

Foundations of the UML

Lecture 3: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

26. Oktober 2009

Message Sequence Chart (MSC) (1)

Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

- \mathcal{P} , a finite set of **processes** $\{p_1, p_2, \dots, p_n\}$
- E , a finite set of **events**

$$E = \biguplus_{p \in \mathcal{P}} E_p = \underbrace{E_? \cup E_! \cup E_{\text{loc}}}_{\text{partitioning of } E}$$

- \mathcal{C} , a finite set of **message content**
- $l : E \rightarrow \text{Act}$, a **labelling** function defined by:

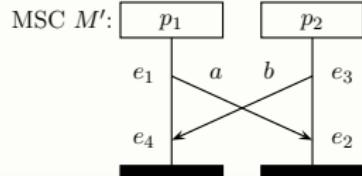
$$l(e) = \begin{cases} !(p, q, a) & \text{if } e \in E_p \cap E_! \\ ?(p, q, a) & \text{if } e \in E_p \cap E_? \quad , p \neq q \in \mathcal{P}, a \in \mathcal{C} \\ p(a) & \text{if } e \in E_p \cap E_{\text{loc}} \end{cases}$$

Definition

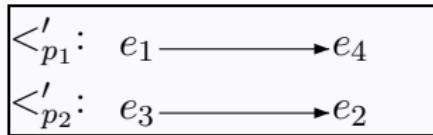
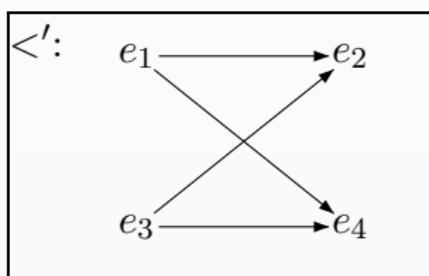
- $m : E_! \rightarrow E_?$ a bijection (“**matching function**”), satisfying:
 $m(e) = e' \wedge l(e) = !(p, q, a)$ implies $l(e') = ?(q, p, a)$ ($p \neq q, a \in \mathcal{C}$)
- $< \subseteq E \times E$ is a partial order (“**visual order**”)

$$< = \left(\bigcup_{p \in \mathcal{P}} <_p \cup \{(e, m(e)) \mid e \in E_!\} \right)^*$$

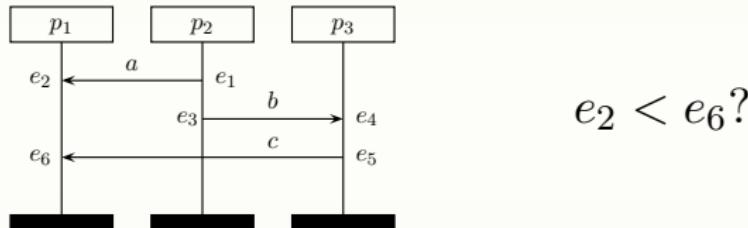
Example



$M' = \underbrace{(\mathcal{P}, E, \mathcal{C}, l, m)}_{\text{as above}}, <'$ with:



Visual order vs. possible order



If message b takes much shorter than message a ,
then c might arrive at p_1 before a !

Formally: $<_{p_1} = \{e_6, e_2\}$ is possible but \neq visual order.

When are such situations possible and how to detect them?

Races (1)

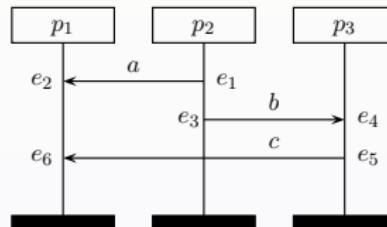
- Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ be an MSC.
- Let $\ll \subseteq E \times E$ be defined by:

$e \ll e'$ iff $e' = m(e)$

or $e <_p e'$ and $E_! \cap \{e, e'\} \neq \emptyset$

or $e, e' \in E_p \cap E_?$ and $m^{-1}(e) <_q m^{-1}(e')$

\ll is the “interpreted / possible order” (also called **causal order**)



Example

$$e_1 \ll e_2, \quad e_3 \ll e_4, \quad e_5 \ll e_6, \quad e_1 \ll e_3, \quad e_4 \ll e_5, \quad \neg(e_2 \ll e_6)$$

Races (2)

Definition

MSC M contains **a race** if for some $e, e' \in E_?$:

$$e <_p e' \text{ but } \neg(e \ll^* e')$$

where $\ll^* \subseteq E \times E$ is the reflexive and transitive closure of \ll .

