
Foundations of the UML
Lecture 2: Sequence Diagrams

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

26. Oktober 2009

Joost-Pieter Katoen Foundations of the UML 1



PART I

SEQUENCE DIAGRAMS

Joost-Pieter Katoen Foundations of the UML 2



History

70s - 80s: often used informally

1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

1992 - 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

1996: MSC’96 standard

2000: MSC 2000, time, data, o-o features

2005: MSC 2004 . . .

Joost-Pieter Katoen Foundations of the UML 3



Variants of MSCs

UML sequence diagrams

(instantiations of) use cases

triggered MSCs

netcharts (= Petri net + MSC)

STAIRS

Live sequence charts

. . .

Joost-Pieter Katoen Foundations of the UML 4



Characteristics

scenario-based language

visual representation

“easy” to comprehend

generalization possible towards automata (states are MSCs)

widely used in industrial practice

Joost-Pieter Katoen Foundations of the UML 5



Applications

requirements specification
(positive, negative scenarios, e.g., CREWS)

system design and software engineering

visualization of test cases
(graphical extension to TTCN)

feature interaction detection

workflow management systems

. . .

Joost-Pieter Katoen Foundations of the UML 6



Example

p1 p2 p3

a
b

c
d

e

Joost-Pieter Katoen Foundations of the UML 7



Preliminaries (1)

Definition
Let P: finite set of ≥ 2 sequential processes

C: finite set of message contents (a, b, c, . . . ∈ C)

Definition
Communication action: p, q ∈ P, p #= q, a ∈ C

!(p, q, a) “p sends message a to q”

?(p, q, a) “p receives message a sent by q”

Joost-Pieter Katoen Foundations of the UML 8



Preliminaries (2)

Definition
Let E be a set of events
A partial order over E is a relation $ ⊆E × E such that:

1 $ is reflexive, i.e., ∀e ∈ E. e $ e,
2 $ is transitive, i.e., e $ e′ ∧ e′ $ e′′ implies e $ e′′, and
3 $ is acyclic, i.e., ∀e #= e′.¬(e $ e′ ∧ e′ $ e).

Definition
Let (E,$) be a poset.
The Hasse diagram (E, !) is defined by:

e ! e′ iff e $ e′ and ¬(∃e′′ #= e, e′. e $ e′′ $ e′)

Joost-Pieter Katoen Foundations of the UML 9



Preliminaries (3)

Definition
Let (E,$) be a poset.
A linearization of (E,$) is a total order * such that

e $ e′ implies e * e′

A linearization is a topological sort of the Hasse diagram of (E,$).

Joost-Pieter Katoen Foundations of the UML 10



Preliminaries (4)

Example
Let E = {e1, . . . , e6},

$ = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4),
(e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)

}r where Rr denotes the reflexive closure of R

Hasse diagram:

e1

e2

e3 e4 e5 e6

Linearizations:
• e1e2e3e4e5e6,
• e1e3e2e4e5e6,
• e1e3e4e2e5e6,
• e1e3e4e5e2e6,
• e1e3e4e5e6e2

Not a linearization:
• e2e1e3 . . ., and e1e4e3 . . .

Joost-Pieter Katoen Foundations of the UML 11



Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E, C, l,m,<) with:

P, a finite set of processes {p1, p2, . . . , pn}
E, a finite set of events

E =
⊎

p∈P
Ep = E? ·∪ E! ·∪ Eloc︸ ︷︷ ︸

partitioning of E

C, a finite set of message content
l : E → Act , a labelling function defined by:

l(e) =






!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

p(a) if e ∈ Ep ∩ Eloc

, p #= q ∈ P, a ∈ C

Joost-Pieter Katoen Foundations of the UML 12



Message Sequence Chart (MSC) (2)

Definition
m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p #= q, a ∈ C)

< ⊆E × E is a partial order (“visual order”) defined by:

< =
( ⋃

p∈P
<p

︸ ︷︷ ︸
<p is a total order = “top-to-
bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}

︸ ︷︷ ︸
communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.

Joost-Pieter Katoen Foundations of the UML 13



Example (1)

p1 p2

a

b

MSC M :

e1 e2

e3e4

M = (P , E, C, l, m, <) with:
P = {p1, p2} Ep1 = {e1, e4}
E = {e1, e2, e3, e4}
C = {a, b} E! = {e1, e3}

l(e1) = !(p1, p2, a) m(e1) = e2

l(e2) = ?(p2, p1, a)
l(e3) = !(p2, p1, b) m(e3) = e4

l(e4) = ?(p1, p2, b)

Ordering at processes: e1 <p1 e4 and e2 <p2 e3

Hasse diagram of (E,<):
e1 e2 e3 e4

Linearizations?

