Foundations of the UML

Lecture 16: The Object Constraint Language

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

11. Januar 2010

Joost-Pieter Katoen Foundations of the UML


http://moves.rwth-aachen.de/i2/370

What is the OCL?

@ Textual annotation to UML diagrams
@ such as class diagrams, statecharts, activity diagrams, sequence
diagrams

@ Strongly related to predicate and first-order logic

@ OCL constraints impose restrictions on the UML diagrams
@ e.g., such as an invariant stating that x should always exceed 0

@ OCL 2.0 has been adopted by the UML standardization bodies

o originally developed by Jos Warmer and Anneke Kleppe (Klasse
Objecten)

@ Basic ingredients:
o typed variables, expressions, navigations, constraints, and iteFATIonS

Joost-Pieter Katoen Foundations of the UML 2/24



Running example

Room

Hotel

numOfFloors : Integer TOOMS floorNumber : Integer
hotel 1.+ roomNumber : Integer
numOfRooms : Integer numOfBeds : Integer
checkIn(g : Guest) 0..1
room

checkOut (g : Guest)

0..1f hotel «| guests

Guest
guests
guestCode : Integer

Joost-Pieter Katoen

age : Integer
numOfNights : Integer

Foundations of the U




Class diagrams

@ Class diagrams depict the static structure of classes and their
associations

@ A class is a template for the creation of its instances, i.e., its
objects.

@ It specifies its objects by providing its attributes and methods.
@ A method is given by its name, formal parameters and return type.
@ The object running a method is the owner and is indicated by self.

@ Associations represent the relationship between classes. RWTH

Joost-Pieter Katoen Foundations of the UML 4/24



OCL examples

@ The number of guests in a room cannot exceed the room’s capacity:

context Room
inv: guests — size < nrOfBeds

@ The guests in the rooms of the hotel equal the guests in the hotel

context Hotel
inv: rooms.guests = guests

@ These are invariants, i.e., they should hold in any system state

@ The violation of an invariant can always be shown by a finite
system run that ends in state that refutes the invariant condition.

Joost-Pieter Katoen Foundations of the UML 5/24



OCL examples

@ On checking in a guest g, say, the following conditions should hold:

@ g should not already be a hotel guest, and
o after checking in, the number of guest is increased by one, and
@ the hotel’s guest should include ¢

context Hotel:: checkIn (g: Guest)

pre: not guests — includes(g)

post: guests — size = (guests@pre — size) + 1 and
guests — includes(g)

where guests@pre refers to the value of the attribute guests at
evaluting the precondition

@ On each invocation of the method checkln, if the precondition
holds, then on termination of checkln, the postcondition holds
RWTH

Joost-Pieter Katoen Foundations of the UML 6/24



OCL is a typed language. Its types are:
© Predefined types, equipped with standard operations:
@ basic types (e.g., Int, String, Boolean, Char, ...)
o collection types (e.g., Collection, Set, Bag, Sequence, ...)
o OclAny

© Model types: the types in the UML model (e.g., Hotel, Room, etc.)

Type hierarchy:

OclAny Collection(T)

Real Boolean String Enumeration {ModelElement) Set(T) Bag(T) Sequence(T)

Integer

Assumption: all OCL terms are type-correct. J

Joost-Pieter Katoen Foundations of the UML 7/24




OCL constraints

Definition (OCL constraints)

The syntax of OCL constraints is defined by the grammar:
X == context C inv £ | context C :: M(p) pre & post &

where C' is a class, M € dom(C.meths) is a method of class C, p are
parameters and £ is an OCL expression (see later).

@ OCL constraints are built from OCL expressions and have type
Boolean

@ Invariants have as context a class

@ Pre- and postconditions have as context a method of a class.

Joost-Pieter Katoen Foundations of the UML 8/24




OCL expressions

Definition (OCL expressions)

The syntax of OCL expressions is defined by the grammar:
& = self | z |result | {Qpre | a|w(E,...,§) |
Ew(§ .. ) [Emw(§,....8) | § — iterate(ry;z2 =& [ ¢)

where:
@ self refers to the context object of class C

@ z represents either an attribute of the context object, or a formal
parameter of a context method, or a logical variable

@ result refers to the value returned by the context method (which
is undefined if this method has not yet returned a value)

@ Qpre refers to the value of its operand on invoking this method

@ expressions result and @Qpre can be used in postconditions only

Joost-Pieter Katoen Foundations of the UML 9/24




OCL operations

@ £.a is an attribute/parameter navigation

o ¢ is an object reference to an object with attribute a, or

o ¢ is a reference to a method occurrence with a formal parameter a
@ £.a denotes the value of this attribute/parameter

@ examples: x.rooms.guests, and hotel.rooms, etc.