- How to check whether MSC M has a race?

compute \ll^ and compare to $<_p$*

- \ll^* can be computed using **Floyd-Warshall's algorithm**
worst-case time complexity $\mathcal{O}(|E|^3)$, improved here to $\mathcal{O}(|E|^2)$

Races (3)

MSC M has a **race** if $< \not\subseteq \ll^*$ or equivalently:

$$\exists e, e' \in E_? . (e <_p e' \text{ and } e \not\ll^* e')$$

\Rightarrow protocol implementation based on $<_p$ may cause problems, e.g.,

- ➊ unspecified message reception
- ➋ deadlock situations
- ➌ use content of wrong message

Computing \ll^* : Warshall's algorithm

Algorithm

compute \ll^* and compare with $<$

Warshall's Algorithm

Warshall's Algorithm: input: $R \subseteq X \times X$ where X is a set
output: R^*

Idea:

Consider R and R^* as directed graphs

There is an edge $x \Rightarrow y$ in R^* iff there is a (possibly empty) path

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots \rightarrow x_n = y \text{ in } R$$

(our setting: $X = E, R = \ll, R^* = \ll^*$)

Warshall's algorithm

- assume: vertices are numbered $\{1, 2, \dots, n\}$ where $n = |E|$
- for $j \in \{1, \dots, n+1\}$ define relation \xrightarrow{j} as follows:
 $x \xrightarrow{j} y$ iff \exists path in R from x to y such that all vertices on the path ($\neq x, y$) have a smaller number than j
- Then:
 - (1) $x \xrightarrow{} y$ iff $x \xrightarrow{n+1} y$
 - (2) $x \xrightarrow{1} y$ iff $x = y$
 - (3) $x \xrightarrow{y+1} z$ iff $x \xrightarrow{y} z$ or $x \xrightarrow{y} y \xrightarrow{y} z$
- Algorithm: determine the relations $\xrightarrow{1}, \dots, \xrightarrow{n}, \xrightarrow{n+1}$ iteratively using properties (1) + (2)
- Store \xrightarrow{i} in a boolean matrix C
- Postcondition: $C[x, y] = \text{true}$ iff $(x, y) \in R^*$
- Precondition: $\forall x, y \in X . C[x, y] = \text{false}$

Warshall's algorithm (1)

```
for x := 1 to n do
    for y := 1 to n do
         $C[x, y] := (x = y \text{ or } \underbrace{(x, y) \in R}_{x \ll y})$ 
    /* loop invariant
    /* after the  $j$ -th iteration of outermost loop it holds:  $C[x, y]$  iff  $x \xrightarrow{j+1} y$  */
for y := 1 to n do
    for x := 1 to n do
        if  $C[x, y]$  then
            for z := 1 to n do
                if  $C[y, z]$  then
                     $C[x, z] := \text{true}$ 
```

Correctness and complexity

Lemma: correctness

After j iterations: $x \xrightarrow{j+1} y$ iff $C[x, y] = 1$.

Proof:

by induction on j ; on the black board

Complexity

Time complexity of Warshall's algorithm : $\mathcal{O}(n^3)$ where $n = |X|$

Proof:

follows from the fact that each loop has at most n iterations.

Warshall's algorithm determines R^* for **any** binary relation R .

Using some properties of \ll the complexity can be improved.

Exploit that for \ll :

- \ll is acyclic
- number of **immediate predecessors** of $e \in E$ under \ll is at most two **(why?)**
- Note: e is an **immediate predecessor** of e' if:

$$e \ll e' \text{ and } \neg(\exists e'' \notin \{e, e'\}. e \ll e'' \ll e')$$

Body of the algorithm for detecting races now becomes:

```
for  $e := 1$  to  $n$  do
    for  $e' := e - 1$  downto 1 do
        if  $C[e', e]$  then
            for  $e'' := 1$  to  $e' - 1$  do
                if  $C[e'', e']$  then
                     $C[e'', e] := \text{true}$ 
                    for  $e'' := 1$  to  $e' - 1$  do
                        if  $C[e'', e']$  then
                             $C[e'', e] := \text{true}$ 
```

