

Foundations of the UML

Lecture 16: The Object Constraint Language

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

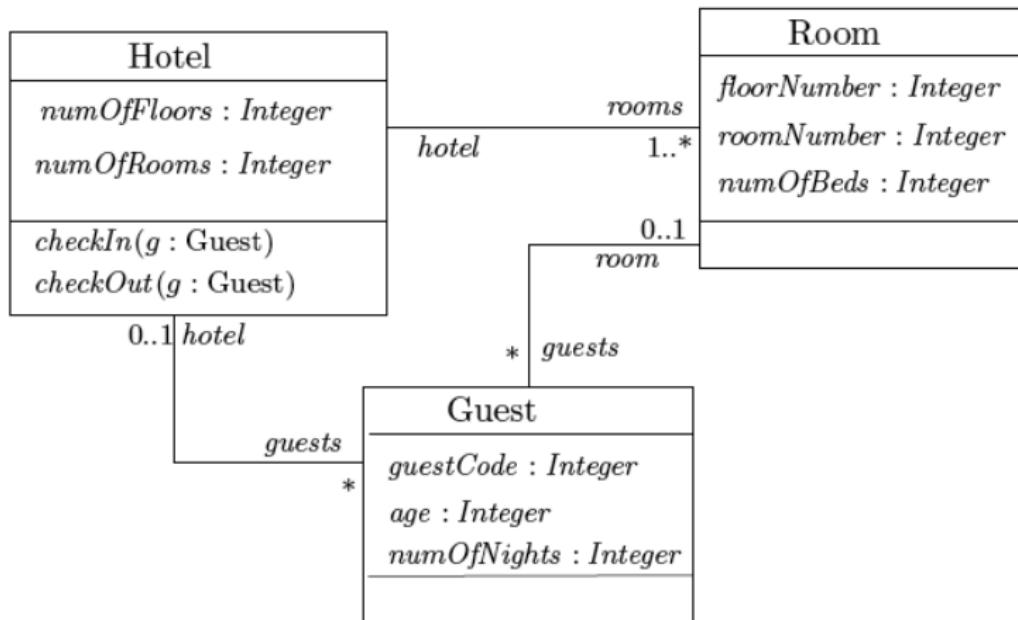
<http://moves.rwth-aachen.de/i2/370>

11. Januar 2010

What is the OCL?

- Textual **annotation** to UML diagrams
 - such as class diagrams, statecharts, activity diagrams, sequence diagrams
- Strongly related to predicate and first-order **logic**
- OCL constraints impose restrictions on the UML diagrams
 - e.g., such as an invariant stating that x should always exceed 0
- OCL 2.0 has been adopted by the UML standardization bodies
 - originally developed by Jos Warmer and Anneke Kleppe (Klasse Objecten)
- Basic ingredients:
 - typed variables, expressions, navigations, constraints, and iterations

Running example



- Class diagrams depict the **static structure** of classes and their associations
- A **class** is a template for the creation of its instances, i.e., its objects.
- It specifies its objects by providing its **attributes** and **methods**.
- A method is given by its name, formal parameters and return type.
- The object running a method is the **owner** and is indicated by self.
- **Associations** represent the relationship between classes.

- The number of guests in a room cannot exceed the room's capacity:

```
context Room
```

```
inv: guests → size ≤ nrOfBeds
```

- The guests in the rooms of the hotel equal the guests in the hotel

```
context Hotel
```

```
inv: rooms.guests = guests
```

- These are **invariants**, i.e., they should hold in any system state
- The violation of an invariant can always be shown by a **finite** system run that ends in state that refutes the invariant condition.

- On checking in a guest g , say, the following conditions should hold:
 - g should not already be a hotel guest, and
 - after checking in, the number of guest is increased by one, and
 - the hotel's guest should include g

```
context Hotel:: checkIn (g: Guest)
```

```
pre: not guests → includes(g)
```

```
post: guests → size = (guests@pre → size) + 1 and  
      guests → includes(g)
```

where $guests@pre$ refers to the value of the attribute $guests$ at evaluating the **pre**condition

- On each invocation of the method `checkIn`, if the **pre**condition holds, then on termination of `checkIn`, the **post**condition holds

