
Foundations of the UML
Lecture 3: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

26. Oktober 2009

Joost-Pieter Katoen Foundations of the UML 1

Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E, C, l,m,<) with:

P, a finite set of processes {p1, p2, . . . , pn}
E, a finite set of events

E =
⊎

p∈P
Ep = E? ·∪ E! ·∪ Eloc︸ ︷︷ ︸

partitioning of E

C, a finite set of message content
l : E → Act , a labelling function defined by:

l(e) =






!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

p(a) if e ∈ Ep ∩ Eloc

, p %= q ∈ P, a ∈ C

Joost-Pieter Katoen Foundations of the UML 2

Message Sequence Chart (MSC) (2)

Definition
m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p %= q, a ∈ C)

< ⊆E × E is a partial order (“visual order”)

< =




⋃

p∈P
<p ∪ {(e,m(e)) | e ∈ E!}




∗

Joost-Pieter Katoen Foundations of the UML 3

Example

p1 p2

a b

MSC M ′:

e1

e2

e3

e4

M ′ = (P, E, C, l,m︸ ︷︷ ︸
as above

, <′) with:

e1

e3

e2

e4

<′
c:

e1

e3

e4

e2

<′
p1

:
<′

p2
:

e1

e3

e2

e4

<′:

Joost-Pieter Katoen Foundations of the UML 4

Visual order vs. possible order

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

e2 < e6?

If message b takes much shorter than message a,
then c might arrive at p1 before a!

Formally: <p1 = {e6, e2} is possible but %= visual order.

When are such situations possible and how to detect them?

Joost-Pieter Katoen Foundations of the UML 5

Races (1)

Let M = (P, E, C, l,m,<) be an MSC.
Let) ⊆ E × E be defined by:

e) e′ iff e′ = m(e)
or e <p e′ and E! ∩ {e, e′} %= ∅
or e, e′ ∈ Ep ∩ E? and m−1(e) <q m−1(e′)

) is the “interpreted / possible order” (also called causal order)
p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example

e1) e2, e3) e4, e5) e6, e1) e3, e4) e5, ¬(e2) e6)

Joost-Pieter Katoen Foundations of the UML 6

Races (2)

Definition
MSC M contains a race if for some e, e′ ∈ E?:

e <p e′ but ¬(e)∗ e′)

where)∗ ⊆ E × E is the reflexive and transitive closure of).

How to check whether MSC M has a race?

compute)∗ and compare to <p

)∗ can be computed using Floyd-Warshall’s algorithm
worst-case time complexity O(|E|3), improved here to O(|E|2)

Joost-Pieter Katoen Foundations of the UML 7

Races (3)

MSC M has a race if < %⊆)∗ or equivalently:

∃e, e′ ∈ E? . (e <p e′ and e %)∗ e′)

⇒ protocol implementation based on <p may cause problems, e.g.,
1 unspecified message reception
2 deadlock situations
3 use content of wrong message

Joost-Pieter Katoen Foundations of the UML 8

Computing)∗: Warshall’s algorithm

Algorithm
compute)∗
︸ ︷︷ ︸

Warshall’s Algorithm

and compare with <

Warshall’s Algorithm: input: R ⊆ X × X where X is a set
output: R∗

Idea:
Consider R and R∗ as directed graphs

There is an edge x ⇒ y in R∗ iff there is a (possibly empty) path

x = x0 → x1 → x2 → . . . → xn = y in R

(our setting: X = E,R =) , R∗ =)∗)

Joost-Pieter Katoen Foundations of the UML 9

Warshall’s algorithm

assume: vertices are numbered {1, 2, . . . , n} where n = |E|

for j ∈ {1, . . . , n+1} define relation j=⇒ as follows:
x

j=⇒ y iff ∃ path in R from x to y such that all vertices
on the path (%= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1=⇒ y

(2) x
1=⇒ y iff x = y

(3) x
y+1=⇒ z iff x

y=⇒ z or x
y=⇒ y

y=⇒ z

Algorithm: determine the relations 1=⇒, . . . ,
n=⇒,

n+1=⇒ iteratively
using properties (1) + (2)

Store i=⇒ in a boolean matrix C

Postcondition: C[x, y] = true iff (x, y) ∈ R∗

Precondition: ∀x, y ∈ X . C[x, y] = false

Joost-Pieter Katoen Foundations of the UML 10

Warshall’s algorithm (1)

for x := 1 to n do
for y := 1 to n do

C[x, y] := (x = y or (x, y) ∈ R︸ ︷︷ ︸
x%y

)

/* loop invariant */
/* after the j-th iteration of outermost loop it holds: C[x, y] iff x

j+1=⇒ y */
for y := 1 to n do

for x := 1 to n do
if C[x, y] then

for z := 1 to n do
if C[y, z] then

C[x, z] := true

Joost-Pieter Katoen Foundations of the UML 11

Correctness and complexity

Lemma: correctness

After j iterations: x
j+1=⇒ y iff C[x, y] = 1.