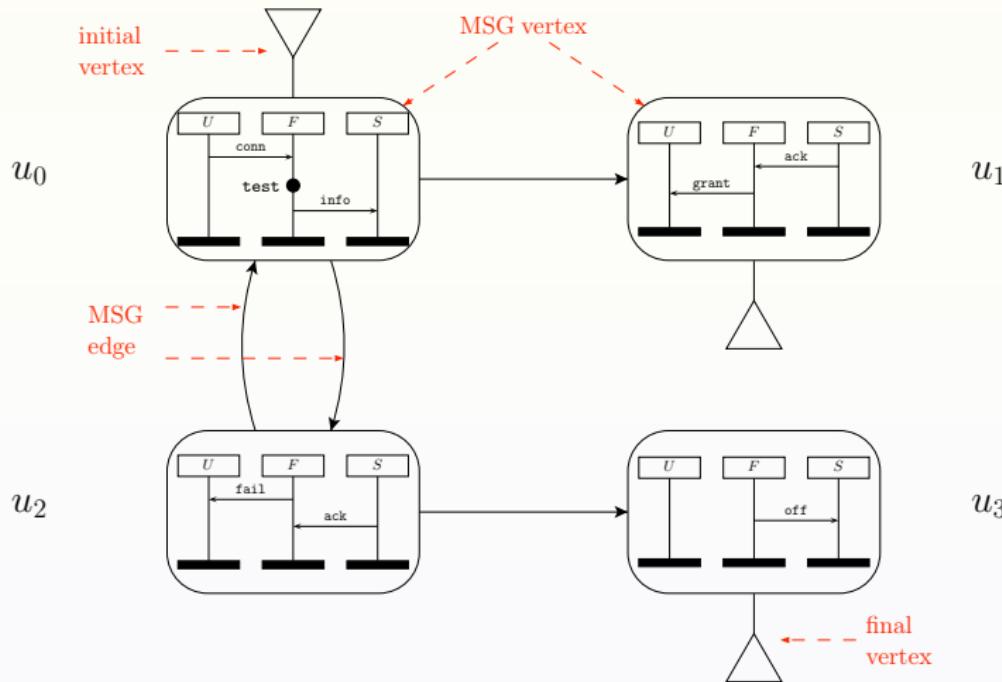
this part is executed for (e, e') only if e' is an immediate predecessor of e , i.e., $\# \text{ inner loops} \leq 2 \cdot n \implies \text{time complexity } \mathcal{O}(n^2)$

- MSC specifies a single scenario
- Typically: a set of scenarios
- + an ordering relation between them:
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs repeatedly
- Need for: **sequential composition** (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields **Message Sequence Graphs**

- Alternatives: ensembles of MSCs, high-level MSCs (**MSC'96**)

Message Sequence Graphs



$$u_0 \ u_2 \ u_0 \ u_1 = \lambda(u_0) \bullet \lambda(u_2) \bullet \lambda(u_0) \bullet \lambda(u_1)$$

Definition

Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

A **Message Sequence Graph** (MSG) G is a tuple $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges
- $v_0 \in V$ is the starting (or: initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Note:

- ① an MSG is an NFA without input alphabet where states are MSCs
- ② every MSC is an MSG

Concatenation of MSCs (1)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i)$ $i \in \{1, 2\}$
be two MSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of M_1 and M_2 is the MSC
 $M_1 \bullet M_2 = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \quad E = E_1 \cup E_2 \quad \mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$$

(with $E_? = E_{1,?} \cup E_{2,?}$ etc.)

