Foundations of the UML

Lecture 15: Statecharts Semantics (2)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

11. Januar 2010

Joost-Pieter Katoen Foundations of the UML


http://moves.rwth-aachen.de/i2/370

Statecharts

Definition (Statecharts)
A statechart SC'is a triple (N, E, Edges) with:

© N is a set of nodes (or: states) structured in a tree
Q@ FE is a set of events

o pseudo-event after(d) denotes a delay of d € Rx( time units
e | ¢ F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)
A system is a finite collection of statecharts (SCy,...,SC,).

Joost-Pieter Katoen Foundations of the UML 2/19



Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of z.

Partial order <

The partial order < C N x N is defined by:
oeVre Nz
o Vx,y € N.x Jy if x € children(y)
o Vr,yze Nady ANydz = zdz

x <y means x is a descendant of y, or equivalently, y is an ancestor of x.

Root node

There is a unique root with no ancestors, and V& € N.z < root.

Joost-Pieter Katoen Foundations of the UML 3/19



Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
@ type(root) = OR
o type(x) = BASIC iff children(x) = &, i.e., z is a leaf
o type(x) = AND implies (Vy € children(x). type(y) = OR)

Default nodes

default : N — N is a partial function on {x € N | type(z) = OR } with

default(x) =y implies y € children(z).

The function default assigns to each OR-node x one of its children as
default node that becomes active once  becomes active.

Joost-Pieter Katoen Foundations of the UML 4/19




Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y ), denoted X —=— /A,y with:
@ X C N is a set of source nodes with X # @&
e € EU{ L} is the trigger event

°
@ Guard g is a Boolean expression over all variables in (SCy,...,SC,)
@ A C Act is a set of actions

@ such as v := expr or local variable v and expression expr
e or send j.e, i.e., send event e to statechart SC;

@ Y C N is a set of target nodes with Y # &

The sets X and Y may contain nodes at different depth in the node tree. |

Joost-Pieter Katoen Foundations of the UML 5/19



What does a single StateChart mean?

@ The semantics is given as a Mealy machine:
@ State = a set of nodes (“current control”) + the values of variables

@ Edge is enabled if all events are present and guard holds in current
state

o Executing edge X cld/A Ly perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

@ Principle: execute as many non-conflicting edges at once

= the execution of such maximal set is a macro step ——

Joost-Pieter Katoen Foundations of the UML 6/19



States and configurations

Definition (Configuration)
A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

@ z € C and type(x) = OR implies |children(x) NC| =1

@ z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C,I,V’) where

o (' is a configuration of SC

o [ CV is a set of events ready to be processed

@ V is a valuation of the variables.

Joost-Pieter Katoen Foundations of the UML 7/19




Enabling of an edge

Definition (Enabledness)

Edge X —lol/4, y is enabled in state (Cy,1;,V;) for SC; whenever:
@ X C (j, i.e. all source nodes are in configuration C}

o ((Cy,...,Cn), (V1,...,V,) ) Eg, ie., guard g is satisfied

configurations variable valuations
@ e# | implieseec [,ore= 1
Let En(C,1,V) denote the set of enabled edges in state (C,I,V).

Joost-Pieter Katoen Foundations of the UML 8/19



Macro steps

@ On receiving an input e, several edges in SC may become enabled

@ Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

©

But edges in other components cannot; they are inconsistent

©

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Foundations of the



Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vxe X.x<y) and Vze N.(Vze€ X.z<z) implies y J 2.

Node y is an ancestor of any node in X (first clause), and is a descendant of

any node which is an ancestor of any node in X (second clause).

Joost-Pieter Katoen Foundations of the UML 10/19



Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes z,y € N are orthogonal, denoted x Ly, if

—(z<dy) and —(y<z) and type(lca({z,y})) = AND.

Joost-Pieter Katoen Foundations of the UML 11/19



Definition (Scope of edge)

The scope of edge X ==Y is the most nested OR-node that is an
ancestor of both X and Y.

The scope of edge X ——Y is the most nested OR-node that is
unaffected by executing the edge X —— Y. That is, if such OR-node
belongs to a state and X —= Y is performed, the OR-node also belongs
to the next state.

Joost-Pieter Katoen Foundations of the UML 12/19



Scope: example

1 F
t——{a}—{8]

o) (g

scope(A— D) =root and scope(A—C)=G and scope(A— B)=F

Joost-Pieter Katoen Foundations of the UML 13/19



Consistency

Definition (Consistency)
O Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in 1" are pairwise consistent.

© Cons(T) is the set of edges that are consistent with all edges in T’

Cons(T) = {ed € Edges | Ved' € T : ed is consistent with ed'}

Joost-Pieter Katoen Foundations of the UML 14/19



Priorities

Priorities restrict nondeterminism between multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed = ed if scope(ed’) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.
b Yy P

Example:

| \

2 < 1 since scope(1l) = D < scope(2) = root.

Joost-Pieter Katoen Foundations of the UML



Examples

ieter Katoen Foundations of the



Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Foundations of the U



What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T" are pairwise consistent
o they are identical or
o scopes are (descendants of) different children of the same AND-node

@ step 7' is maximal (wrt. set inclusion)
o T cannot be extended with any enabled, consistent edge

@ priorities: enabled edge ed is not in step 1" implies

Jded € T. (ed is inconsistent with ed’ A —(ed’ < ed))
RWTH

Joost-Pieter Katoen Foundations of the UML 18/19



A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T C En(C,I,V)
@ consistency: T' C Cons(T)
@ maximality: En(C,I,V) N Cons(T) C T

@ priority: Ved € En(C,1,V) — T we have
(Jed’ € T. (ed is inconsistent with ed’ A =(ed’ < ed)))

The first three points yield: T'= En(C,I,V) N Cons(T).