® w(&y,...,&,) denotes the application of the n-ary operator w to the
arguments &1 through &,

some examples are: isEqual(gi, g2) and ifThenElse(d, &1, &2), ete.

o fw(&,..., &) represents an operator w on basic types applied on &
and arguments &; through &,

]

& — w(&,...,&) represents an operator w on collection types
applied on collection £ and arguments &; through &, RWTH

Joost-Pieter Katoen Foundations of the UML 10/24



OCL iterations

[teraions

&1 — iterate(xy;me := & | &3) is an OCL expression that binds logical
variables z1 and x2 in the following way:

© - is initialised to the value of expression &

© the, the value of expression &3 is computed repeatedly and assigned
to o

© while z; successively takes as its value an element of the sequence

&1.

[1,2,3] — iterate(xi;x2 := 0 | 1 + x2) yields the sum of the elements
in the sequence [1,2, 3]

VNN

Joost-Pieter Katoen Foundations of the UML 11/24



OCL deficiencies

[terations over unordered collections

The evaluation of iterate expressions over unordered collections (such
as Set and Bag) is problematic, e.g.,

{1,2,3} — iterate(xi;z2 :=0 | —z1 + x2)

is not well-defined, as depending on the order of binding the elements in
the set {1,2,3} to the variable x;, the result will be —1, 3 or 5.

Flattening of nested collections

In OCL, nested collections are automatically flattened, e.g.,

Set{Set{1,2}, Set{3,4,5}} = Set{1,2,3,4,5}

but flattening of ordered collections such as in Sequence{Set{1,3,7}} is
not well-defined but may yield any of the possible 8 orderings.

Joost-Pieter Katoen Foundations of the UML 12/24




OCL operational model: data types and values

The OCL semantics is defined using an operational model of an
object-based system.

Definition (Data types for logical variables)

o VNAME is a countable set if variable names
@ MNAME is a countable set of method names (ranged over by M)

o CNAME is a countable set of class names (ranged over by C')

Joost-Pieter Katoen Foundations of the UML 13/24



OCL operational model: data types and values

Definition (Semantic types)

The language TYPE of data types is defined by the grammar:
7 == void | nat | bool | 7 list | C ref | C.M ref

where C' € CNAME and M € MNAME.
@ void represents the unit type with trivial value (),

@ 7 list denotes the type of lists of 7 with elements [] (the empty list)
and h :: w (list with head h of type 7 and tail w of type 7 list);
notation 1::2:: ] as [1,2] and (1 == []) == (22 []) =2 [] as [[1],[2]]

@ ( ref is the type of objects of class C'

@ C.M ref is the type of method occurrences of method M of class C'

Joost-Pieter Katoen Foundations of the UML 14/24



OCL operational model

Definition (Variable, method and class definitions)

We define the following partial functions:
@ VDECL: VNAME — TYPE maps variable names to types

@ MDECL: MNAME — VDECL X TYPE maps method names onto the
formal parameters and the return type

o CpEcL: CNAME — VDECL X MDECL maps class names to their
attributes and methods

o Let D € CpecCL. For C € dom(D), let C.attrs denote its attributes
and C.meths its methods

@ For method M of class C, M.fpars are its formal parameters, and
M .retty is its return type

@ Thus: C.meths(M) = (M fpars, M.retty)

Joost-Pieter Katoen Foundations of the UML 15/24




Example

Hotel.attrs(v)

Room.atirs(v)

Guest.attrs(v)

checkIn.fpars(v)

checkOut.fpars(v)

Hotel.meths (M)

Room.meths (M)
Guest.meths (M)

|
|
|

ch.

|

nat if v € {numOfFloors,
numOfRooms}

Room list  if v = rooms

Guest list  if v = guests

€L otherwise

nat if v € { floorNumber,
roomNumber, numOfBeds}

Hotel if v = hotel

Guest list  if v = guests

€ otherwise

nat if v € {questCode. age,
numOfNights }

Hotel if v = hotel

Room if v = room

€L otherwise

Guest ifv=g
€L otherwise

eckIn.fpars(v)

(checkIn.fpars,void)  if M = checkin
(eheckOut . fpars,void) if M = checkOut

€L otherwise

ter Katoen Foundations of the U




Objects will be numbered instances of their class C € CNAME.

Let
@ The domain of object ids of class C' is defined by O1DY = {C} x N.
o Let O = |J, O1DY denote the set of object identifiers.

Elements of OID are pairs (C,n), denoting the n-th instance of class C.

Joost-Pieter Katoen Foundations of the UML 17/24



Events

Method invocations

Method occurrences, also called events, will be numbered instances of
method M € MNAME plus an indication of the object executing M.
Let:

o Evi®M = Om® x {M} x N be the domain of method invocations
(= events) of M of class C

o Let Evr = Js Uy EVr@M denote the set of events.

