Foundations of the UML

Lecture 17: Semantics of OCL Expressions

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

24. Januar 2010

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

OCL expressions

Definition (OCL expressions)

The syntax of OCL expressions is defined by the grammar:
& = self | z |result | {Qpre | a|w(E,...,§) |
Ew(§ ..) [Emw(§,....8) | § — iterate(ry;z2 =& [¢)

where:
@ self refers to the context object of class C

@ z represents either an attribute of the context object, or a formal
parameter of a context method, or a logical variable

@ result refers to the value returned by the context method (which
is undefined if this method has not yet returned a value)

@ Qpre refers to the value of its operand on invoking this method

@ expressions result and @Qpre can be used in postconditions only

Joost-Pieter Katoen Foundations of the UML 2/32

OCL operations

@ £.a is an attribute/parameter navigation

o ¢ is an object reference to an object with attribute a, or

o ¢ is a reference to a method occurrence with a formal parameter a
@ £.a denotes the value of this attribute/parameter

9 e.g.: (h.rooms).guests, h.rooms, m.g for method invocationm

® w(&y,...,&,) denotes the application of the n-ary operator w to the
arguments &1 through &,

some examples are: isEqual(gi, g2) and ifThenElse(d, &1, &2), ete.

o fw(&,..., &) represents an operator w on basic types applied on &
and arguments &; through &,

o & — w(&,...,&,) represents an operator w on collection types
applied on collection £ and arguments &; through &, RWTH

Joost-Pieter Katoen Foundations of the UML 3/32

Preliminaries

The OCL semantics is defined using an operational model (intuitively: a
transition system) of an object-based system.

We first need to fix a set of variable, method and class names

Definition (Data types for logical variables)

@ VNAME is a countable set of variable names
@ MNAME is a countable set of method names (ranged over by M)

@ CNAME is a countable set of class names (ranged over by C)

Joost-Pieter Katoen Foundations of the UML 4/32

Semantic data types

Definition (Semantic types)

The language TYPE of data types is defined by the grammar:
7 == void | nat | bool | 7 list | C ref | C.M ref

where C € CNAME and M € MNAME.
@ void represents the unit type with trivial value (),

o 7 list denotes the type of lists of 7 with elements [] (the empty list)
and h :: w (list with head h of type 7 and tail w of type 7 list);
notation 1::2::] as [1,2] and (1 == []) == (22 []) =2 [] as [[1], [2]]

@ (ref is the type of objects of class C'

@ C.M ref is the type of method occurrences of method M of class C'

Joost-Pieter Katoen Foundations of the UML 5/32

Formal definitions

Definition (Variable, method and class definitions)

We define the following sets of partial functions:
@ VDECL = { VNAME — TYPE } set of variable declarations
Each variable declaration maps variable names to types
@ MpECL = { MNAME — VDECL X TYPE } set of methods

Each method declaration maps a method name onto its formal
parameters and return type

o CpECL = { CNAME — VDECL x MDECL } set of class declarations

Each class declaration maps a class name to a set of attributes and
methods

Joost-Pieter Katoen Foundations of the UML 6/32

@ Let D € CpEeCL. For C € dom(D), let C.attrs denote its attributes
and C.meths its methods

@ For method M of class C, M.fpars are its formal parameters, and
M .retty is its return type

@ Thus: C.meths(M) = (M fpars, M.retty)

Joost-Pieter Katoen Foundations of the UML 7/32

OCL example

Room

Hotel

numOfFloors : Integer TOOMS floorNumber : Integer
hotel 1.+ roomNumber : Integer
numOfRooms : Integer numOfBeds : Integer
checkIn(g : Guest) 0..1
room

checkOut (g : Guest)

0..1f hotel «| guests

Guest
guests
guestCode : Integer

Joost-Pieter Katoen

age : Integer
numOfNights : Integer

Foundations of the

Example

Hotel.attrs(v)

Room.atirs(v)

Guest.attrs(v)

checkIn.fpars(v)

checkOut.fpars(v)

Hotel.meths (M)

Room.meths (M)
Guest.meths (M)

|
|
|

ch.

