
Foundations of the UML

Lecture 17: Semantics of OCL Expressions

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

24. Januar 2010

Joost-Pieter Katoen Foundations of the UML 1/32

http://moves.rwth-aachen.de/i2/370

OCL expressions

Definition (OCL expressions)

The syntax of OCL expressions is defined by the grammar:

ξ ::= self | z | result | ξ@pre | ξ.a | ω(ξ, . . . , ξ) |

ξ.ω(ξ, . . . , ξ) | ξ → ω(ξ, . . . , ξ) | ξ → iterate(x1;x2 := ξ | ξ)

where:

self refers to the context object of class C

z represents either an attribute of the context object, or a formal
parameter of a context method, or a logical variable

result refers to the value returned by the context method (which
is undefined if this method has not yet returned a value)

@pre refers to the value of its operand on invoking this method

expressions result and @pre can be used in postconditions only

Joost-Pieter Katoen Foundations of the UML 2/32

OCL operations

ξ.a is an attribute/parameter navigation

ξ is an object reference to an object with attribute a, or
ξ is a reference to a method occurrence with a formal parameter a

ξ.a denotes the value of this attribute/parameter
e.g.: (h.rooms).guests, h.rooms, m.g for method invocationm

ω(ξ1, . . . , ξn) denotes the application of the n-ary operator ω to the
arguments ξ1 through ξn

some examples are: isEqual(g1, g2) and ifThenElse(b, ξ1, ξ2), etc.

ξ.ω(ξ1, . . . , ξn) represents an operator ω on basic types applied on ξ

and arguments ξ1 through ξn

ξ → ω(ξ1, . . . , ξn) represents an operator ω on collection types
applied on collection ξ and arguments ξ1 through ξn

Joost-Pieter Katoen Foundations of the UML 3/32

Preliminaries

The OCL semantics is defined using an operational model (intuitively: a
transition system) of an object-based system.

We first need to fix a set of variable, method and class names

Definition (Data types for logical variables)

VName is a countable set of variable names

MName is a countable set of method names (ranged over by M)

CName is a countable set of class names (ranged over by C)

Joost-Pieter Katoen Foundations of the UML 4/32

Semantic data types

Definition (Semantic types)

The language Type of data types is defined by the grammar:

τ ::= void | nat | bool | τ list | C ref | C.M ref

where C ∈ CName and M ∈ MName.

void represents the unit type with trivial value (),

τ list denotes the type of lists of τ with elements [] (the empty list)
and h :: w (list with head h of type τ and tail w of type τ list);
notation 1 :: 2 :: [] as [1, 2] and (1 :: []) :: (2 :: []) :: [] as [[1], [2]]

C ref is the type of objects of class C

C.M ref is the type of method occurrences of method M of class C

Joost-Pieter Katoen Foundations of the UML 5/32

Formal definitions

Definition (Variable, method and class definitions)

We define the following sets of partial functions:

Vdecl = { VName → Type } set of variable declarations

Each variable declaration maps variable names to types

Mdecl = { MName → Vdecl × Type } set of methods

Each method declaration maps a method name onto its formal
parameters and return type

Cdecl = { CName → Vdecl × Mdecl } set of class declarations

Each class declaration maps a class name to a set of attributes and
methods

Joost-Pieter Katoen Foundations of the UML 6/32

Notations

Notations

Let D ∈ Cdecl. For C ∈ dom(D), let C.attrs denote its attributes
and C.meths its methods

For method M of class C, M.fpars are its formal parameters, and
M.retty is its return type

Thus: C.meths(M) = (M.fpars,M.retty)

Joost-Pieter Katoen Foundations of the UML 7/32

OCL example

Joost-Pieter Katoen Foundations of the UML 8/32

Example

Joost-Pieter Katoen Foundations of the UML 9/32

Objects

Objects

Objects will be numbered instances of their class C ∈ CName.

Let

The domain of object ids of class C is defined by Oid
C = {C} × N.

Let Oid =
⋃

C Oid
C denote the set of object ids.

Thus:

Elements of Oid are pairs (C, n), denoting the n-th instance of class C.

Joost-Pieter Katoen Foundations of the UML 10/32

Events

Method invocations

Method occurrences, also called events, will be numbered instances of
method M ∈ MName plus an indication of the object executing M .

Let:

Evt
C,M = Oid

C × {M} × N be the domain of method invocations
(= events) of M of class C

Let Evt =
⋃

C

⋃

M Evt
C,M denote the set of events.

