or local variable v and expression expr
or send j.e, i.e., send event e to statechart SCj

Y ⊆ N is a set of target nodes with Y 6= ∅

The sets X and Y may contain nodes at different depth in the node tree.

Joost-Pieter Katoen Foundations of the UML 5/19

What does a single StateChart mean?

The semantics is given as a Mealy machine:

State = a set of nodes (“current control”) + the values of variables

Edge is enabled if all events are present and guard holds in current
state

Executing edge X
e[g]/A

−−−−→Y = perform actions A, consume event e

leave source nodes X and switch to target nodes Y

⇒ events are unordered, and considered as a set

Principle: execute as many non-conflicting edges at once

⇒ the execution of such maximal set is a macro step

Joost-Pieter Katoen Foundations of the UML 6/19

States and configurations

Definition (Configuration)

A configuration of SC = (N,E,Edges) is a set C ⊆ N of nodes
satisfying:

root ∈ C

x ∈ C and type(x) = or implies |children(x) ∩ C| = 1

x ∈ C and type(x) = and implies children(x) ⊆ C

Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N,E,Edges) is a triple (C, I, V) where

C is a configuration of SC

I ⊆ V is a set of events ready to be processed

V is a valuation of the variables.

Joost-Pieter Katoen Foundations of the UML 7/19

Enabling of an edge

Definition (Enabledness)

Edge X
e[g]/A

−−−−→ Y is enabled in state (Cj , Ij , Vj) for SCj whenever:

X ⊆ Cj , i.e. all source nodes are in configuration Cj

((C1, . . . , Cn)
︸ ︷︷ ︸

configurations

, (V1, . . . , Vn)
︸ ︷︷ ︸

variable valuations

) |= g, i.e., guard g is satisfied

e 6= ⊥ implies e ∈ I, or e = ⊥

Let En(C, I, V) denote the set of enabled edges in state (C, I, V).

Joost-Pieter Katoen Foundations of the UML 8/19

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

If there are several such sets, choose one nondeterministically

Edges in concurrent components can be taken simultaneously

But edges in other components cannot; they are inconsistent

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Foundations of the UML 9/19

Least common ancestor

Definition (Least common ancestor)

For X ⊆ N , the least common ancestor, denoted lca(X), is the node
y ∈ N such that:

(∀x ∈ X.x E y) and ∀z ∈ N. (∀x ∈ X.x E z) implies y E z.

Intuition

Node y is an ancestor of any node in X (first clause), and is a descendant of

any node which is an ancestor of any node in X (second clause).

Joost-Pieter Katoen Foundations of the UML 10/19

Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes x, y ∈ N are orthogonal, denoted x⊥y, if

¬(x E y) and ¬(y E x) and type(lca({x, y })) = and.

Joost-Pieter Katoen Foundations of the UML 11/19

Scope

Definition (Scope of edge)

The scope of edge X ...−−→Y is the most nested or-node that is an
ancestor of both X and Y .

Intuition

The scope of edge X ...−−→Y is the most nested or-node that is
unaffected by executing the edge X ...−−→Y . That is, if such or-node
belongs to a state and X ...−−→ Y is performed, the or-node also belongs
to the next state.

Joost-Pieter Katoen Foundations of the UML 12/19

Scope: example

F

A B

D E

C
G

scope(A−→D) = root and scope(A−→C) = G and scope(A−→B) = F

Joost-Pieter Katoen Foundations of the UML 13/19

Consistency

Definition (Consistency)

1 Edges ed, ed′ ∈ Edges are consistent if:

ed = ed′ or scope(ed)⊥ scope(ed′).

2 T ⊆ Edges is consistent if all edges in T are pairwise consistent.

3 Cons(T) is the set of edges that are consistent with all edges in T

Cons(T) = {ed ∈ Edges | ∀ed′ ∈ T : ed is consistent with ed′}

Joost-Pieter Katoen Foundations of the UML 14/19

Priorities

Priorities restrict nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation � ⊆ Edges × Edges is a partial order defined for
ed, ed′ ∈ Edges by:

ed � ed′ if scope(ed′) E scope(ed)

So, ed′ has priority over ed if its scope is a descendant of ed’s scope.

Example:

2 � 1 since scope(1) = D E scope(2) = root.

Joost-Pieter Katoen Foundations of the UML 15/19

Examples

Joost-Pieter Katoen Foundations of the UML 16/19

Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Foundations of the UML 17/19

What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent

they are identical or
scopes are (descendants of) different children of the same and-node

step T is maximal (wrt. set inclusion)

T cannot be extended with any enabled, consistent edge

priorities: enabled edge ed is not in step T implies

∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ � ed))

Joost-Pieter Katoen Foundations of the UML 18/19

A macro step — formally

A macro step is a set T of edges such that:

enabledness: T ⊆ En(C, I, V)

consistency: T ⊆ Cons(T)

maximality: En(C, I, V) ∩ Cons(T) ⊆ T

priority: ∀ed ∈ En(C, I, V) − T we have

(∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ � ed)))

Note:

The first three points yield: T = En(C, I, V) ∩ Cons(T).

Joost-Pieter Katoen Foundations of the UML 19/19

Computing the set T of macro steps in state (C, I, V)

function nextStep(C, I, V)

T := ∅

while T ⊂ En(C, I, V) ∩ Cons(T)

do let ed ∈ High ((En(C, I, V) ∩ Cons(T)) − T) ;

T := T ∪ {ed}

od

return T .

where High(T) = {ed ∈ T | ¬(∃ed′ ∈ T. ed � ed′)}

Joost-Pieter Katoen Foundations of the UML 20/19

Correctness

Theorem:

For any state (C, I, V), nextStep(C, I, V) is a macro step.

