
Foundations of the UML
Lecture 18: Semantics of OCL Constraints

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

25. Januar 2010

Joost-Pieter Katoen Foundations of the UML 1/23

http://moves.rwth-aachen.de/i2/370


OCL constraints

Definition (OCL constraints)

The syntax of OCL constraints is defined by the grammar:

χ ::= context C inv ξ | context C :: M(~p) pre ξ post ξ

where C is a class, M ∈ dom(C.meths) is a method of class C, ~p are
parameters and ξ is an OCL expression.

So:

OCL constraints are built from OCL expressions and have type
Boolean

Invariants have as context a class

Pre- and postconditions have as context a method of a class.

Joost-Pieter Katoen Foundations of the UML 2/23



Temporal expressions

Static expressions are statements about the current system
configuration

Temporal expressions are statements about configuration sequences
(system runs)

Any static expression is a temporal expression and is valid if the
first configuration in the configuration sequence satisfies it

Temporal expressions can be build using connectives such as
negation and disjunction

©Φ holds in a run if the next configuration in the run satisfies Φ

A run satisfies Φ U Ψ if contains a configuration satisfying Ψ and all
configurations prior to this one satisfy Φ

Joost-Pieter Katoen Foundations of the UML 3/23



Temporal expressions

Definition (Temporal expressions)

The syntax of temporal expressions is defined by the grammar:

Φ ::= ξ | ¬Φ | Φ ∧ Φ | ∃x ∈ τ.Φ | ©Φ | Φ U Φ

where ξ is an OCL expression, x is a logical variable, and τ a type.

♦ Φ = true UΦ, eventually Φ

� Φ = ¬♦¬Φ, always Φ

Joost-Pieter Katoen Foundations of the UML 4/23



Derived operators

ϕ ∨ ψ ≡ ¬ (¬ϕ ∧ ¬ψ)

ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

ϕ⊕ ψ ≡ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)

true ≡ ϕ ∨ ¬ϕ

false ≡ ¬ true

♦ϕ ≡ true Uϕ “sometimes in the future”

�ϕ ≡ ¬♦ ¬ϕ “from now on for ever”

precedence order: the unary operators bind stronger than the binary ones.

¬ and © bind equally strong. U takes precedence over ∧, ∨, and ⇒

Joost-Pieter Katoen Foundations of the UML 5/23



Intuitive semantics

a

atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step © a

a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b

until aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a

eventually ♦a

¬a ¬a a arbitrary

. . .

a

always �a

a a a a

. . .

Joost-Pieter Katoen Foundations of the UML 6/23



Quantification

Temporal expression ∃x ∈ τ.Φ expresses that Φ holds for at least
one alive instance (object or method) referred to by x of type τ .

For type τ = void,nat or bool, instance x ∈ τ is always alive

For type τ = C ref, object x ∈ τ is alive if it has been created and
not yet deallocated (= garbage collected)

For type τ = C.M ref, method instance x ∈ τ is alive if method M
has been invoked and not yet terminated

We have ∀x ∈ τ.Φ ≡ ¬∃x ∈ τ.¬Φ

Joost-Pieter Katoen Foundations of the UML 7/23



Examples

Along the computation of hotel h, eventually at least one guest will
check in:

♦ (∃m ∈ h.checkIn ref.m alive)

or shortly, ♦ (∃m ∈ h.checkIn ref)

A guest cannot stay forever in hotel h:

� (∀x ∈ Guest. includes(h.guests, x) ⇒ ♦ (¬includes(h.guests, x)))

A guest cannot be hosted in more than one room:

� (∀x ∈ Guest.∃y, z ∈ Room ref.

includes(y.guests, x) ∧ includes(z.guests, x) ⇒ y = z)

Joost-Pieter Katoen Foundations of the UML 8/23



Configuration automata

Definition (Configuration automaton)

A configuration automaton is a triple (Cnf,→, I) where:

1 Cnf is a set of configurations

2 →⊆ Cnf× Cnf, a transition relation

3 I ⊆ Cnf a set of initial configurations with I 6= ∅

Intuition

A configuration denotes the state (current objects, method
invocations, state of each method and object) of the UML model

Relation → models the evolution from configuration to
configuration such that if an active method invocation becomes
inactive then it has a well-defined value (i.e., different from ⊥).

Joost-Pieter Katoen Foundations of the UML 9/23



Configration paths

Temporal expressions are interpreted over infinite paths in a
configuration automaton (Cnf,→, I).

Definition (Path)

An infinite path in (Cnf,→, I) is an infinite sequence π = c0c1c2 . . . with
ci ∈ Cnf and ci → ci+1 for all i ∈ N.

Notation: π[i] denotes configuration ci, and πk denotes the suffix of π
starting from index k, i.e., πk = π[k]π[k+1] . . ..