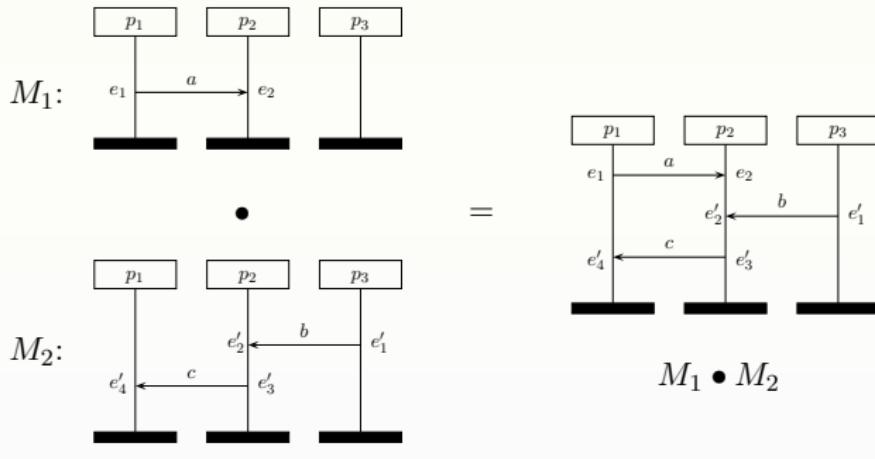
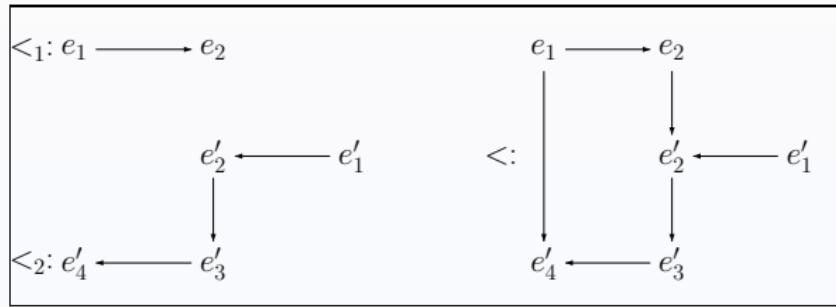
$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases} \quad m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

$$< = <_1 \cup <_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\}$$

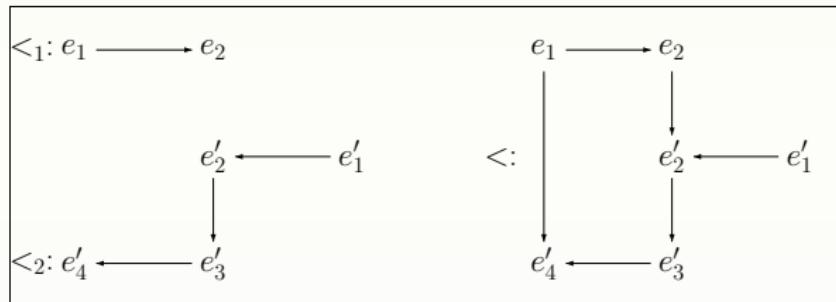
Note

- events are ordered process-wise:
events at p in MSC M_1 precede events at p in MSC M_2
- thus: some processes may proceed to M_2 before others!
- \neq : first complete M_1 then execute M_2

Example (1)



Example (2)



Note:

Events e_1 and e_1' are not ordered in $M_1 \bullet M_2$

Example:

$e_1 \quad e_2 \quad e_1' \quad e_2' \dots \in Lin(M_1 \bullet M_2)$

$e_1' \quad e_1 \quad e_2 \quad e_2' \dots \in Lin(M_1 \bullet M_2)$

- ① Concatenation is **associative**:

$$(M_1 \bullet M_2) \bullet M_3 = M_1 \bullet (M_2 \bullet M_3)$$

- ② Concatenation preserves the **FIFO** property:

M_1 is FIFO & M_2 is FIFO implies $M_1 \bullet M_2$ is FIFO

- ③ Race-freeness, however, is not preserved

M_1 is race-free & M_2 is race-free $\not\Rightarrow M_1 \bullet M_2$ is race-free

Preliminaries

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

Definition

A **path** π of G is a finite sequence

$$\pi = u_0 \ u_1 \ \dots \ u_n \text{ with } u_i \in V \ (0 \leq i \leq n) \text{ and } u_i \rightarrow u_{i+1} \ (0 \leq i < n)$$

Definition

Path $\pi = u_0 \ \dots \ u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **MSC of a path** $\pi = u_0 \ \dots \ u_n$ is:

$$M(\pi) = \underbrace{\lambda(u_0)}_{\text{MSC of } u_0} \bullet \underbrace{\lambda(u_1)}_{\text{MSC of } u_1} \bullet \dots \bullet \underbrace{\lambda(u_n)}_{\text{MSC of } u_n} = \prod_{i=0}^n \lambda(u_i)$$

Language of an MSG

Definition

The **(MSC) language** of MSG G is defined by:

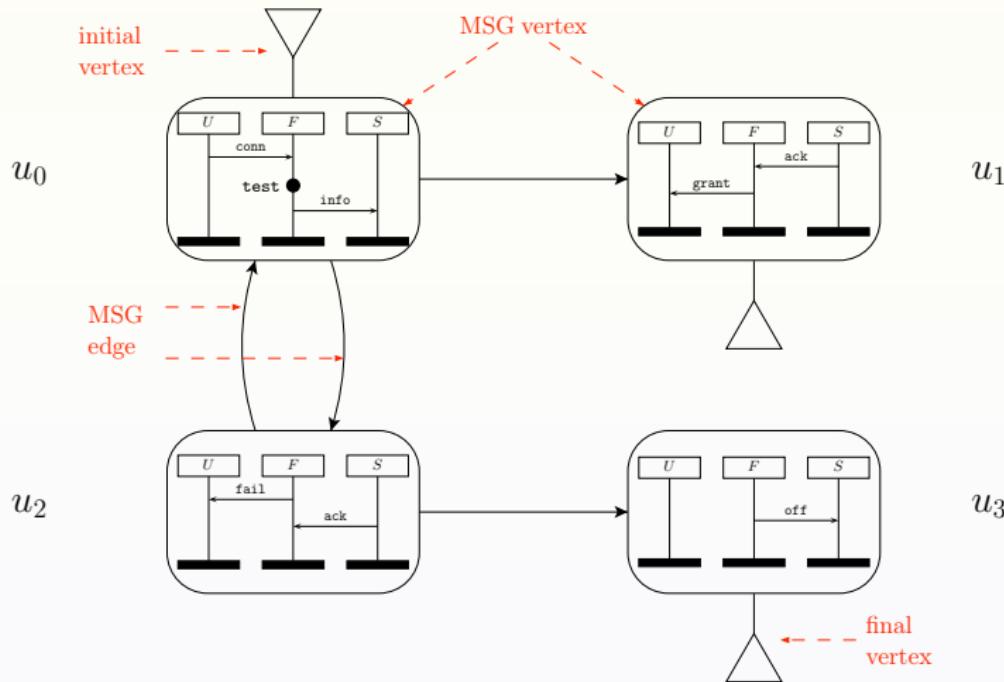
$$L(G) = \{M(\pi) \mid \pi \text{ is an accepting path of } G\}.$$

Definition

The **word language** of MSG G is $Lin(L(G))$ where

$$Lin(\{M_1, \dots, M_k\}) = \bigcup_{i=1}^k Lin(M_i).$$

Example



$u_0 \ u_2 \ u_0 \ u_1$ is accepting; $u_0 \ u_2 \ u_0 \ u_2$ is not accepting

Races in MSGs

Recall: MSC M has a race if $< \not\subseteq \ll^*$

or, equivalently $\text{Lin}(E, <) \not\subseteq \text{Lin}(E, \ll^*)$

or, equivalently $\text{Lin}(E, <) \subset \text{Lin}(E, \ll^*)$

Definition

MSG G has a **race** if $\text{Lin}(G, <) \subset \text{Lin}(E, \ll^*)$

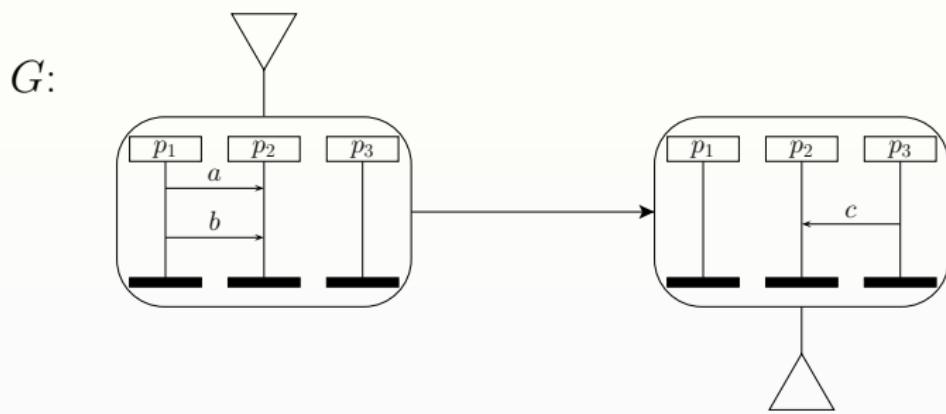
Theorem ([Muscholl & Peled '99])

*The decision problem “MSG G has a race” is **undecidable**.*

Proof.

by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on. □

Example



MSG G has a race.