OCL types

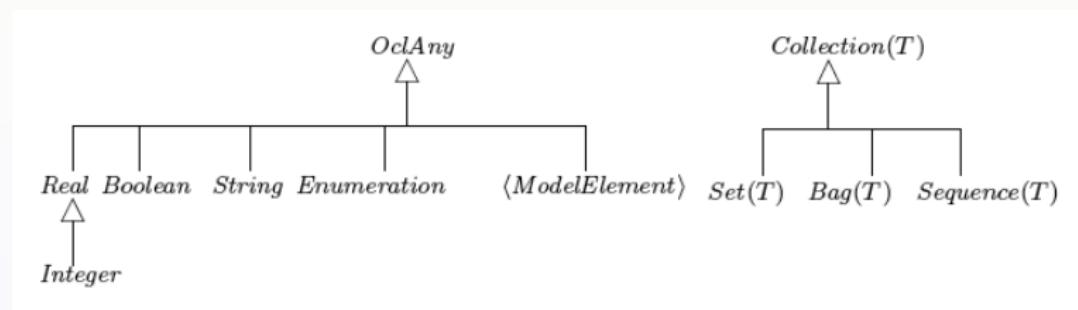
OCL is a **typed** language. Its types are:

① **Predefined** types, equipped with standard operations:

- basic types (e.g., Int, String, Boolean, Char, ...)
- collection types (e.g., Collection, Set, Bag, Sequence, ...)
- OclAny

② **Model** types: the types in the UML model (e.g., Hotel, Room, etc.)

Type hierarchy:



Assumption: all OCL terms are type-correct.

Definition (OCL constraints)

The syntax of **OCL constraints** is defined by the grammar:

$$\chi ::= \text{context } C \text{ inv } \xi \mid \text{context } C :: M(\vec{p}) \text{ pre } \xi \text{ post } \xi$$

where C is a **class**, $M \in \text{dom}(C.\text{meths})$ is a **method** of class C , \vec{p} are **parameters** and ξ is an **OCL expression** (see later).

So:

- OCL constraints are built from OCL expressions and have type Boolean
- Invariants have as context a class
- Pre- and postconditions have as context a method of a class.

Definition (OCL expressions)

The syntax of **OCL expressions** is defined by the grammar:

$$\begin{aligned}\xi ::= & \text{ self} \mid z \mid \text{result} \mid \xi @ \text{pre} \mid \xi.a \mid \omega(\xi, \dots, \xi) \mid \\ & \xi.\omega(\xi, \dots, \xi) \mid \xi \rightarrow \omega(\xi, \dots, \xi) \mid \xi \rightarrow \text{iterate}(x_1; x_2 := \xi \mid \xi)\end{aligned}$$

where:

- **self** refers to the context object of class C
- z represents either an attribute of the context object, or a formal parameter of a context method, or a logical variable
- **result** refers to the value returned by the context method (which is undefined if this method has not yet returned a value)
- $@\text{pre}$ refers to the value of its operand on invoking this method
- expressions **result** and $@\text{pre}$ can be used in **postconditions** only

- $\xi.a$ is an attribute/parameter **navigation**
 - ξ is an object reference to an object with attribute a , or
 - ξ is a reference to a method occurrence with a formal parameter a
 - $\xi.a$ denotes the value of this attribute/parameter
 - examples: $x.rooms.guests$, and $hotel.rooms$, etc.
- $\omega(\xi_1, \dots, \xi_n)$ denotes the application of the **n -ary operator** ω to the arguments ξ_1 through ξ_n
some examples are: $\text{isEqual}(g_1, g_2)$ and $\text{ifThenElse}(b, \xi_1, \xi_2)$, etc.
- $\xi.\omega(\xi_1, \dots, \xi_n)$ represents an operator ω on **basic types** applied on ξ and arguments ξ_1 through ξ_n
- $\xi \rightarrow \omega(\xi_1, \dots, \xi_n)$ represents an operator ω on **collection types** applied on collection ξ and arguments ξ_1 through ξ_n

Iterations

$\xi_1 \rightarrow \text{iterate}(x_1; x_2 := \xi_2 \mid \xi_3)$ is an OCL expression that binds logical variables x_1 and x_2 in the following way:

- ➊ x_2 is initialised to the value of expression ξ_2
- ➋ the, the value of expression ξ_3 is computed repeatedly and assigned to x_2
- ➌ while x_1 successively takes as its value an element of the sequence ξ_1 .

Example:

$[1, 2, 3] \rightarrow \text{iterate}(x_1; x_2 := 0 \mid x_1 + x_2)$ yields the sum of the elements in the sequence $[1, 2, 3]$

OCL deficiencies

Iterations over unordered collections

The evaluation of `iterate` expressions over **unordered collections** (such as Set and Bag) is problematic, e.g.,

$$\{1, 2, 3\} \rightarrow \text{iterate}(x_1; x_2 := 0 \mid -x_1 + x_2)$$

is not well-defined, as depending on the order of binding the elements in the set $\{1, 2, 3\}$ to the variable x_1 , the result will be -1 , 3 or 5 .