Joost-Pieter Katoen Foundations of the UML 10/23



Example (1)

Joost-Pieter Katoen Foundations of the UML 11/23



Example (2)

Joost-Pieter Katoen Foundations of the UML 12/23



Example (3)

Joost-Pieter Katoen Foundations of the UML 13/23



Auxiliary definitions on paths

Definition (New objects and variable valuation along a path)

For path π = c0c1c2 . . . let:

1 N0 = N ⊆ O0 ∪E0, the objects and events in c0
2 Ni+1 = (Oi+1 \Oi) ∪ (Ei+1 \Ei), i.e., the objects created in
ci → ci+1 and all events generated in this transition

3 θi(x) =

{

θ(x) if ∀k > i. θ(x) ∈ Ok ∪ Ek

⊥ otherwise

Joost-Pieter Katoen Foundations of the UML 14/23



Semantics of temporal expressions

(π,N, θ) |= Φ means that for path π, initial set N of new objects (and
method invovations), logical valuation θ, the temporal formula Φ holds.
It is defined inductively as follows:

π,N, θ |= ξ iff [[ξ]]π[0],N,θ = tt

π,N, θ |= ¬Φ iff π,N, θ 6|= Φ

π,N, θ |= Φ ∨ Ψ iff π,N, θ |= Φ or π,N, θ |= Ψ

π,N, θ |= ©Φ iff π1, N, θ |= Φ

π,N, θ |= Φ U Ψ iff ∃j ∈ N. πj, N, θ |= Ψ and ∀k < j. πk, N, θ |= Φ

π,N, θ |= ∃x ∈ τ.Φ iff ∃v ∈ Val
τ ↾(O0, E0). π,N, θ[x := v] |= Φ

where Val
τ ↾(O,E) is the subset of Val

τ alive in (O,E).

Joost-Pieter Katoen Foundations of the UML 15/23



OCL invariants

The number of guests in a room cannot exceed the room’s capacity:

context Room
inv: guests → size 6 nrOfBeds

The guests in the rooms of the hotel equal the guests in the hotel

context Hotel
inv: rooms.guests = guests

Joost-Pieter Katoen Foundations of the UML 16/23



Semantics of OCL invariants

Definition (Semantics of OCL invariants)

The semantics of OCL invariant context C inv ξ is given by a
translation ∆ onto a temporal expression. Let y ∈ Lvar and
dom(C.meths) = {M1, . . . ,Mk}. Then ∆ is defined by:

∆(context C inv ξ)

=

�
(

∀x ∈ C ref. (¬∃m1 ∈ x.M1 ref ∧ . . . ∧ ¬∃mk ∈ x.Mk ref) ⇒ δx,y,[ ](ξ)
)

Intuition

The condition ξ must hold in any state where no method in dom(C.meths) is

active. During the execution of such method, some configuration may violate

the condition ξ.

Joost-Pieter Katoen Foundations of the UML 17/23



Example

Joost-Pieter Katoen Foundations of the UML 18/23



OCL pre- and postconditions

On checking in a guest g, say, the following conditions should hold:

g should not already be a hotel guest, and

after checking in, the number of guest is increased by one, and

the hotel’s guest should include g

context Hotel:: checkIn (g: Guest)
pre: not guests → includes(g)
post: guests → size = (guests@pre → size) + 1 and

guests → includes(g)

where guests@pre refers to the value of the attribute guests at
evaluating the precondition

On each invocation of the method checkIn, if the precondition
holds, then on termination of checkIn, the postcondition holds

Joost-Pieter Katoen Foundations of the UML 19/23



Extended OCL preconditions

Main complication

For any ξ@pre expression in the postcondition, we have to remember its
value on evaluating the precondition. This is established using auxiliary
variables: for each expression ξ@ipre we use the auxiliary logical
variable ui ∈ Lvar.

Extended precondition

Extended precondition = precondition + auxiliary variables
{u1, . . . , un}. Formally,

ξext
pre = δ(ξpre) ∧

∧

ξ@ipre∈ξpost

ui = δ(ξ)

Joost-Pieter Katoen Foundations of the UML 20/23



Example

Joost-Pieter Katoen Foundations of the UML 21/23



Semantics of OCL pre- and postconditions

Definition (Semantics of pre- and postconditions)

The semantics of a pre- and postcondition is given by a mapping ∆
onto a temporal expression, and is defined by:

∆(context C :: M(~p) pre ξpre post ξpost)

=

∀u1 ∈ τ1, . . . , un ∈ τn.∀z ∈ C ref .∀m ∈ z.M ref .
�

(

m new ∧ ξext
pre ⇒ m aliveU (m alive ∧ ©¬(m alive) ∧ δ(ξpost)

)

Joost-Pieter Katoen Foundations of the UML 22/23



Example

Joost-Pieter Katoen Foundations of the UML 23/23



Joost-Pieter Katoen Foundations of the UML 23/23


	Lecture 18: Semantics of OCL Constraints