Thus:

Elements of Evt are tuples ((C, n), M, k) denoting the k-th method

invocation of M which currently is executed by object (C, n).

Joost-Pieter Katoen Foundations of the UML 11/32

Example

Joost-Pieter Katoen Foundations of the UML 12/32

Values and operations

Joost-Pieter Katoen Foundations of the UML 13/32

Configurations

Definition (Configuration)

A configuration is a tuple (O,E, σ, γ) with:

O ⊆ Oid, the currently alive objects

E ⊆ Evt, the currently running method invocations

σ : O → Vname → Val, the local state of objects in O

γ : E → (Vname → Val) ×Val⊥, the state of method invocations

State information

σ(o) is the local state of object o such that σ(o) = ℓ with o ∈ Oid
C

implies dom(ℓ) = dom(C.attrs) and ℓ(a) ∈ Val
C.attrs(a) for each

a ∈ dom(ℓ).

σ is extended point-wise to lists of objects, i.e.,

σ([])(a) = [] and σ(h :: w)(a) = σ(h)(a) :: σ(w)(a).

Joost-Pieter Katoen Foundations of the UML 14/32

Configurations

Method invocations

Recall: γ : E → (Vname → Val) × Val⊥

If γ(e) = (ℓ, v) for e ∈ Evt
C,M then:

dom(ℓ) = dom(M.fpars),

ℓ(p) ∈ Val
M.fpars(p) for p ∈ dom(ℓ), the value of M ’s parameters

v ∈ Val
M.retty
⊥

, the returned value

Method termination
A method invocation has terminated in the current configuration if it becomes
inactive in the next state. On termination, the method has a well-defined
value (i.e., different from ⊥).
If the system transits from configuration (O, E, σ, γ) to (O′, E′, σ′, γ′) then:

e ∈ E − E′ implies ∃v ∈ Val. γ(e) = (ℓ, v)

Joost-Pieter Katoen Foundations of the UML 15/32

Configurations: example

Joost-Pieter Katoen Foundations of the UML 16/32

Configurations: example

Joost-Pieter Katoen Foundations of the UML 17/32

Static expressions

We will translate OCL expressions into static expressions and provide
these with a formal semantics

Definition (Static expressions)

The syntax of static expressions is defined by the grammar:

ξ ::= x | ξ.a | ξ.owner | ξ.return | ξ new | ξ alive |

ω(ξ, . . . , ξ) | with x1 ∈ ξ from x2 := ξ do x2 := ξ

where x, x1 and x2 are logical variables.

Joost-Pieter Katoen Foundations of the UML 18/32

Static expressions

ξ.a stands for parameter/attribute navigation

ξ.owner denotes the object executing method instance ξ

ξ.return denotes the return value of method instance ξ

ξ new is a predicate denoting that the object or method referred to
by ξ is “fresh” in the current state

1 an object is new just after its creation
2 a method instance is new when it is just invoked

Joost-Pieter Katoen Foundations of the UML 19/32

Static expressions

ξ alive is a predicate denoting that the object or method referred
to by ξ is currently alive

1 an object becomes alive when it is created and remains alive until it
is deallocated

2 a method instance becomes alive on invoking that method and
remains alive until its return value has been returned

with x1 ∈ ξ from x2 := ξ do x2 := ξ corresponds to the OCL
expression iterate

Joost-Pieter Katoen Foundations of the UML 20/32

Semantics of static expressions

Definition (Semantics of static expressions)

The semantics of static expression ξ is a value in Val⊥ assigned by
function [[ξ]]q,N,θ where

q = (Oq, Eq, σq, γq) is a configuration, with Oq is the set of alive
objects, Eq the current events, σq is the state of all alive objects,
and γq the state of all events

N ⊆ Oq ∪ Eq denotes the set of new objects and events in the
configuration q

θ : Lvar → Val is a partial function assigning values to logical
variables, i.e., for x ∈ dom(Lvar), θ(x) is the value of x

Joost-Pieter Katoen Foundations of the UML 21/32

Semantics of static expressions

Variables

[[x]]q,N,θ = θ(x) is the logical valuation of x

Owner expressions

[[ξ.owner]]q,N,θ = o where [[ξ]]q,N,θ = (o,M, j)
︸ ︷︷ ︸

object o invoked j-th instance of M

Return expressions

[[ξ.return]]q,N,θ = v where γq ([[ξ]]q,N,θ) = (ℓ, v)
︸ ︷︷ ︸

value of ξ in configuration q

Joost-Pieter Katoen Foundations of the UML 22/32

Semantics of static expressions

New expressions

[[ξ new]]q,N,θ = ([[ξ]]q,N,θ ∈ N), i.e., ξ new yields true if the object (or
method) referred to by ξ is in N .