Flattening of nested collections

In OCL, **nested collections** are automatically flattened, e.g.,

$$\text{Set}\{\text{Set}\{1, 2\}, \text{Set}\{3, 4, 5\}\} = \text{Set}\{1, 2, 3, 4, 5\}$$

but flattening of ordered collections such as in $\text{Sequence}\{\text{Set}\{1, 3, 7\}\}$ is not well-defined but may yield any of the possible 8 orderings.

OCL operational model: data types and values

The OCL semantics is defined using an operational model of an object-based system.

Definition (Data types for logical variables)

- VNAME is a countable set of variable names
- MNAME is a countable set of method names (ranged over by M)
- CNAME is a countable set of class names (ranged over by C)

Definition (Semantic types)

The language TYPE of **data types** is defined by the grammar:

$$\tau ::= \text{void} \mid \text{nat} \mid \text{bool} \mid \tau \text{ list} \mid C \text{ ref} \mid C.M \text{ ref}$$

where $C \in \text{CNAME}$ and $M \in \text{MNAME}$.

- void represents the unit type with trivial value $()$,
- τ list denotes the type of lists of τ with elements $[]$ (the empty list) and $h :: w$ (list with head h of type τ and tail w of type τ list); notation $1 :: 2 :: []$ as $[1, 2]$ and $(1 :: []) :: (2 :: []) :: []$ as $[[1], [2]]$
- C ref is the type of objects of class C
- $C.M$ ref is the type of method occurrences of method M of class C

Definition (Variable, method and class definitions)

We define the following partial functions:

- $\text{VDECL}: \text{VNAME} \rightarrow \text{TYPE}$ maps variable names to types
- $\text{MDECL}: \text{MNAME} \rightarrow \text{VDECL} \times \text{TYPE}$ maps method names onto the formal parameters and the return type
- $\text{CDECL}: \text{CNAME} \rightarrow \text{VDECL} \times \text{MDECL}$ maps class names to their attributes and methods

Notations

- Let $D \in \text{CDECL}$. For $C \in \text{dom}(D)$, let $C.\text{attrs}$ denote its attributes and $C.\text{meths}$ its methods
- For method M of class C , $M.\text{fpars}$ are its formal parameters, and $M.\text{retty}$ is its return type
- Thus: $C.\text{meths}(M) = (M.\text{fpars}, M.\text{retty})$

Example

$$\begin{aligned} \text{Hotel.attrs}(v) &= \begin{cases} \text{nat} & \text{if } v \in \{\text{numOfFloors}, \\ & \quad \text{numOfRooms}\} \\ \text{Room list} & \text{if } v = \text{rooms} \\ \text{Guest list} & \text{if } v = \text{guests} \\ \perp & \text{otherwise} \end{cases} \\ \text{Room.attrs}(v) &= \begin{cases} \text{nat} & \text{if } v \in \{\text{floorNumber}, \\ & \quad \text{roomNumber}, \text{numOfBeds}\} \\ \text{Hotel} & \text{if } v = \text{hotel} \\ \text{Guest list} & \text{if } v = \text{guests} \\ \perp & \text{otherwise} \end{cases} \\ \text{Guest.attrs}(v) &= \begin{cases} \text{nat} & \text{if } v \in \{\text{guestCode}, \text{age}, \\ & \quad \text{numOfNights}\} \\ \text{Hotel} & \text{if } v = \text{hotel} \\ \text{Room} & \text{if } v = \text{room} \\ \perp & \text{otherwise} \end{cases} \\ \text{checkIn.fpars}(v) &= \begin{cases} \text{Guest} & \text{if } v = g \\ \perp & \text{otherwise} \end{cases} \\ \text{checkOut.fpars}(v) &= \text{checkIn.fpars}(v) \\ \\ \text{Hotel.meths}(M) &= \begin{cases} (\text{checkIn.fpars}, \text{void}) & \text{if } M = \text{checkIn} \\ (\text{checkOut.fpars}, \text{void}) & \text{if } M = \text{checkOut} \\ \perp & \text{otherwise} \end{cases} \\ \text{Room.meths}(M) &= \perp \\ \text{Guest.meths}(M) &= \perp \end{aligned}$$

Objects

Objects will be numbered instances of their class $C \in \text{CNAME}$.

