Foundations of the UML

Lecture 18: Semantics of OCL Constraints

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

25. Januar 2010

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

OCL constraints

Definition (OCL constraints)

The syntax of OCL constraints is defined by the grammar:

X == context C inv £ | context C :: M(p) pre & post &

where C' is a class, M € dom(C.meths) is a method of class C, p are
parameters and & is an OCL expression.

@ OCL constraints are built from OCL expressions and have type
Boolean

@ Invariants have as context a class

@ Pre- and postconditions have as context a method of a class.

Joost-Pieter Katoen Foundations of the UML 2/23

Temporal expressions

@ Static expressions are statements about the current system
configuration

©

Temporal expressions are statements about configuration sequences
(system runs)

©

Any static expression is a temporal expression and is valid if the
first configuration in the configuration sequence satisfies it

©

Temporal expressions can be build using connectives such as
negation and disjunction

(]

(O @ holds in a run if the next configuration in the run satisfies ®

@ A run satisfies @ U W if contains a configuration satisfying ¥ and all
configurations prior to this one satisfy ®

Joost-Pieter Katoen Foundations of the UML 3/23

Temporal expressions

Definition (Temporal expressions)

The syntax of temporal expressions is defined by the grammar:
O =¢| P |PAD | Txer.®| OP| PUD

where £ is an OCL expression, z is a logical variable, and 7 a type.

o O & = trueU @, eventually &
o ® = =0, always ®

Joost-Pieter Katoen Foundations of the UML 4/23

Derived operators

p VY = (op A oY)
p =9 = "p VP
poy = (p=>9) A [W=9)
vy = (¢ A)V (cp A Y)
true = ¢ V o
false = -—true
Op = truelUyp “sometimes in the future”
Oy = =0 -p “from now on for ever”

precedence order: the unary operators bind stronger than the binary ones.
= and () bind equally strong. U takes precedence over A, V, and =

Joost-Pieter Katoen Foundations of the UML 5/23

Intuitive semantics

a arbitrary arbitrary arbitrary arbitrary

atomic prop. a H

arbitrary a arbitrary arbitrary arbitrary

next step O a O

aA-b a-b a—b b arbitrary

until aUb O

-a —a —a a arbitrary

eventually Qa H

always Ca O— 4.0

ieter Katoen Foundations of the

Quantification

@ Temporal expression dx € 7. ® expresses that ® holds for at least
one alive instance (object or method) referred to by z of type .

@ For type 7 = void, nat or bool, instance = € 7 is always alive

o For type 7 = C' ref, object = € 7 is alive if it has been created and
not yet deallocated (= garbage collected)

@ For type 7 = C.M ref, method instance x € 7 is alive if method M
has been invoked and not yet terminated

@ Wehave Ve e 7.® = —-dx e 7.~®
RWTH

Joost-Pieter Katoen Foundations of the UML 7/23

@ Along the computation of hotel A, eventually at least one guest will
check in:
O (Im € h.checkIn ref.m alive)

or shortly, ¢ (Im € h.checkln ref)

@ A guest cannot stay forever in hotel h:

O (Vz € Guest. includes(h.guests, x) = ¢ (—includes(h.guests, x)))

@ A guest cannot be hosted in more than one room:

O (Vx € Guest. Jy, z € Room ref.

includes(y.guests, x) A includes(z.guests,z) = y = z)
RWTH

Joost-Pieter Katoen Foundations of the UML 8/23

Configuration automata

Definition (Configuration automaton)

A configuration automaton is a triple (Cnf, —, I) where:
© Onfis a set of configurations
Q@ —C Onfx Cnf, a transition relation
© [C Cnfa set of initial configurations with I # &

@ A configuration denotes the state (current objects, method
invocations, state of each method and object) of the UML model

@ Relation — models the evolution from configuration to
configuration such that if an active method invocation becomes
inactive then it has a well-defined value (i.e., different from L).

Joost-Pieter Katoen Foundations of the UML 9/23

Configration paths

Temporal expressions are interpreted over infinite paths in a
configuration automaton (Cnf, —,I).

Definition (Path)

An infinite path in (Cnf,—,I) is an infinite sequence ™ = ¢pcicy . .. with
¢; € Cnfand ¢; — ¢;41 for all 7 € N.

Notation: 7[i] denotes configuration ¢;, and 7% denotes the suffix of 7
starting from index k, i.e., 7% = w[k] n[k+1]

Joost-Pieter Katoen Foundations of the UML 10/23

Example (1)

h : Hotel r : Room
1
g1 : Guest g2 : Guest ‘
. h : Hotel r : Room
2 H
return il i . (o g
Lo~ | g1 : Guest gz : Guest

|

Joost-Pieter Katoen

Foundations of

Example (2)

r ' "k : Hotel r : Room
¢ : h.checkin .
3 L &= PETRERIT
q TR
return L :~----------—--g'1 . Quest | gz : Guest
, y h : Hotel : Roo
| ¢ : h.checkin o " -
4 g T T
return 0 : o
Lo 74 © Guast

ga @ Guest

|

Joost-Pieter Katoen

Foundations of

e

— i i e

Example (3)

) i
[1 h : Hotel : Roo
¢ : h.cheeckin o ’ "
4 g N
return 0 : o .
b gy @ Guest gz : Guest
h : Hotel r : Room
. :
gy : Guest gs : Guest]

Joost-Pieter Katoen

Foundations of

Auxiliary definitions on paths

Definition (New objects and variable valuation along a path)