Expressiveness of MSGs (1)

Fact 1:

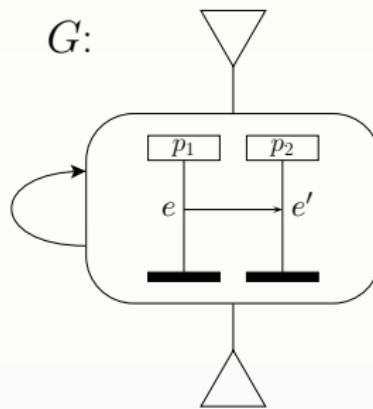
The state space of an MSGs may be infinite.

The **state** of an MSC with event set E is $E' \subseteq E$ such that $e \in E' \wedge e' < e \implies e' \in E'$ (i.e., E' is downward-closed wrt. $<$)

The set of states of M is M 's **state space**

The state space of MSG G is the union of the state spaces of M_i with $M_i \in L(G)$.

Example



G is infinite state

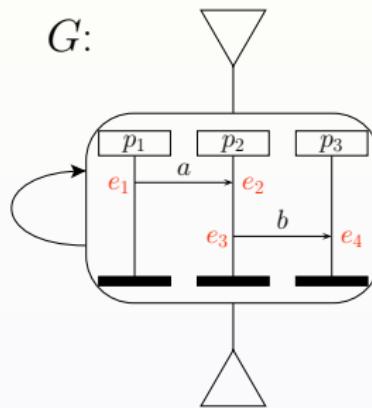
A possible state is $\{e^{(1)}, e^{(2)}, e^{(3)}, \dots\}$
(where $e^{(i)}$ is the occurrence of e in the i -th iteration)

⇒ system that realizes G requires **unbounded** communication channel

Expressiveness of MSGs (1)

Fact 2:

The state space of an MSG may not be context-free.



States of G are of the form $\{e_1^k e_2^l e_3^m e_4^n \mid k \geq l \geq m \geq n\}$

This language is not context-free

Expressiveness of MSGs (1)

Fact 3:

The state space of an MSG is context-sensitive.

Let $w, w' \in E^*$, and M an MSC with event set E . Then it holds:

$$(1) \quad w \textcolor{red}{e} \textcolor{blue}{e}' w' \in \text{Lin}(M), \quad l(\textcolor{red}{e}) = ?(q, p, b) \\ l(\textcolor{blue}{e}') = !(p, q, a)$$

implies $w \textcolor{blue}{e}' \textcolor{red}{e} w' \in \text{Lin}(M)$.

not the reverse!

$$(2) \quad w \textcolor{red}{e} \textcolor{blue}{e}' w' \in \text{Lin}(M), \quad l(\textcolor{red}{e}) = !(p, q, a) \quad \text{and} \\ l(\textcolor{blue}{e}') = ?(q, p, b)$$

$$\underbrace{\sum_{m \in \mathcal{C}} |w|_{!(p, q, m)}}_{\substack{\text{number of sends} \\ \text{from } p \text{ to } q \text{ in } w}} > \underbrace{\sum_{m \in \mathcal{C}} |w|_{?(q, p, m)}}_{\substack{\text{number of receipts} \\ \text{of } q \text{ from } p \text{ in } w}}$$

implies $w \textcolor{blue}{e}' \textcolor{red}{e} w' \in \text{Lin}(M)$.

Expressiveness of MSGs (2)

(3) $w \textcolor{red}{e} \textcolor{blue}{e}' w' \in \text{Lin}(M)$, $\textcolor{red}{e} \in E_p$, $\textcolor{blue}{e}' \in E_q$, $p \neq q$
and $\textcolor{red}{e}, \textcolor{blue}{e}'$ do not match like in (1) or (2) (cf. previous slide)

implies $w \textcolor{blue}{e}' \textcolor{red}{e} w' \in \text{Lin}(M)$.

Note:

Rule (2) is a **context-sensitive** rule of form $X a b Y \longrightarrow X b a Y$ as its applicability depends on the number of sends and receipts in the context X .

Note:

The results so far do not imply that any context-sensitive language is MSG-definable.

Context sensitivity (informal argument)

- Take MSG G and use vertex identities as vertex labels.
- $K(G) =$ set of “accepting” vertex sequences
- Replace each vertex v by $Lin(\lambda(v))$
(interpret sequencing element wise)
- Let the resulting set be $\tilde{K}(G)$
- Close $\tilde{K}(G)$ under the permutation rules (1), (2), (3)
(cf. previous slides)

The resulting word language is **context-sensitive**.