Let

- The domain of object ids of class C is defined by $\text{OID}^C = \{C\} \times \mathbb{N}$.
- Let $\text{OID} = \bigcup_C \text{OID}^C$ denote the set of object identifiers.

Thus:

Elements of OID are pairs (C, n) , denoting the n -th instance of class C .

Method invocations

Method occurrences, also called events, will be numbered instances of method $M \in \text{MNAME}$ plus an indication of the object executing M .

Let:

- $\text{EVT}^{C,M} = \text{OID}^C \times \{M\} \times \mathbb{N}$ be the domain of method invocations (= events) of M of class C
- Let $\text{EVT} = \bigcup_C \bigcup_M \text{EVT}^{C,M}$ denote the set of events.

Thus:

Elements of EVT are tuples $((C, n), M, k)$ denoting the k -th method invocation of M which currently is executed by object (C, n) .

Example

Example 3.2.1. Consider the Hotel class diagram of Figure 2.3. The following are instances of the class Hotel:

(Hotel, 1) (Hotel, 2) (Hotel, 31) (Hotel, 127) ...

The following are events related to the method *checkIn*:

((Hotel, 1), *checkIn*, 1) ((Hotel, 1), *checkIn*, 2)
((Hotel, 31), *checkIn*, 1) ((Hotel, 127), *checkIn*, 3) ...

Note that the first two events represent different executions of method *checkIn* performed by the same object. \square

Values and operations

The combined universe of values will be denoted by VAL ; the set of values of a given type $\tau \in \text{TYPE}$ is denoted by VAL^τ . We define:

$$\begin{aligned}\text{VAL}^{\text{void}} &= \{\()\} \\ \text{VAL}^{\text{nat}} &= \mathbb{N} \\ \text{VAL}^{\text{bool}} &= \{\text{ff}, \text{tt}\} \\ \text{VAL}^{\tau \text{ list}} &= \{[]\} \cup \{h :: w \mid h \in \text{VAL}^\tau, w \in \text{VAL}^{\tau \text{ list}}\} \\ \text{VAL}^C \text{ ref} &= \{\text{null}\} \cup \text{OID}^C \\ \text{VAL}^{C.M \text{ ref}} &= \text{EVT}^{C,M}.\end{aligned}$$

- $+$: $\text{VAL}^{\text{nat}} \times \text{VAL}^{\text{nat}} \rightarrow \text{VAL}^{\text{nat}}$ is the standard sum on natural numbers.
- $sort : \text{VAL}^{\tau \text{ list}} \rightarrow \text{VAL}^{\tau \text{ list}}$ orders a given list of values of type τ .
- $flat : \text{VAL}^{\tau \text{ list list}} \rightarrow \text{VAL}^{\tau \text{ list}}$ flattens nested lists.

Finally, there is a special element $\perp \notin \text{VAL}$ that is used to model the “undefined” value: we write $\text{VAL}_\perp = \text{VAL} \cup \{\perp\}$. All operations are extended to \perp by requiring them to be *strict* (meaning that if any operand equals \perp , the entire expression equals \perp). For instance, for lists we have $\perp :: w = \perp$ and $h :: \perp = \perp$.

Configurations

Definition (Configuration)

A **configuration** is a tuple (O, E, σ, γ) with:

- $O \subseteq \text{OID}$, the currently alive objects
- $E \subseteq \text{EVT}$, the currently running method invocations
- $\sigma : O \rightarrow \text{VNAME} \rightarrow \text{VAL}$, the local state of objects in O
- $\gamma : E \rightarrow (\text{VNAME} \rightarrow \text{VAL}) \times \text{VAL}_\perp$, the state of method invocations

State information

- $\sigma(o)$ is the **local state** of object o such that $\sigma(o) = \ell$ with $o \in \text{OID}^C$ implies $\text{dom}(\ell) = \text{dom}(C.\text{attrs})$ and $\ell(a) \in \text{VAL}^{C.\text{attrs}(a)}$ for each $a \in \text{dom}(\ell)$.
- σ is extended point-wise to lists of objects, i.e.,

$$\sigma(\mathbb{[]})(a) = \mathbb{[]} \quad \text{and} \quad \sigma(h :: w)(a) = \sigma(h)(a) :: \sigma(w)(a).$$

Configurations

Method invocations

Recall: $\gamma : E \rightarrow (\text{VNAME} \rightarrow \text{VAL}) \times \text{VAL}_\perp$

If $\gamma(e) = (\ell, v)$ for $e \in \text{EVT}^{C,M}$ then:

- $\text{dom}(\ell) = \text{dom}(M.\text{fpars})$,
- $\ell(p) \in \text{VAL}^{M.\text{fpars}(p)}$ for $p \in \text{dom}(\ell)$, the value of M 's parameters
- $v \in \text{VAL}_\perp^{M.\text{retty}}$, the returned value

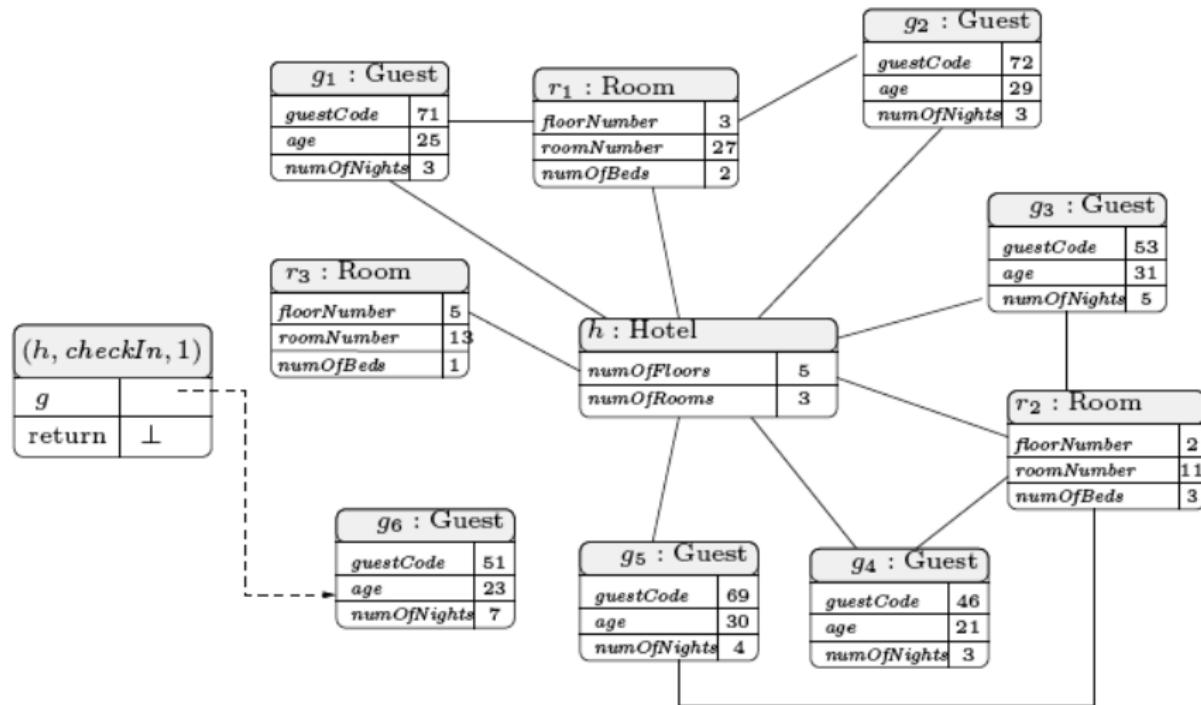
Method termination

A method invocation has **terminated** in the current configuration if it becomes inactive in the next state. On termination, the method has a well-defined value (i.e., different from \perp).

If the system transits from configuration (O, E, σ, γ) to $(O', E', \sigma', \gamma')$ then:

$$e \in E - E' \quad \text{implies} \quad \exists v \in \text{Val}. \gamma(e) = (\ell, v)$$

Configurations: example



Configurations: example

Example 3.3.2. Figure 3.1 depicts a possible configuration of the Hotel model. In particular we have:

$$\begin{aligned}O &= \{h, r_1, r_2, r_3, g_1, g_2, g_3, g_4, g_5, g_6\} \\E &= \{(h, \text{checkIn}, 1)\}\end{aligned}$$

where we have adopted the following abbreviation: $h = (\text{Hotel}, 1)$, $g_i = (\text{Guest}, i)$ and $r_i = (\text{Room}, i)$ for $i \in \mathbb{N}$. The objects show the values of the components ς and γ . For example, for object g_6 we have:

$$\begin{aligned}\varsigma(g_6)(\text{guestCode}) &= 51 \\ \varsigma(g_6)(\text{age}) &= 23 \\ \varsigma(g_6)(\text{numOfNights}) &= 7\end{aligned}$$

For the other objects, ς can be obtained in a similar way. The γ component for the only active method is $\gamma(h, \text{checkIn}, 1) = (g \mapsto g_6, \perp)$. \square