Joost-Pieter Katoen Foundations of the UML 14



Example (2)

p1 p2

a b

MSC M ′:

e1

e2

e3

e4

M ′ = (P, E, C, l,m︸ ︷︷ ︸
as above

, <′) with:

e1

e3

e2

e4

<′
c:

e1

e3

e4

e2

<′
p1

:
<′

p2
:

e1

e3

e2

e4

<′:

Joost-Pieter Katoen Foundations of the UML 15



Example (3)

Not an MSC:
p1 p2

a

b

Joost-Pieter Katoen Foundations of the UML 16



FIFO property

MSC M = (P, E, C, l,m,<) has the First-In-First-Out (FIFO) property
whenever:
for all e, e′ ∈ E! we have

e < e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) < m(e′)

i.e., “no message overtaking allowed”

p1 p2

a

b
e

e′

m(e)

m(e′)

p1 p2

a

b

e

e′

m(e′)

m(e)

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e′) = !(p1, p2, b)
e < e′

⇒ m(e) < m(e′)

Note:
We assume an MSC to
possess the FIFO property,
unless stated otherwise!

Joost-Pieter Katoen Foundations of the UML 17



Linearizations

Definition
Let Lin(M) = denote the set of linearizations of M .

Lemma: MSCs and their linearizations are interchangeable
There is a one-to-one correspondence between an MSC and its set of
linearizations.

Thus:
Lin(M) uniquely characterizes M .

Joost-Pieter Katoen Foundations of the UML 18



Well-formedness

Let Ch := {(p, q) | p #= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑

m∈C
|u|!(p,q,m)

︸ ︷︷ ︸
# sends from p to q

!
∑

m∈C
|u|?(q,p,m)

︸ ︷︷ ︸
# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 " i < j " n, (p, q) ∈ Ch, and ai = !(p, q, m1), aj = ?(q, p, m2):

∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)

Joost-Pieter Katoen Foundations of the UML 19



Properties of well-formedness

Lemma
For any MSC M , w ∈ Lin(M) is well-formed.

we use Lin(M) here as a set of words (and not linearizations)
the word of linearization e1 . . . en equals !(e1) . . . !(en)

Joost-Pieter Katoen Foundations of the UML 20



From linearizations to posets

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, !)

such that:
E = {1, . . . , n} are the positions in w labelled with !(i) = ai

≺=
(
≺msg ∪

⋃
p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

!(i) = !(p, q, m) and !(j) = ?(q, p, m) and
∑

m∈C
|a1 . . . ai−1|!(p,q,m) =

∑

m∈C
|a1 . . . aj−1|?(q,p,m)

Example
construct M(w) for w = !(r, q, m)!(p, q, m1)!(p, q, m2)?(q, p,m1)?(q, p,m2)?(q, r,m)

Joost-Pieter Katoen Foundations of the UML 21



Properties

Relating well-formed words to MSCs
For any well-formed w ∈ Act∗, M(w) is an MSC.

Definition
(E,$, !) and (E′,$′, !′) are isomorphic if there exists a bijection
f : E → E′ such that e $ e′ iff f(e) $′ f(e′) and !(e) = !′(f(e)).

Isomorphism
For any well-formed w ∈ Act∗ and w′ ∈ Lin(M(w)):

M(w) and M(w′) are isomorphic.

Joost-Pieter Katoen Foundations of the UML 22



Visual order vs. possible order

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

e2 < e6?

If message b takes much shorter than message a,
then c might arrive at p1 before a!

Formally: <p1 = {e6, e2} is possible but #= visual order.

When are such situations possible and how to detect them?

Joost-Pieter Katoen Foundations of the UML 23



Races (1)

Let M = (P, E, C, l,m,<) be an MSC.
Let 0 ⊆ E × E be defined by:

e 0 e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} #= ∅
or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

0 is the “interpreted / possible order” (also called causal order)
p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example

e1 0 e2, e3 0 e4, e5 0 e6, e1 0 e3, e4 0 e5, ¬(e2 0 e6)

Joost-Pieter Katoen Foundations of the UML 24



Races (2)

Definition
MSC M contains a race if for some e, e′ ∈ E?:

e <p e′ but ¬(e 0∗ e′)

where 0∗ ⊆ E × E is the reflexive and transitive closure of 0.

How to check whether MSC M has a race?

compute 0∗ and compare to <p

0∗ can be computed using Floyd-Warshall’s algorithm
worst-case time complexity O(|E|3), improved here to O(|E|2)

Joost-Pieter Katoen Foundations of the UML 25