|

nat if v € {numOfFloors,
numOfRooms}

Room list if v = rooms

Guest list if v = guests

€L otherwise

nat if v € { floorNumber,
roomNumber, numOfBeds}

Hotel if v = hotel

Guest list if v = guests

€ otherwise

nat if v € {questCode. age,
numOfNights }

Hotel if v = hotel

Room if v = room

€L otherwise

Guest ifv=g
€L otherwise

eckIn.fpars(v)

(checkIn.fpars,void) if M = checkin
(eheckOut . fpars,void) if M = checkOut

€L otherwise

ter Katoen Foundations of the U

Objects will be numbered instances of their class C € CNAME.

Let
@ The domain of object ids of class C' is defined by O = {C'} x N.
o Let O = |J, OpY denote the set of object ids.

Elements of OID are pairs (C,n), denoting the n-th instance of class C.

Joost-Pieter Katoen Foundations of the UML 10/32

Events

Method invocations

Method occurrences, also called events, will be numbered instances of
method M € MNAME plus an indication of the object executing M.
Let:

o Evi®M = Om® x {M} x N be the domain of method invocations
(= events) of M of class C

o Let Evr = Js Uy EVr@M denote the set of events.

Elements of EvT are tuples ((C,n), M, k) denoting the k-th method
invocation of M which currently is executed by object (C,n).

Joost-Pieter Katoen Foundations of the UML 11/32

Example 3.2.1. Consider the Hotel class diagram of Figure 2.3. The following
are instances of the class Hotel:

(Hotel,1) (Hotel,2) (Hotel,31) (Hotel, 127)
The following are events related to the method checkIn:

((Hotel, 1), checkIn,1) ((Hotel, 1), checkIn,2)
((Hotel, 31), checkIn,1) ((Hotel, 127), checkn,3)

Note that the first two events represent different executions of method checkIn
performed by the same object. a

Joost-Pieter Katoen Foundations of the UML 12/32

Values and operations

The combined universe of values will be denoted by VAL; the set of values
of a given type 7 € TYPE is denoted by VAL". We define:

vaed — {0

VaL™ = N

Varh® = {ff tt}

Var ' = ([} U{hzw|he VAL ,w € VaL” s}
VaL®™ = [null} UOID"
VALC'._MreF — EVTC"M.

e 1 VAL™ « VAL™' . VAL™" is the standard sum on natural numbers.

7 list 7 list

e sort : VAL — VAL orders a given list of values of type 7.

o flat : VALT'SISE a1 I fattens nested lists.

Finally, there is a special element | ¢ VAL that is used to model the “unde-
fined” value: we write VAL | = VALU{L}. All operations are extended to L by
requiring them to be strict (meaning that if any operand equals |, the entire |
expression equals |). For instance, tor lists we have L tw =1 and h:: L = 1.

Joost-Pieter Katoen Foundations of

Configurations

Definition (Configuration)

A configuration is a tuple (O, E, o,) with:

@ O C OID, the currently alive objects
o F C EvT, the currently running method invocations

@ 0 : O — VNAME — VAL, the local state of objects in O

@ v: F — (VNAME — VAL) X VAL, the state of method invocations

State information

@ o(0) is the local state of object o such that o(0) = ¢ with o € O1D%
implies dom(¢) = dom(C.attrs) and £(a) € VALS-5(@ for each
a € dom(¥).

@ o is extended point-wise to lists of objects, i.e.,

o([)(a) =[] and o(h:w)(a) =o(h)(a) :: o(w)(a)

Joost-Pieter Katoen Foundations of the UML 14/32

Configurations

Method invocations

Recall: v: E — (VNAME — VAL) X VAL
If v(e) = (£,v) for e € EvT®M then:
o dom(¢) = dom(M.fpars),

o ((p) € VALMAPAIS®) for p € dom(l), the value of M’s parameters

@ vE VALAL/I'retty , the returned value

Method termination

A method invocation has terminated in the current configuration if it becomes
inactive in the next state. On termination, the method has a well-defined
value (i.e., different from).

