
Foundations of the UML
Lecture 4: Properties of Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

27. Oktober 2009

Joost-Pieter Katoen Foundations of the UML 1



Message sequence graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G is a tuple G = (V,→, v0, F, λ)
with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges
v0 ∈ V is the starting (or: initial) vertex
F ⊆ V is a set of final vertices
λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:
1 an MSG is an NFA without input alphabet where states are MSCs
2 every MSC is an MSG

Joost-Pieter Katoen Foundations of the UML 2



Message sequence graphs

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 = λ(u0) • λ(u2) • λ(u0) • λ(u1)

Joost-Pieter Katoen Foundations of the UML 3



Concatenation of MSCs

Let Mi = (Pi, Ei, Ci, li,mi, <i) i ∈ {1, 2}
be two MSCs with E1 ∩ E2 = ∅

The concatenation of MSCs M1 and M2 is the MSC
M1 • M2 = (P, E, C, l,m,<) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2

(with E? = E1,? ∪ E2,? etc.)

l(e) =
{

l1(e) if e ∈ E1

l2(e) if e ∈ E2
m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

< = <1 ∪ <2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩ Ep , e′ ∈ E2 ∩ Ep}

Joost-Pieter Katoen Foundations of the UML 4



MSC language of an MSG

Let G = (V,→, v0, F, λ) be an MSG.

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The MSC of a path π = u0 . . . un is:

M(π) = λ(u0)︸ ︷︷ ︸
MSC of u0

• λ(u1)︸ ︷︷ ︸
MSC of u1

• . . . • λ(un)︸ ︷︷ ︸
MSC of un

=
n∏

i=0

λ(ui)

Definition
The (MSC) language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Joost-Pieter Katoen Foundations of the UML 5



Facts about MSGs

Expressiveness
The state space of an MSG is context-sensitive.

Emptiness problem
Given MSGs G1 and G2, the problem to check whether
L(G1) ∩ L(G2) = ∅, is undecidable.

Local choice
Checking whether an MSG is local choice, is in PTIME.

Joost-Pieter Katoen Foundations of the UML 6



Intersection of MSGs

Theorem
The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.

Proof.
Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Foundations of the UML 7



Local choice property (1)

p q

a

p q

b

G:

v1 v2

Inconsistency if process p behaves according to v1

and process q behaves according to v2

=⇒ possible distributed realization may yield a deadlock

Problem:
Subsequent behavior is determined by distinct processes

Joost-Pieter Katoen Foundations of the UML 8



Example of local-choice MSG

p1 p2 p3

a

p1 p2 p3

b

p1 p2 p3

c

Inconsistency if p1 sends a and p3 sends c.

Joost-Pieter Katoen Foundations of the UML 9



Local choice property (2)

e is a minimal event wrt. ) if ¬(∃e′ *= e. e′ ) e)
p is active in MSC M if Ep *= ∅
p is active in path v1 . . . vn in MSG G if p is active in λ(vi) for
some i

Definition (local choice MSG)
MSG G = (V,→, v0, F, λ) is local choice if:

1 ∃ active p. ∀π ∈ Paths(v0).
π contains a single minimal event e ∈ Ep

2 ∀ branching vertex v ∈ V. with v → w
∃ active p . ∀π ∈ Paths(w).
π contains a single minimal event e ∈ Ep

Intuition:
Along every path from an initial or branching vertex there is a single process
deciding how to proceed which can inform the other processes how to proceed.

Joost-Pieter Katoen Foundations of the UML 10



Branching vertices

A vertex is branching if:

v1 vn. . .

...

or

︸ ︷︷ ︸
n ≥ 2





≥ 1

Joost-Pieter Katoen Foundations of the UML 11



Local choice

p1 p2

left

a

p1 p2

right

b

G:

Note:
Checking whether an MSG is local choice can be done in PTIME.

How can non-local choice be resolved?
Refine your MSG and add control messages (cf. above example)

Joost-Pieter Katoen Foundations of the UML 12



Restriction of MSGs [Yannakakis 1999]

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

This MSC cannot be decomposed as

M1 • M2 • . . . • Mn for n > 1

This can be seen as follows:
e1 and e2 = m(e1) must reside in same Mi

e3 < e2 and e1 < e4 thus
e3, e4 /∈ Mj , j < i or j > i

=⇒ e3, e4 ∈ Mi

by similar reasoning: e5, e6 ∈ Mi etc.