Proof:
by induction on j; on the black board

Complexity
Time complexity of Warshall’s algorithm : O(n3) where n = |X|

Proof:
follows from the fact that each loop has at most n iterations.

Joost-Pieter Katoen Foundations of the UML 12

Efficiency improvement [Alur et al. ’96] (1)

Warshall’s algorithm determines R∗ for any binary relation R.

Using some properties of) the complexity can be improved.

Exploit that for):
) is acyclic

number of immediate predecessors of e ∈ E
under) is at most two (why?)

Note: e is an immediate predecessor of e′ if:

e) e′ and ¬(∃e′′ /∈ {e, e′}. e) e′′) e′)

Joost-Pieter Katoen Foundations of the UML 13

Efficiency improvement [Alur et al. ’96] (2)

Body of the algorithm for detecting races now becomes:

for e := 1 to n do
for e′ := e − 1 downto 1 do

if C[e′, e] then
for e′′ := 1 to e′ − 1 do

if C[e′′, e′] then
C[e′′, e] := true

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then

C[e′′, e] := true

this part is executed for (e, e′) only if e′ is an immediate predecessor of
e, i.e., # inner loops ≤ 2 · n =⇒ time complexity O(n2)

Joost-Pieter Katoen Foundations of the UML 14

Sets of MSCs

MSC specifies a single scenario

Typically: a set of scenarios
+ an ordering relation between them:

after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Foundations of the UML 15

Message Sequence Graphs

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 = λ(u0) • λ(u2) • λ(u0) • λ(u1)

Joost-Pieter Katoen Foundations of the UML 16

Definition

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G is a tuple G = (V,→, v0, F, λ)
with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges
v0 ∈ V is the starting (or: initial) vertex
F ⊆ V is a set of final vertices
λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:
1 an MSG is an NFA without input alphabet where states are MSCs
2 every MSC is an MSG

Joost-Pieter Katoen Foundations of the UML 17

Concatenation of MSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) i ∈ {1, 2}
be two MSCs with E1 ∩ E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 • M2 = (P, E, C, l,m,<) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2

(with E? = E1,? ∪ E2,? etc.)

l(e) =
{

l1(e) if e ∈ E1

l2(e) if e ∈ E2
m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

< = <1 ∪ <2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e′ ∈ E2 ∩ Ep}

Joost-Pieter Katoen Foundations of the UML 18

Concatenation of MSCs (2)

Note
events are ordered process-wise:

events at p in MSC M1 precede events at p in MSC M2

thus: some processes may proceed to M2 before others!

%=: first complete M1 then execute M2

Joost-Pieter Katoen Foundations of the UML 19

Example (1)

p1 p2 p3

ae1 e2

•

p1 p2 p3

b

c

e′1e′2

e′3e′4

=

p1 p2 p3

a

b

c

e1 e2

e′1e′2

e′3e′4

M1:

M2:
M1 • M2

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1<:

<1:

<2:

Joost-Pieter Katoen Foundations of the UML 20

Example (2)

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1<:

<1:

<2:

Note:
Events e1 and e′1 are not ordered in M1 • M2

Example:
e1 e2 e′1 e′2 . . . ∈ Lin(M1 • M2)
e′1 e1 e2 e′2 . . . ∈ Lin(M1 • M2)

Joost-Pieter Katoen Foundations of the UML 21

Properties

1 Concatenation is associative:

(M1 • M2) • M3 = M1 • (M2 • M3)

2 Concatenation preserves the FIFO property:

M1 is FIFO & M2 is FIFO implies M1 • M2 is FIFO

3 Race-freeness, however, is not preserved

M1 is race-free & M2 is race-free %⇒ M1 • M2 is race-free

Joost-Pieter Katoen Foundations of the UML 22

Preliminaries

Let G = (V,→, v0, F, λ) be an MSG.