If the system transits from configuration (O, E,,v) to (O', E’,d’,~") then:

e € E—FE' implies Jv € Val.y(e) = (¢,v)

Joost-Pieter Katoen Foundations of the UML 15/32

Configurations: example

gz Guest

g1 Guest) —_— guestCode |72

. 1 : Room age 29

guestCode 71 foorNumber 3 numOfNights) 3 |
25 roemN umber 27|

numOfBeds

g3 Cuest
guegtCods 53
T3 ! om 292 31
floorNumber __-——""—_‘—__ o 2
roomN umbar 1 i Hote, "—__
(k, checkln,1)
numOfBeds 1 numOfFloors 5 —
g - numOfRooms - rz : Room
J_ 1
return ! floorNumber 2
— i roomNumber 11
: nuwmOfBeds 3
\ " ae - Guest
! gs : Luest .
\ =
\ guestCode | 51 [gs : Guest g4 : Guest
1
_____ «_age 23 tCode | 69
_ gues guestCode 46
L anj‘ngMs_’? age an age 21

\M‘%L numOfNights 3

Pieter Katoen

Configurations: example

Example 3.3.2. Figure 3.1 depicts a possible configuration of the Hotel model.
In particular we have:

0 = {h"-‘r]-'-"r?:r3:gl:g?eg3:g4:g5:gﬁ}
E = {(h,checkin,1)}
where we have adopted the following abbreviation: i =(Hotel, 1), g; = (Guest, i)

and r; = (Room, 7) for i € N. The objects show the values of the components
¢ and 7. For example, for object gg we have:

<(ge)(guestCode) = 51

<(96)(age) = 23

s(ge)(numOfNights) = 7
For the other objects, ¢ can be obtained in a similar way. The v component
for the only active method is y(h, checkin,1) = (g — gg, L). I:l
RWTH

Joost-Pieter Katoen Foundations of the UML 17/32

Static expressions

We will translate OCL expressions into static expressions and provide
these with a formal semantics

Definition (Static expressions)

The syntax of static expressions is defined by the grammar:

€ == x| a | owner | {.return | { new | alive |

w(§,...,&) | with z; € £ from z5:=¢ do z3:=¢

where z, r1 and x9 are logical variables.

Joost-Pieter Katoen Foundations of the UML 18/32

Static expressions

o {.a stands for parameter/attribute navigation
@ {.owner denotes the object executing method instance &

@ {.return denotes the return value of method instance &

@ ¢ new is a predicate denoting that the object or method referred to
by £ is “fresh” in the current state

@ an object is new just after its creation
@ a method instance is new when it is just invoked

Joost-Pieter Katoen Foundations of the UML 19/32

Static expressions

@ ¢ alive is a predicate denoting that the object or method referred
to by £ is currently alive

@ an object becomes alive when it is created and remains alive until it
is deallocated

@ a method instance becomes alive on invoking that method and
remains alive until its return value has been returned

@ with z1 € £ from x5 := & do xo := £ corresponds to the OCL
expression iterate

Joost-Pieter Katoen Foundations of the UML 20/32

Semantics of static expressions

Definition (Semantics of static expressions)

The semantics of static expression £ is a value in VAL, assigned by
function [£], n,¢ Where
0 q=(0q,Eq,04,7,) is a configuration, with O, is the set of alive
objects, E, the current events, o, is the state of all alive objects,
and v, the state of all events

o N C Oy U E, denotes the set of new objects and events in the
configuration ¢

@ 0 : LvAR — VAL is a partial function assigning values to logical
variables, i.e., for x € dom(LVAR), 0(x) is the value of x

Joost-Pieter Katoen Foundations of the UML 21/32

Semantics of static expressions

Variables

[z]g.n0 = 6(z) is the logical valuation of

Owner expressions

[[{.owner]]%Nﬂ = 0 where [[f]]%]vﬂ = (0, M,j)

2

object o invoked j-th instance of M

Return expressions

[€.return], o = v where 4 ([€]qn0) = (4, v)

value of £ in configuration ¢

Joost-Pieter Katoen Foundations of the UML 22/32

Semantics of static expressions

New expressions
€ new]yno = ([€]gn0 € N), ie., € new yields true if the object (or
method) referred to by £ is in N.