Alive expressions

[[ξ alive]]q,N,θ = ([[ξ]]q,N,θ ∈ Oq ∪ Eq)

Operations

[[ω(ξ1, . . . , ξn)]]q,N,θ = [[ω]] ([[ξ1]]q,N,θ, . . . , [[ξn]]q,N,θ) where [[ω]] is the
semantic counterpart (on the domain Val⊥) of OCL operation ω

Joost-Pieter Katoen Foundations of the UML 23/32

Semantics of static expressions

Navigation expressions

1 If [[ξ]] is a reference then [[ξ.a]]q,N,θ = ℓ(a) where either

[[ξ]]q,N,θ ∈ C ref and σq ([[ξ]]q,N,θ) = ℓ
︸ ︷︷ ︸

state of object ξ

, or

[[ξ]]q,N,θ ∈ C.M ref and γq ([[ξ]]q,N,θ) = (ℓ, v)
︸ ︷︷ ︸

state of method occurrence ξ

2 If [[ξ]] is a list then [[ξ.a]]q,N,θ = ~ℓ(a) where either

[[ξ]]q,N,θ ∈ C ref list and σq ([[ξ]]q,N,θ) = ~ℓ, or

[[ξ]]q,N,θ ∈ C.M ref list and γq ([[ξ]]q,N,θ) = (~ℓ, v)

Joost-Pieter Katoen Foundations of the UML 24/32

Semantics of static expressions

Iterate expressions

[[with x1 ∈ ξ1 from x2 ∈ ξ2 do x2 := ξ3]]q,N,θ

=

[[for x1 ∈ [[ξ1]]q,N,θ do x2 := ξ3]]q,N,θ′ with θ′ = θ[x2 := [[ξ2]]q,N,θ]

and where the semantics of for-expressions is defined by:

[[for x1 ∈ [] do x2 := ξ]]q,N,θ = [[x2]]q,N,θ

[[for x1 ∈ [h :: w] do x2 := ξ]]q,N,θ = [[for x1 ∈ w do x2 := ξ]]q,N,θ′′

where θ′′ = θ[x2 := [[ξ]]q,N,θ[x1:=h]]

Joost-Pieter Katoen Foundations of the UML 25/32

Example

Joost-Pieter Katoen Foundations of the UML 26/32

OCL types

OCL allows sets, bags, and lists, but no nested lists.

Definition (OCL types)

OCL types are defined by the following grammar:

ρ ::= nat | bool | C ref

τ ::= ρ | ρ list | ρ set | ρ bag

Joost-Pieter Katoen Foundations of the UML 27/32

OCL values

Definition (Universe of values)

The set of OCL values is defined by Valocl =
⋃

τ Val
τ where Val

τ is
defined inductively as follows:

Val
nat = N

Val
bool = {tt, ff}

Val
C ref = {null} ∪ OidC

Val
ρ list = { [] } ∪ {h :: w | h ∈ Val

ρ, w ∈ Val
ρ list}

Val
ρ set = 2Val

ρ

Val
ρ bag = Val

ρ → N

Joost-Pieter Katoen Foundations of the UML 28/32

Semantics of OCL operations

For each operation ξ1 → ω(ξ2, ldots, ξn) in OCL on sets of bags, there
exists a corresponding operator ω(ξ1, . . . , ξn) such that the following
diagram commutes:

where α is an abstraction function that maps lists to sets or bags,
respectively.

Joost-Pieter Katoen Foundations of the UML 29/32

Abstraction of lists

For sets, α is defined by:

αset(v) =







∅ if v = []

{h } ∪ αset(w) if v = h :: w

v otherwise

For bags, α is defined by:

αbag(v) =







{| |} if v = []

{|h |} ∪ αbag(w) if v = h :: w

v otherwise

Joost-Pieter Katoen Foundations of the UML 30/32

Example

Joost-Pieter Katoen Foundations of the UML 31/32

Translating OCL expressions

Function δ maps an OCL expression ξ for a given object o, method
occurrence m with formal parameters ~p into a static expressions

Joost-Pieter Katoen Foundations of the UML 32/32

	Lecture 17: Semantics of OCL Expressions

