
Foundations of the UML

Lecture 16: The Object Constraint Language

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

11. Januar 2010

Joost-Pieter Katoen Foundations of the UML 1/24

http://moves.rwth-aachen.de/i2/370

What is the OCL?

Textual annotation to UML diagrams
such as class diagrams, statecharts, activity diagrams, sequence
diagrams

Strongly related to predicate and first-order logic

OCL constraints impose restrictions on the UML diagrams
e.g., such as an invariant stating that x should always exceed 0

OCL 2.0 has been adopted by the UML standardization bodies
originally developed by Jos Warmer and Anneke Kleppe (Klasse
Objecten)

Basic ingredients:
typed variables, expressions, navigations, constraints, and iterations

Joost-Pieter Katoen Foundations of the UML 2/24

Running example

Joost-Pieter Katoen Foundations of the UML 3/24

Class diagrams

Class diagrams depict the static structure of classes and their
associations

A class is a template for the creation of its instances, i.e., its
objects.

It specifies its objects by providing its attributes and methods.

A method is given by its name, formal parameters and return type.

The object running a method is the owner and is indicated by self.

Associations represent the relationship between classes.

Joost-Pieter Katoen Foundations of the UML 4/24

OCL examples

The number of guests in a room cannot exceed the room’s capacity:

context Room
inv: guests → size 6 nrOfBeds

The guests in the rooms of the hotel equal the guests in the hotel

context Hotel
inv: rooms.guests = guests

These are invariants, i.e., they should hold in any system state

The violation of an invariant can always be shown by a finite
system run that ends in state that refutes the invariant condition.

Joost-Pieter Katoen Foundations of the UML 5/24

OCL examples

On checking in a guest g, say, the following conditions should hold:

g should not already be a hotel guest, and
after checking in, the number of guest is increased by one, and
the hotel’s guest should include g

context Hotel:: checkIn (g: Guest)
pre: not guests → includes(g)
post: guests → size = (guests@pre → size) + 1 and

guests → includes(g)

where guests@pre refers to the value of the attribute guests at
evaluting the precondition

On each invocation of the method checkIn, if the precondition
holds, then on termination of checkIn, the postcondition holds

Joost-Pieter Katoen Foundations of the UML 6/24

OCL types

OCL is a typed language. Its types are:
1 Predefined types, equipped with standard operations:

basic types (e.g., Int, String, Boolean, Char, . . .)
collection types (e.g., Collection, Set, Bag, Sequence, . . .)
OclAny

2 Model types: the types in the UML model (e.g., Hotel, Room, etc.)

Type hierarchy:

Assumption: all OCL terms are type-correct.

Joost-Pieter Katoen Foundations of the UML 7/24

OCL constraints

Definition (OCL constraints)

The syntax of OCL constraints is defined by the grammar:

χ ::= context C inv ξ | context C :: M(~p) pre ξ post ξ

where C is a class, M ∈ dom(C.meths) is a method of class C, ~p are
parameters and ξ is an OCL expression (see later).

So:

OCL constraints are built from OCL expressions and have type
Boolean

Invariants have as context a class

Pre- and postconditions have as context a method of a class.

Joost-Pieter Katoen Foundations of the UML 8/24

OCL expressions

Definition (OCL expressions)

The syntax of OCL expressions is defined by the grammar:

ξ ::= self | z | result | ξ@pre | ξ.a | ω(ξ, . . . , ξ) |

ξ.ω(ξ, . . . , ξ) | ξ → ω(ξ, . . . , ξ) | ξ → iterate(x1;x2 := ξ | ξ)

where:

self refers to the context object of class C

z represents either an attribute of the context object, or a formal
parameter of a context method, or a logical variable

result refers to the value returned by the context method (which
is undefined if this method has not yet returned a value)

@pre refers to the value of its operand on invoking this method

expressions result and @pre can be used in postconditions only

Joost-Pieter Katoen Foundations of the UML 9/24

OCL operations

ξ.a is an attribute/parameter navigation

ξ is an object reference to an object with attribute a, or
ξ is a reference to a method occurrence with a formal parameter a

ξ.a denotes the value of this attribute/parameter
examples: x.rooms.guests, and hotel.rooms, etc.

ω(ξ1, . . . , ξn) denotes the application of the n-ary operator ω to the
arguments ξ1 through ξn

some examples are: isEqual(g1, g2) and ifThenElse(b, ξ1, ξ2), etc.

ξ.ω(ξ1, . . . , ξn) represents an operator ω on basic types applied on ξ

and arguments ξ1 through ξn

ξ → ω(ξ1, . . . , ξn) represents an operator ω on collection types
applied on collection ξ and arguments ξ1 through ξn

Joost-Pieter Katoen Foundations of the UML 10/24

OCL iterations

Iteraions

ξ1 → iterate(x1;x2 := ξ2 | ξ3) is an OCL expression that binds logical
variables x1 and x2 in the following way:

1 x2 is initialised to the value of expression ξ2

2 the, the value of expression ξ3 is computed repeatedly and assigned
to x2

3 while x1 successively takes as its value an element of the sequence
ξ1.