Definition
A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The MSC of a path π = u0 . . . un is:

M(π) = λ(u0)︸ ︷︷ ︸
MSC of u0

• λ(u1)︸ ︷︷ ︸
MSC of u1

• . . . • λ(un)︸ ︷︷ ︸
MSC of un

=
n∏

i=0

λ(ui)

Joost-Pieter Katoen Foundations of the UML 23

Language of an MSG

Definition
The (MSC) language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Definition
The word language of MSG G is Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k⋃

i=1

Lin(Mi).

Joost-Pieter Katoen Foundations of the UML 24

Example

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 is accepting;u0 u2 u0 u2 is not accepting

Joost-Pieter Katoen Foundations of the UML 25

Races in MSGs

Recall: MSC M has a race if < %⊆)∗

or, equivalently Lin(E,<) %⊆ Lin(E,)∗)
or, equivalently Lin(E,<) ⊂ Lin(E,)∗)

Definition
MSG G has a race if Lin(G,<) ⊂ Lin(E,)∗)

Theorem ([Muscholl & Peled ’99])
The decision problem “MSG G has a race” is undecidable.

Proof.
by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on.

Joost-Pieter Katoen Foundations of the UML 26

Example

p1 p2 p3
a

b

p1 p2 p3

c

G:

MSG G has a race.

Joost-Pieter Katoen Foundations of the UML 27

Expressiveness of MSGs (1)

Fact 1:
The state space of an MSGs may be infinite.

The state of an MSC with event set E is E′ ⊆ E such that
e ∈ E′ ∧ e′ < e =⇒ e′ ∈ E′ (i.e., E′ is downward-closed wrt. <)

The set of states of M is M ’s state space

The state space of MSG G is the union of the state spaces of Mi with
Mi ∈ L(G).

Joost-Pieter Katoen Foundations of the UML 28

Example

p1 p2

e e′

G:

G is infinite state

A possible state is {e(1), e(2), e(3), . . .}
(where e(i) is the occurrence of e in the i-th iteration)

=⇒ system that realizes G requires unbounded communication channel

Joost-Pieter Katoen Foundations of the UML 29

Expressiveness of MSGs (1)

Fact 2:
The state space of an MSG may not be context-free.

p1 p2 p3
a

b

e1 e2

e3 e4

G:

States of G are of the form {ek
1 el

2 em
3 en

4 | k ≥ l ≥ m ≥ n}

This language is not context-free

Joost-Pieter Katoen Foundations of the UML 30

Expressiveness of MSGs (1)

Fact 3:
The state space of an MSG is context-sensitive.

Let w,w′ ∈ E∗, and M an MSC with event set E. Then it holds:
(1) w e e′ w′ ∈ Lin(M) , l(e) = ?(q, p, b)

l(e′) = !(p, q, a)
implies w e′ e w′ ∈ Lin(M). not the reverse!

(2) w e e′ w′ ∈ Lin(M) , l(e) = !(p, q, a)
l(e′) = ?(q, p, b)

and

∑

m∈C
|w|!(p,q,m)

︸ ︷︷ ︸
number of sends
from p to q in w

>
∑

m∈C
|w|?(q,p,m)

︸ ︷︷ ︸
number of receipts
of q from p in w

implies w e′ e w′ ∈ Lin(M).
Joost-Pieter Katoen Foundations of the UML 31

Expressiveness of MSGs (2)

(3) w e e′ w′ ∈ Lin(M) , e ∈ Ep , e′ ∈ Eq , p %= q
and e, e′ do not match like in (1) or (2) (cf. previous slide)

implies w e′ e w′ ∈ Lin(M).

Note:
Rule (2) is a context-sensitive rule of form X a b Y −→ X b a Y as its
applicability depends on the number of sends and receipts in the
context X.

Note:
The results so far do not imply that any context-sensitive language is
MSG-definable.

Joost-Pieter Katoen Foundations of the UML 32

Context sensitivity (informal argument)

Take MSG G and use vertex identities as vertex labels.

K(G) = set of “accepting” vertex sequences

Replace each vertex v by Lin(λ(v))
(interpret sequencing element wise)

Let the resulting set be K̃(G)

Close K̃(G) under the permutation rules (1), (2), (3)
(cf. previous slides)

The resulting word language is context-sensitive.

Joost-Pieter Katoen Foundations of the UML 33

