

Foundations of the UML

Lecture 4: Properties of Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

27. Oktober 2009

Message sequence graphs

Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

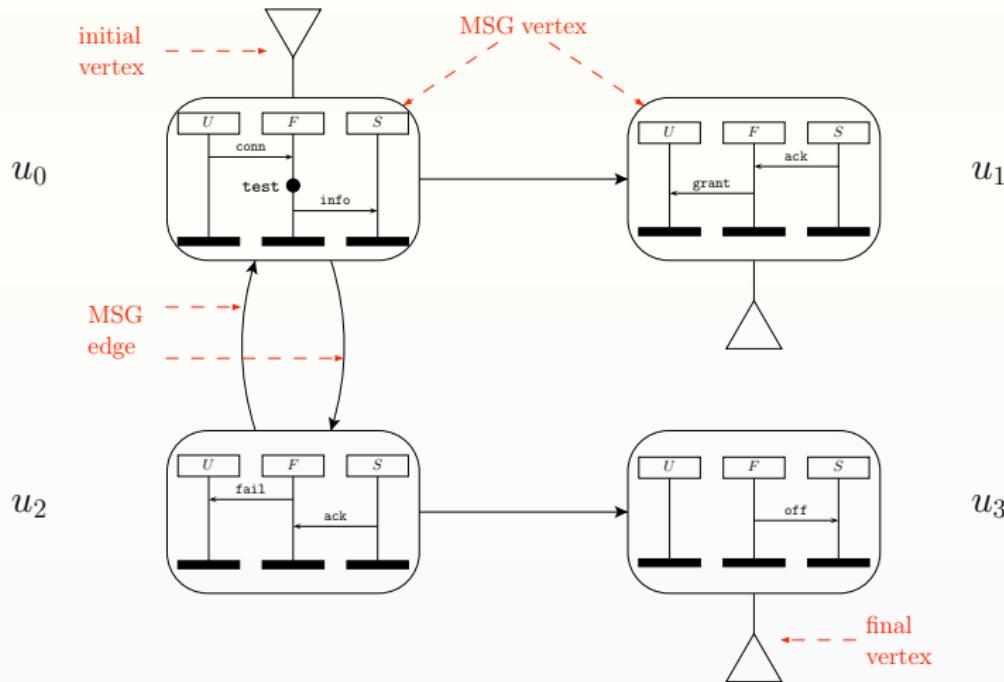
A **Message Sequence Graph** (MSG) G is a tuple $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges
- $v_0 \in V$ is the starting (or: initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Note:

- ① an MSG is an NFA without input alphabet where states are MSCs
- ② every MSC is an MSG

Message sequence graphs



$$u_0 \ u_2 \ u_0 \ u_1 = \lambda(u_0) \bullet \lambda(u_2) \bullet \lambda(u_0) \bullet \lambda(u_1)$$

Concatenation of MSCs

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i)$ $i \in \{1, 2\}$
be two MSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of MSCs M_1 and M_2 is the MSC
 $M_1 \bullet M_2 = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \quad E = E_1 \cup E_2 \quad \mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$$

(with $E_? = E_{1,?} \cup E_{2,?}$ etc.)

$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases} \quad m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

$$< = <_1 \cup <_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\}$$

MSC language of an MSG

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

Definition

Path $\pi = u_0 \dots u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **MSC of a path** $\pi = u_0 \dots u_n$ is:

$$M(\pi) = \underbrace{\lambda(u_0)}_{\text{MSC of } u_0} \bullet \underbrace{\lambda(u_1)}_{\text{MSC of } u_1} \bullet \dots \bullet \underbrace{\lambda(u_n)}_{\text{MSC of } u_n} = \prod_{i=0}^n \lambda(u_i)$$

Definition

The **(MSC) language** of MSG G is defined by:

$$L(G) = \{M(\pi) \mid \pi \text{ is an accepting path of } G\}.$$

Facts about MSGs

Expressiveness

The state space of an MSG is context-sensitive.

Emptiness problem

Given MSGs G_1 and G_2 , the problem to check whether $L(G_1) \cap L(G_2) = \emptyset$, is undecidable.

Local choice

Checking whether an MSG is local choice, is in PTIME.

Theorem

The decision problem:

for MSGs G_1 and G_2 , do we have $L(G_1) \cap L(G_2) = \emptyset$?

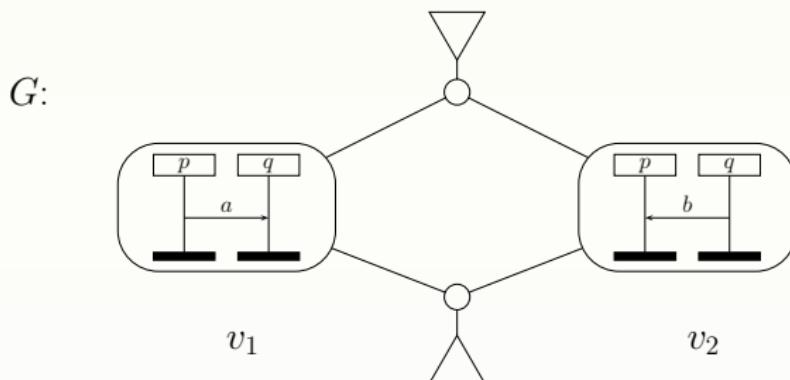
*is **undecidable**.*

Proof.