Problem:
Compulsory matching between send and receive in same MSG vertex
(i.e., send e and receive m(e))

Joost-Pieter Katoen Foundations of the UML 13



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition
M = (P, E, C, l,m,<) is a compositional MSC (CMSC, for short) where
P, E, C and l are as before, and

m : E! → E? is a partial, injective function such that (as before):

m(e) = e′ ∧ l(e) = !(p, q, a) =⇒ l(e′) = ?(q, p, a)

< =
(⋃

p∈P <p ∪ {(e,m(e)) | e ∈ dom(m)︸ ︷︷ ︸
domain of m︸ ︷︷ ︸

“m(e) is defined”

}
)∗

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Foundations of the UML 14



CMSC example

p1 p2

a
p2

b

c
p1

e1

e2 e3

e4

message
content intended

recipient

intended sender

m(e2) = e3

e1 /∈ dom(m)
e4 /∈ rng(m)

Definition
A compositional MSG (CMSG) G = (V,→, v0, F, λ) with λ : V → CM,
where CM is the set of all CMSCs, and V,→, v0, and F as before.

Joost-Pieter Katoen Foundations of the UML 15



Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 • M2 = (P1 ∪ P2, E, C1 ∪ C2, l,m,<) with:

E = E1 ∪ E2

l(e) = l1(e) if e ∈ E1 , l2(e) otherwise
m(e) = E! → E? satisfies:

1 m extends m1 and m2, i.e., e ∈ dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process
(matching from top to bottom)
the k-th unmatched send in M1 is matched with
the k-th unmatched receive in M2 (of the same “type”)

3 M1 • M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Foundations of the UML 16



Concatenation of CMSCs (2)
Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 • M2 = (P1 ∪ P2, E1 ∪ E2, C1 ∪ C2, l,m,<) with:

< is the reflexive and transitive closure of:
(⋃

p∈P <p,1 ∪ <p,2

)
∪ {(e, e′) | e ∈ E1 ∩ Ep , e′ ∈ E2 ∩ Ep}
∪ {(e,m(e) | e ∈ dom(m)}

Joost-Pieter Katoen Foundations of the UML 17



Examples
p1 p2

a
p2

c
p2

e1

e2

•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b
p1

a

c
p2

e1

e2

e3

e4

p1 p2

a
p2

b

c
p2

e1

e2 e3

e4

•

p1 p2

c
p1

a
p1

e5

e6

=

p1 p2

a
b

c

e1

e2

e4

e3

e5

e6

p1 p2

a
p2

b
p2

e1

e2

•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b a

e1

e2

e3

e4

M1 M2

M1 M2 non-FIFO!

M1 M2 cyclic!

Joost-Pieter Katoen Foundations of the UML 18



Associativity
p1 p2

a
p2

p1 p2

a
p1

a
p1

M M ′

(M • M) • M ′: p1 p2

a

a

M • (M • M ′): p1 p2

a

a =⇒ this is non-FIFO
(and thus undefined)

Note:
Concatenation of CMSCs is not associative.

Joost-Pieter Katoen Foundations of the UML 19



Paths

Let G = (V,→, v0, F, λ) be a CMSG.

Definition
A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The CMSC of a path π = u0 . . . un is:

M(π) = (. . . (λ(u0) • λ(u1)) • λ(u2) . . .) • λ(un) =
n∏

i=0

λ(ui)

where CMSC concatenation is left assiociative.
Joost-Pieter Katoen Foundations of the UML 20



Language of a CMSG

Definition
The (MSC) language of CMSG G is defined by:

L(G) = { M(π) ∈ M︸ ︷︷ ︸
only MSCs are considered

| π is an accepting path of G}.

Definition (safeness)
CMSG G is safe if for every accepting path π of G, M(π) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts.

Joost-Pieter Katoen Foundations of the UML 21



Consider again

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

M

Recall: this behavior cannot be modeled for
n > 1 by:

M = M1 • M2 • . . . • Mn with Mi ∈ M

p1 p2

a
p2

p1 p2

a
p2

b a
p1

p1 p2

a
p1

v0 v1 v2

The (safe) CMSG for the above MSC.

Joost-Pieter Katoen Foundations of the UML 22