Example:

[1, 2, 3] → iterate(x1;x2 := 0 | x1 + x2) yields the sum of the elements
in the sequence [1, 2, 3]

Joost-Pieter Katoen Foundations of the UML 11/24

OCL deficiencies

Iterations over unordered collections

The evaluation of iterate expressions over unordered collections (such
as Set and Bag) is problematic, e.g.,

{1, 2, 3} → iterate(x1;x2 := 0 | −x1 + x2)

is not well-defined, as depending on the order of binding the elements in
the set {1, 2, 3} to the variable x1, the result will be −1, 3 or 5.

Flattening of nested collections

In OCL, nested collections are automatically flattened, e.g.,

Set{Set{1, 2},Set{3, 4, 5}} = Set{1, 2, 3, 4, 5}

but flattening of ordered collections such as in Sequence{Set{1, 3, 7}} is
not well-defined but may yield any of the possible 8 orderings.

Joost-Pieter Katoen Foundations of the UML 12/24

OCL operational model: data types and values

The OCL semantics is defined using an operational model of an
object-based system.

Definition (Data types for logical variables)

VName is a countable set if variable names

MName is a countable set of method names (ranged over by M)

CName is a countable set of class names (ranged over by C)

Joost-Pieter Katoen Foundations of the UML 13/24

OCL operational model: data types and values

Definition (Semantic types)

The language Type of data types is defined by the grammar:

τ ::= void | nat | bool | τ list | C ref | C.M ref

where C ∈ CName and M ∈ MName.

void represents the unit type with trivial value (),

τ list denotes the type of lists of τ with elements [] (the empty list)
and h :: w (list with head h of type τ and tail w of type τ list);
notation 1 :: 2 :: [] as [1, 2] and (1 :: []) :: (2 :: []) :: [] as [[1], [2]]

C ref is the type of objects of class C

C.M ref is the type of method occurrences of method M of class C

Joost-Pieter Katoen Foundations of the UML 14/24

OCL operational model

Definition (Variable, method and class definitions)

We define the following partial functions:

Vdecl: VName → Type maps variable names to types

Mdecl: MName → Vdecl × Type maps method names onto the
formal parameters and the return type

Cdecl: CName → Vdecl × Mdecl maps class names to their
attributes and methods

Notations

Let D ∈ Cdecl. For C ∈ dom(D), let C.attrs denote its attributes
and C.meths its methods

For method M of class C, M.fpars are its formal parameters, and
M.retty is its return type

Thus: C.meths(M) = (M.fpars,M.retty)

Joost-Pieter Katoen Foundations of the UML 15/24

Example

Joost-Pieter Katoen Foundations of the UML 16/24

Objects

Objects

Objects will be numbered instances of their class C ∈ CName.

Let

The domain of object ids of class C is defined by OiD
C = {C} × N.

Let Oid =
⋃

C Oid
C denote the set of object identifiers.

Thus:

Elements of Oid are pairs (C, n), denoting the n-th instance of class C.

Joost-Pieter Katoen Foundations of the UML 17/24

Events

Method invocations

Method occurrences, also called events, will be numbered instances of
method M ∈ MName plus an indication of the object executing M .

Let:

Evt
C,M = Oid

C × {M} × N be the domain of method invocations
(= events) of M of class C

Let Evt =
⋃

C

⋃
M Evt

C,M denote the set of events.

Thus:

Elements of Evt are tuples ((C, n), M, k) denoting the k-th method

invocation of M which currently is executed by object (C, n).

Joost-Pieter Katoen Foundations of the UML 18/24

Example

Joost-Pieter Katoen Foundations of the UML 19/24

Values and operations

Joost-Pieter Katoen Foundations of the UML 20/24

Configurations

Definition (Configuration)

A configuration is a tuple (O,E, σ, γ) with:

O ⊆ Oid, the currently alive objects

E ⊆ Evt, the currently running method invocations

σ : O → Vname → Val, the local state of objects in O

γ : E → (Vname → Val) ×Val⊥, the state of method invocations

State information

σ(o) is the local state of object o such that σ(o) = ℓ with o ∈ Oid
C

implies dom(ℓ) = dom(C.attrs) and ℓ(a) ∈ Val
C.attrs(a) for each

a ∈ dom(ℓ).

σ is extended point-wise to lists of objects, i.e.,

σ([])(a) = [] and σ(h :: w)(a) = σ(h)(a) :: σ(w)(a).

Joost-Pieter Katoen Foundations of the UML 21/24

Configurations

Method invocations

Recall: γ : E → (Vname → Val) × Val⊥

If γ(e) = (ℓ, v) for e ∈ Evt
C,M then:

dom(ℓ) = dom(M.fpars),

ℓ(p) ∈ Val
M.fpars(p) for p ∈ dom(ℓ), the value of M ’s parameters

v ∈ Val
M.retty
⊥

, the returned value

Method termination
A method invocation has terminated in the current configuration if it becomes
inactive in the next state. On termination, the method has a well-defined
value (i.e., different from ⊥).
If the system transits from configuration (O, E, σ, γ) to (O′, E′, σ′, γ′) then:

e ∈ E − E′ implies ∃v ∈ Val. γ(e) = (ℓ, v)

Joost-Pieter Katoen Foundations of the UML 22/24

Configurations: example

Joost-Pieter Katoen Foundations of the UML 23/24

Configurations: example

Joost-Pieter Katoen Foundations of the UML 24/24

Joost-Pieter Katoen Foundations of the UML 24/24

	Lecture 16: The Object Constraint Language