Joost-Pieter Katoen Foundations of the UML 19/19




Computing the set T' of macro steps in state (C, 1,V

function nextStep(C,1,V')

T:=9

while ' C En(C,I,V) N Cons(T)

do let ed € High ((En(C,1,V) N Cons(T)) —T);
T:=T U {ed}

od

return 7.

where High(T) = {ed € T | —(3ed € T.ed < ed')}

Joost-Pieter Katoen Foundations of the UML 20/19



Correctness

For any state (C,1,V), nextStep(C,I,V) is a macro step.

The proof goes in two steps:

© We prove enabledness, consistency, and maximality by applying
some standard results from fixpoint theory, in particular
Tarski’s-Kleene fixpoint theorem:;

© Then we consider priority and use some monotonicity argument.
O

o

Joost-Pieter Katoen Foundations of the UML 21/19



Intermezzo on fixpoint theory

Joost-Pieter Katoen Foundations of the UML



Step execution

What happens in performing a step?

For a single statechart, executing a step results in performing the
actions of all the edges in the step, and changing “control” to the target
nodes of these edges.

Interference

Actions in statechart SC; may influence the sets of events of other
statecharts, e.g., SC; with i # j if action send i.e is performed by SCj in
a step.

Execution of steps is considered on the system (SC4,...,SC,).

T

Joost-Pieter Katoen Foundations of the UML 23/19



Default completion

Definition (Default completion)

The default completion C’ of some set C' of nodes is the canonical
superset of C' such that C’ is a configuration. If C’ contains an OR-node
x and children(z) N C' = @ implies default(z) € C'.

| \

Example:

( e
| E I © Default completion of
g

C = {root, I} is C'=CU{D,E,F,H}
© Default completion of
C = {root,C} is C' = C U {A}.

Joost-Pieter Katoen Foundations of the UML



Step execution

@ Let €} be the current configuration of statechart SC;
@ Let T; C Edges; be a step for SC;

@ The next state (C}, I3, V}) of statechart SCj is given by:

Q C} is the default completion of

U Y U{zeC;|VX =Y e€T;.-(z Jscope(X —Y))}
x —d/A s, yery

Q= Ur_ {e|3x =2~ clgl/A |y € Ty.send j.e € A}

Vi) VX Ay eTv:i=... ¢4
Q V/(v) = ’
val(expr) if 3X =% /A,y ¢ T;.v:=expr € A Rwm

Joost-Pieter Katoen Foundations of the UML 25/19



Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, o, %, T, 6,w) with:
@ (@ is a finite set of states with initial state gy € Q
@ Y is the input alphabet
@ [' is the output alphabet
@ 0:Q x X — @ is the deterministic (input) transition function, and

@ w: @ x X — T is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine w : Q — I', output is purely state-based.

Joost-Pieter Katoen Foundations of the UML 26/19




From statecharts to a Mealy machine (1)

A state ¢ is a tuple of the (local) states of SC; through SC,,.

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function §
Defines the effect of executing a step.

Output function w
Defines all events sent to some SC outside the system (SCy,...,SC,).

Joost-Pieter Katoen Foundations of the UML 27/19



From statecharts to a Mealy machine (2)

A state ¢ is a tuple of the (local) states of SCy through SCj.

Formally:
o Q = [[i_,(Confy x 2Fk x Valy) is the set of states
o where Confy, is the set of configurations of SCj,

o F); is the set of the events of SCy,
o and Val, is the set of variable valuations of SCj,

o qo = [1;_,(Cox, @, Valy ;) is the initial state
o where Cy , is the default completion of the set {root}
o the initial set of events is empty
o Valy j, is the initial variable valuation of SCj,
RWTH

Joost-Pieter Katoen Foundations of the UML 28/19



From statecharts to a Mealy machine (3)

Input and output events
Any input is a set of events, and any output is a set of events.

Formally,
@ Input alphabet: & =2F — { @}
o where E = J;_, Ej is the set of events in all statecharts

@ Output alphabet: T = 2%

o with B/ = {sendj.ee U SCy |j€{1,...,n}}

k=1

all outputs that cannot be consumed

Joost-Pieter Katoen Foundations of the UML 29/19



From statecharts to a Mealy machine (4)

Next-state function &

Defines the effect of executing a step.

Formally,
o (sh,...,s,)€d((s1,...,8n), E) where
o s = (C},I/',V/) is the next state after executing
T; = nextStep(C;, I;, Vi)
e and s, = (C,I' U(ENE;), V)

2771

Joost-Pieter Katoen Foundations of the UML 30/19



From statecharts to a Mealy machine (5)

Output function w
Defines all events sent to some SC outside the system (SCy,...,SC,).

Formally,
0 w((s1,-.-,8,),F) =
{send jel|ljé{l,....,n} A3 3x clsl/send je v o nextStep(Ci,Ii,%)}

Joost-Pieter Katoen Foundations of the UML 31/19



	Lecture 16: The Object Constraint Language