Elements of EvT are tuples ((C,n), M, k) denoting the k-th method
invocation of M which currently is executed by object (C,n).

Joost-Pieter Katoen Foundations of the UML 18/24



Example 3.2.1. Consider the Hotel class diagram of Figure 2.3. The following
are instances of the class Hotel:

(Hotel,1) (Hotel,2) (Hotel,31) (Hotel, 127)
The following are events related to the method checkIn:

((Hotel, 1), checkIn,1)  ((Hotel, 1), checkIn,2)
((Hotel, 31), checkIn,1) ((Hotel, 127), checkn,3)

Note that the first two events represent different executions of method checkIn
performed by the same object. a

Joost-Pieter Katoen Foundations of the UML 19/24



Values and operations

The combined universe of values will be denoted by VAL; the set of values
of a given type 7 € TYPE is denoted by VAL". We define:

vaed — {0

VaL™ = N

Varh® = {ff tt}

Var ' = ([} U{hzw|he VAL ,w € VaL” s}
VaL®™ =  [null} UOID"
VALC'._MreF — EVTC"M.

e 1 VAL™ « VAL™' . VAL™" is the standard sum on natural numbers.

7 list 7 list

e sort : VAL — VAL orders a given list of values of type 7.

o flat : VALT'SISE a1 I fattens nested lists.

Finally, there is a special element | ¢ VAL that is used to model the “unde-
fined” value: we write VAL | = VALU{L}. All operations are extended to L by
requiring them to be strict (meaning that if any operand equals |, the entire |
expression equals | ). For instance, tor lists we have L tw =1 and h:: L = 1.

Joost-Pieter Katoen Foundations of



Configurations

Definition (Configuration)

A configuration is a tuple (O, E, o,) with:

@ O C OID, the currently alive objects
@ F C EvT, the currently running method invocations

@ 0 : O — VNAME — VAL, the local state of objects in O

@ v: EF — (VNAME — VAL) X VAL, the state of method invocations

State information

@ o(0) is the local state of object o such that o(0) = ¢ with o € O1D%
implies dom(¢) = dom(C.attrs) and £(a) € VALS-5(@ for each
a € dom(¥).

@ o is extended point-wise to lists of objects, i.e.,

o([)(a) =[] and o(h:w)(a) =o(h)(a) :: o(w)(a)

Joost-Pieter Katoen Foundations of the UML 21/24




Configurations

Method invocations

Recall: v: E — (VNAME — VAL) X VAL
If v(e) = (£,v) for e € EvT®M then:
o dom(¢) = dom(M.fpars),

o ((p) € VALMAPAIS®) for p € dom(l), the value of M’s parameters

@ vE VALAL/I'retty , the returned value

Method termination

A method invocation has terminated in the current configuration if it becomes
inactive in the next state. On termination, the method has a well-defined
value (i.e., different from ).

If the system transits from configuration (O, E,,v) to (O', E’,d’,~") then:

e € E—FE' implies Jv € Val.y(e) = (¢,v)

Joost-Pieter Katoen Foundations of the UML 22/24




Configurations: example

gz Guest

g1 Guest) —_— guestCode |72

. 1 : Room age 29

guestCode 71 foorNumber 3 numOfNights) 3 |
25 roemN umber 27|

numOfBeds

g3 Cuest
guegtCods 53
T3 ! om 292 31
floorNumber __-——""—_‘—__ o 2
roomN umbar 1 i Hote, "—__
(k, checkln,1)
numOfBeds 1 numOfFloors 5 —
g - numOfRooms - rz : Room
J_ 1
return ! floorNumber 2
— i roomNumber 11
: nuwmOfBeds 3
\ " ae - Guest
! gs : Luest .
\ =
\ guestCode | 51 [ gs : Guest g4 : Guest
1
_____ «_age 23 tCode | 69
_ gues guestCode 46
L anj‘ngMs_’? age an age 21

\M‘%L numOfNights 3

Pieter Katoen




Configurations: example

Example 3.3.2. Figure 3.1 depicts a possible configuration of the Hotel model.
In particular we have:

0 = {h"-‘r]-'-"r?:r3:gl:g?eg3:g4:g5:gﬁ}
E = {(h,checkin,1)}
where we have adopted the following abbreviation: i =(Hotel, 1), g; = (Guest, i)

and r; = (Room, 7) for i € N. The objects show the values of the components
¢ and 7. For example, for object gg we have:

<(ge)(guestCode) = 51

<(96)(age) = 23

s(ge)(numOfNights) = 7
For the other objects, ¢ can be obtained in a similar way. The v component
for the only active method is y(h, checkin,1) = (g — gg, L). I:l
RWTH

Joost-Pieter Katoen Foundations of the UML 24/24



ter Katoen Foundations of the U



	Lecture 16: The Object Constraint Language