Reduction from Post's Correspondence Problem (PCP)

... black board ...

Local choice property (1)



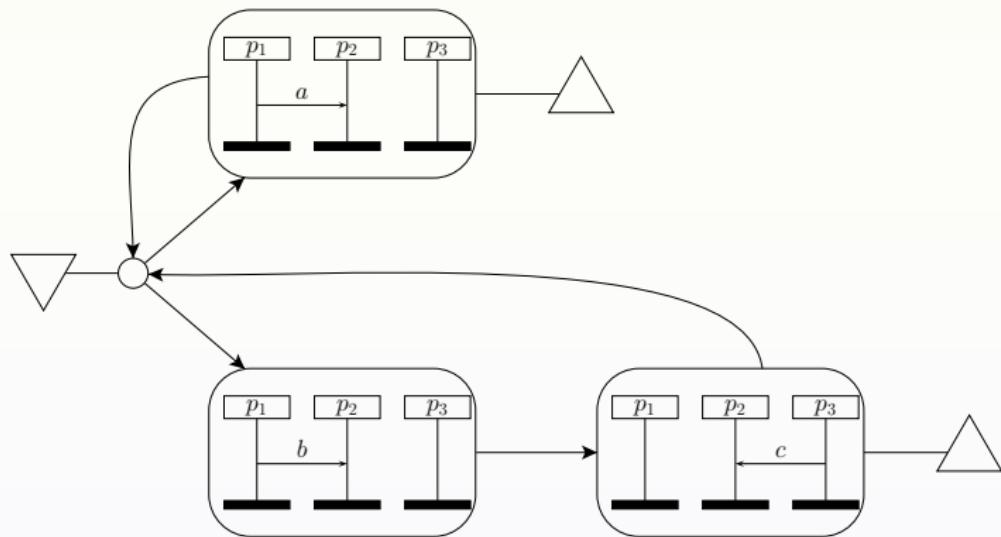
Inconsistency if process p behaves according to v_1
and process q behaves according to v_2

⇒ possible distributed realization may yield a deadlock

Problem:

Subsequent behavior is determined by distinct processes

Example of local-choice MSG



Inconsistency if p_1 sends a and p_3 sends c .

Local choice property (2)

- e is a minimal event wrt. \preceq if $\neg(\exists e' \neq e. e' \preceq e)$
- p is **active** in MSC M if $E_p \neq \emptyset$
- p is **active** in path $v_1 \dots v_n$ in MSG G if p is active in $\lambda(v_i)$ for some i

Definition (local choice MSG)

MSG $G = (V, \rightarrow, v_0, F, \lambda)$ is **local choice** if:

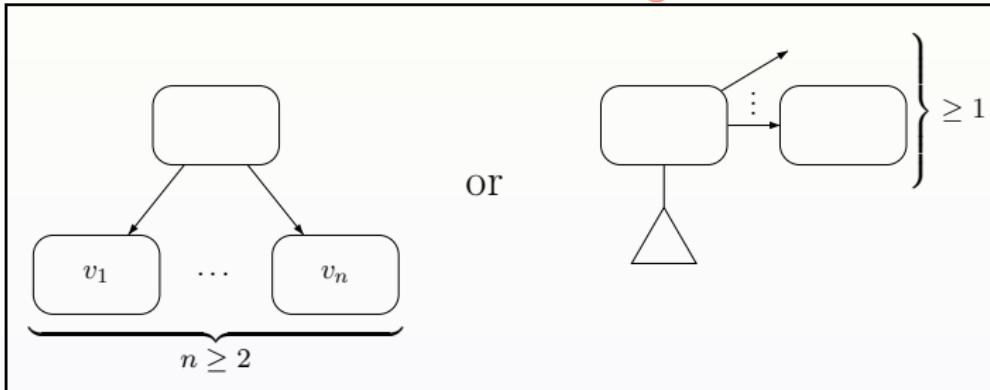
- ① \exists active $p. \forall \pi \in \text{Paths}(v_0).$
 π contains a single minimal event $e \in E_p$
- ② \forall branching vertex $v \in V.$ with $v \rightarrow w$
 \exists active $p. \forall \pi \in \text{Paths}(w).$
 π contains a single minimal event $e \in E_p$

Intuition:

Along every path from an initial or branching vertex there is a single process deciding how to proceed which can inform the other processes how to proceed.