For path m = cycices ... let:
@ Ny =N C OyU Ey, the objects and events in ¢
Q Niy1=(0i41\0;) U (Eix1 \ E)), i.e., the objects created in
¢; — ci+1 and all events generated in this transition
O(x) ifVk>i60(x) € OpUE
O bi(z) = {

1 otherwise

Joost-Pieter Katoen Foundations of the UML 14/23

Semantics of temporal expressions

(m, N,0) = ® means that for path 7, initial set IV of new objects (and
method invovations), logical valuation 6, the temporal formula ® holds.
It is defined inductively as follows:

™ N, 0 =& HE [€rone =t
nN,OE-® iff 7,N,0k
mN0=dVvV¥ iff 7, N,§=®orm,N6OEUT
nNOEQ® iff 7', N,0 =
7, N0 =®UV iff 3jeN.m/ N, 0=V and Yk < j. 7% N,0 = ®
™ N, =3z er.® iff Jve VAL [(Oy, Ey).m, N,0[x :=v] = ®

where VAL” [(O, E) is the subset of VAL” alive in (O, E).
RWTH

Joost-Pieter Katoen Foundations of the UML 15/23

@ The number of guests in a room cannot exceed the room’s capacity:

context Room
inv: guests — size < nrOfBeds

@ The guests in the rooms of the hotel equal the guests in the hotel

context Hotel
inv: rooms.guests = guests J

Joost-Pieter Katoen Foundations of the UML 16/23

Semantics of OCL invariants

Definition (Semantics of OCL invariants)

The semantics of OCL invariant context C inv £ is given by a
translation A onto a temporal expression. Let y € Lvar and
dom(C.meths) = {M;, ..., My}. Then A is defined by:

A(context C inv §)

~—

O (Vz € C ref. (-3my € o.My ref A ... A —=3my, € x. My, ref) = 0, 1(¢

Intuition
The condition & must hold in any state where no method in dom(C.meths) is
active. During the execution of such method, some configuration may violate

the condition &.

Joost-Pieter Katoen Foundations of the UML 17/23

Example

Example 3.5.3. Consider again the OCL invariant in Example 3.4.2 assuming
that the collection guests is a bag.

context Hotel invariant
rooms.quests = quests

Recalling the considerations of Example 3.5.2 on set equality, we have:

d(rooms.gquests = guests) = EqList(sort(d(rooms.guests)), sort (8(guests)))
= EqList(sort(flat(x.rooms. guests)), sort(z. guests)).

‘We can embed the resulting BOTL expression in the invariant template taking
into account that the class Hotel has two methods, i.e., checkin and cheekOut:

G[vz € Hotel ref : (=3Im € z.checkIn ref : tt A —Im' € x.checkOut ref : tt)
= EqList(sort(flat(x.rooms.guests)), sort(x. guests))|.

Note that apart from the use of the more natural equal sign instead of EgList,
the resulting invariant coincides with the invariant in Example 3.4.2. O

Joost-Pieter Katoen Foundations of

OCL pre- and postconditions

@ On checking in a guest g, say, the following conditions should hold:

@ g should not already be a hotel guest, and
o after checking in, the number of guest is increased by one, and
@ the hotel’s guest should include ¢

context Hotel:: checkIn (g: Guest)

pre: not guests — includes(g)

post: guests — size = (guests@pre — size) + 1 and
guests — includes(g)

where guests@pre refers to the value of the attribute guests at
evaluating the precondition

@ On each invocation of the method checkln, if the precondition
holds, then on termination of checkln, the postcondition holds
RWTH

Joost-Pieter Katoen Foundations of the UML 19/23

Extended OCL preconditions

Main complication

For any £@pre expression in the postcondition, we have to remember its
value on evaluating the precondition. This is established using auxiliary
variables: for each expression £@;pre we use the auxiliary logical
variable u; € LVAR.

Extended precondition

Extended precondition = precondition + auxiliary variables
{uy,...,u,}. Formally,

ol = 6(Gre) A N\ wi=09)

£Q;pre€épost

Joost-Pieter Katoen Foundations of the UML 20/23

Example

ieter Katoen Foundations of the

Semantics of OCL pre- and postconditions

Definition (Semantics of pre- and postconditions)

The semantics of a pre- and postcondition is given by a mapping A
onto a temporal expression, and is defined by:

A(context C :: M(p) pre &pre post Epost)

Yui € Tiy...,Up € Th.Vz € C ref Ym € 2. M ref.
O (m new A 558 = m alive U (m alive A O —(m alive) A §(&post))

pre

y

Joost-Pieter Katoen Foundations of the UML 22/23

Example

Example 3.5.3. Consider again the OCL invariant in Example 3.4.2 assuming
that the collection guests is a bag.

context Hotel invariant
rooms.quests = quests

Recalling the considerations of Example 3.5.2 on set equality, we have:

d(rooms.gquests = guests) = EqList(sort(d(rooms.guests)), sort (8(guests)))
= EqList(sort(flat(x.rooms. guests)), sort(z. guests)).

‘We can embed the resulting BOTL expression in the invariant template taking
into account that the class Hotel has two methods, i.e., checkin and cheekOut:

G[vz € Hotel ref : (=3Im € z.checkIn ref : tt A —Im' € x.checkOut ref : tt)
= EqList(sort(flat(x.rooms.guests)), sort(x. guests))|.

Note that apart from the use of the more natural equal sign instead of EgList,
the resulting invariant coincides with the invariant in Example 3.4.2. O

Joost-Pieter Katoen Foundations of

ieter Katoen Foundations of the

	Lecture 18: Semantics of OCL Constraints