Proof.

The proof goes in two steps:

1 We prove enabledness, consistency, and maximality by applying
some standard results from fixpoint theory, in particular
Tarski’s-Kleene fixpoint theorem;

2 Then we consider priority and use some monotonicity argument.

Joost-Pieter Katoen Foundations of the UML 21/19

Intermezzo on fixpoint theory

Joost-Pieter Katoen Foundations of the UML 22/19

Step execution

What happens in performing a step?

For a single statechart, executing a step results in performing the
actions of all the edges in the step, and changing “control” to the target
nodes of these edges.

Interference

Actions in statechart SCj may influence the sets of events of other
statecharts, e.g., SCi with i 6= j if action send i.e is performed by SCj in
a step.

Thus:

Execution of steps is considered on the system (SC1, . . . ,SCn).

Joost-Pieter Katoen Foundations of the UML 23/19

Default completion

Definition (Default completion)

The default completion C ′ of some set C of nodes is the canonical
superset of C such that C ′ is a configuration. If C ′ contains an or-node
x and children(x) ∩ C = ∅ implies default(x) ∈ C ′.

Example:

1 Default completion of

C = {root, I} is C ′ = C ∪ {D,E,F,H}

2 Default completion of

C = {root, C} is C ′ = C ∪ {A}.

Joost-Pieter Katoen Foundations of the UML 24/19

Step execution

Let Cj be the current configuration of statechart SCj

Let Tj ⊆ Edgesj be a step for SCj

The next state (C ′

j, I
′

j , V
′

j) of statechart SCj is given by:
1 C′

j is the default completion of

⋃

X
e[g]/A−−−−−→ Y ∈Tj

Y ∪ {x ∈ Cj | ∀X → Y ∈ Tj .¬(x E scope(X → Y))}

2 I ′j =
⋃n

k=1{e | ∃X
e[g]/A

−−−−−→Y ∈ Tk. send j.e ∈ A}

3 V ′

j (v) =







Vj(v) if ∀X
e[g]/A

−−−−−→Y ∈ Tj. v := . . . 6∈ A

val(expr) if ∃X
e[g]/A

−−−−−→Y ∈ Tj. v := expr ∈ A

Joost-Pieter Katoen Foundations of the UML 25/19

Mealy machines [Mealy, 1953]

Definition (Mealy machine)

A Mealy machine A = (Q, q0,Σ,Γ, δ, ω) with:

Q is a finite set of states with initial state q0 ∈ Q

Σ is the input alphabet

Γ is the output alphabet

δ : Q × Σ → Q is the deterministic (input) transition function, and

ω : Q × Σ → Γ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines

In a Moore machine ω : Q → Γ, output is purely state-based.

Joost-Pieter Katoen Foundations of the UML 26/19

From statecharts to a Mealy machine (1)

States

A state q is a tuple of the (local) states of SC1 through SCn.

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function δ

Defines the effect of executing a step.

Output function ω

Defines all events sent to some SC outside the system (SC1, . . . ,SCn).

Joost-Pieter Katoen Foundations of the UML 27/19

From statecharts to a Mealy machine (2)

States

A state q is a tuple of the (local) states of SC1 through SCk.

Formally:

Q =
∏n

k=1(Confk × 2Ek × Valk) is the set of states

where Confk is the set of configurations of SCk,
Ek is the set of the events of SCk,
and Valk is the set of variable valuations of SCk

q0 =
∏n

k=1(C0,k, ∅,Val0,k) is the initial state

where C0,k is the default completion of the set {root}
the initial set of events is empty
Val0,k is the initial variable valuation of SCk

Joost-Pieter Katoen Foundations of the UML 28/19

From statecharts to a Mealy machine (3)

Input and output events

Any input is a set of events, and any output is a set of events.

Formally,

Input alphabet: Σ = 2E − {∅ }

where E =
⋃n

k=1 Ek is the set of events in all statecharts

Output alphabet: Γ = 2E′

with E′ =

{

send j.e ∈

n⋃

k=1

SCk | j 6∈ {1, . . . , n}

}

︸ ︷︷ ︸

all outputs that cannot be consumed

Joost-Pieter Katoen Foundations of the UML 29/19

From statecharts to a Mealy machine (4)

Next-state function δ

Defines the effect of executing a step.

Formally,

(s′1, . . . , s
′

n) ∈ δ((s1, . . . , sn), E) where

s′′i = (C′

i, I
′′

i , V ′

i) is the next state after executing
Ti = nextStep(Ci, Ii, Vi)
and s′i = (C′

i, I
′′

i ∪ (E ∩ Ei), V
′

i)

Joost-Pieter Katoen Foundations of the UML 30/19

From statecharts to a Mealy machine (5)

Output function ω

Defines all events sent to some SC outside the system (SC1, . . . ,SCn).

Formally,

ω((s1, . . . , sn), E) =
{

send j.e | j 6∈ {1, . . . , n} ∧ ∃i. ∃X
e[g]/send j.e

−−−−−−−−−→Y ∈ nextStep(Ci, Ii, Vi)

}

Joost-Pieter Katoen Foundations of the UML 31/19

	Lecture 16: The Object Constraint Language