Alive expressions
[€ alive]]q,N,a = ([[f]]q,Nﬂ € OqU Ey)

Operations

[w(&rs- - &)lane = [w] ([6lgne, - [En]ane) where [w] is the
semantic counterpart (on the domain VAL,) of OCL operation w

Joost-Pieter Katoen Foundations of the UML 23/32

Semantics of static expressions

Navigation expressions

Q If [¢] is a reference then [€.alqnp = f(a) where either
© [[é]]q,N,G € C ref and o ([[é]]q,N,G) =/, or
N A

state of object &
o [€lg N0 € C.M ref and Yo ([€lq.v,0) = (4, v)

state of method occurrence &

—

Q If [¢] is a list then [£.a]yne = ¢(a) where either

© [[f]]q,N,e € C ref list and oy ([[f]]q,N,e) _ g_; a5
o [€lgn0 € C.M ref list and 4 ([€]q,n,0) = (¢,)

Joost-Pieter Katoen Foundations of the UML 24/32

Semantics of static expressions

Iterate expressions

[with 1 € & from x € & do 2 1= &3]4,N 0

[for z1 € [&1]lg,n0 do 2 := &3]q,nv,00 With 0' = Oz := [€2]4, 0]
and where the semantics of for-expressions is defined by:
[for z1 €[] do @32 :=¢]gnve = [22]gme

[[for x| € [h b w] do x9 := f]]%Nﬂ = [[for r1 € wdo xg:= 5]]%]\/79//

where 0" = 0[x2 := [€]y N 61—

Joost-Pieter Katoen Foundations of the UML 25/32

Example

ieter Katoen Foundations of the

OCL allows sets, bags, and lists, but no nested lists.
Definition (OCL types)

OCL types are defined by the following grammar:

= nat | bool | C ref
T u= p| plist | pset | p bag

Joost-Pieter Katoen Foundations of the UML 27/32

OCL values

Definition (Universe of values)

The set of OCL values is defined by VAL, = |J, VAL™ where VAL" is
defined inductively as follows:
VALt = N
varPool — fig, ££)
var® et = {null} U 0id®
varr st — (]} U {h:w|he VAL, w e Varr st}
VALP set _ 2VALp
VaLs P28 = var® - N

Joost-Pieter Katoen Foundations of the UML 28/32

Semantics of OCL operations

For each operation & — w(&2,ldots, &,) in OCL on sets of bags, there

exists a corresponding operator wW(&y, ... ,&,) such that the following
diagram commutes:

[«]

VALY o1 VALocL
8} (87
VarL™ VAL

[]

where « is an abstraction function that maps lists to sets or bags,
respectively.

Joost-Pieter Katoen Foundations of the UML 29/32

Abstraction of lists

For sets, a is defined by:

g ifv=]
et (V) = {h} U ag(w) fv=h:w

v otherwise
For bags, « is defined by:
I ifo=]

Coag®) = & AR} U apg(w) ifv=hzw

v otherwise

Joost-Pieter Katoen Foundations of the UML 30/32

Example

ieter Katoen Foundations of the

Translating OCL expressions

Function § maps an OCL expression £ for a given object o, method
occurrence m with formal parameters p into a static expressions

bom.plself) =0

ox if o € C ref and x € dom(C.atirs)
om, 7l T) mx ifzef
T otherwise
do,m,p(result) = m.return
Bom,glE@ipre) = 1y

5B {ﬁat(o,in. f) a) if £eC ref list and Clattrs(a)=r list

do.mpl€).0 otherwise
dom.plw(éy,- .-, &n)) = @(boms(é1). - .- dom5(€n))
domgléw(lr,....n)) = @(Fomal€)s bomsl€) - . bomip(En))
Somplé—wlés- - &n)) = O (80m pE)s Somp(&)s- - So,m,p5(&n))

dom.pléi—iterate(z oy = &2 | &) =

with &y € 0, 5, 7(€1) from @5 1= 8, 1 5(62) do 23 1= g 5(&3) -

Joost-Pieter Katoen Foundations of the UML

	Lecture 17: Semantics of OCL Expressions