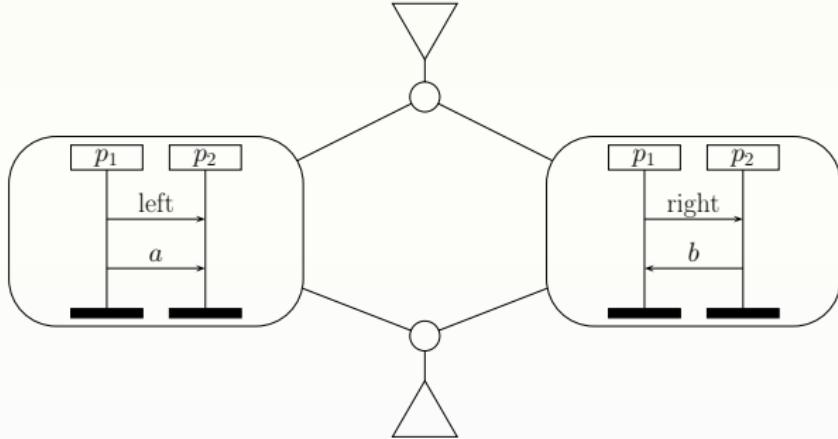
Branching vertices

A vertex is **branching** if:



Local choice

G :



Note:

Checking whether an MSG is local choice can be done in PTIME.

How can non-local choice be resolved?

Refine your MSG and add control messages (cf. above example)

This MSC **cannot** be decomposed as

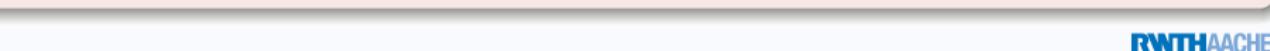
$$M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{for } n > 1$$

This can be seen as follows:

- e_1 and $e_2 = m(e_1)$ must reside in same M_i
- $e_3 < e_2$ and $e_1 < e_4$ thus
 $e_3, e_4 \notin M_j$, $j < i$ or $j > i$
 $\implies e_3, e_4 \in M_i$
- by similar reasoning: $e_5, e_6 \in M_i$ etc.

Problem:

Compulsory matching between send and receive in **same** MSG vertex
(i.e., send e and receive $m(e)$)



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and $m(e)$ belong to the same MSC
(= allow for incomplete message transfer)

Definition

$M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ is a **compositional MSC** (CMSC, for short) where $\mathcal{P}, E, \mathcal{C}$ and l are as before, and

- $m : E_! \rightarrow E_?$ is a partial, injective function such that (as before):

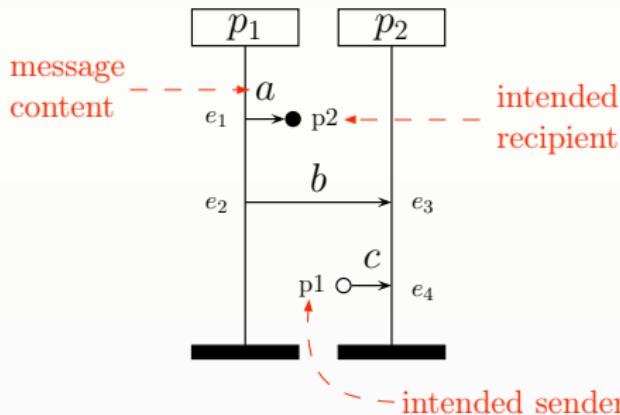
$$m(e) = e' \wedge l(e) = !(p, q, a) \implies l(e') = ?(q, p, a)$$

- $< = (\bigcup_{p \in \mathcal{P}} <_p \quad \cup \quad \{(e, m(e)) \mid e \in \underbrace{\text{dom}(m)}_{\substack{\text{domain of } m \\ \text{"}m(e)\text{ is defined"}}}\})^*$

Note:

An MSC is a CMSC where m is total and bijective.

CMSC example



$$m(e_2) = e_3$$
$$e_1 \notin \text{dom}(m)$$
$$e_4 \notin \text{rng}(m)$$

Definition

A **compositional MSG** (CMSC) $G = (V, \rightarrow, v_0, F, \lambda)$ with $\lambda : V \rightarrow \mathbb{CM}$, where \mathbb{CM} is the set of all CMSCs, and V, \rightarrow, v_0 , and F as before.

Concatenation of CMSCs (1)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i) \in \mathbb{CM}$ $i \in \{1, 2\}$
be CMSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of CMSCs M_1 and M_2 is the CMSC
 $M_1 \bullet M_2 = (\mathcal{P}_1 \cup \mathcal{P}_2, E, \mathcal{C}_1 \cup \mathcal{C}_2, l, m, <)$ with:

- $E = E_1 \cup E_2$
- $l(e) = l_1(e)$ if $e \in E_1$, $l_2(e)$ otherwise
- $m(e) = E_! \rightarrow E_?$ satisfies:
 - ① m extends m_1 and m_2 , i.e., $e \in \text{dom}(m_i)$ implies $m(e) = m_i(e)$
 - ② m matches unmatched send events in M_1 with unmatched receive events in M_2 according to order on process (matching from top to bottom)
the k -th unmatched send in M_1 is matched with the k -th unmatched receive in M_2 (of the same “type”)
- ③ $M_1 \bullet M_2$ is FIFO (when restricted to matched events)

Concatenation of CMSCs (2)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i) \in \mathbb{CM}$ $i \in \{1, 2\}$

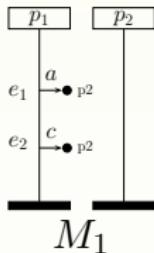
be CMSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of CMSCs M_1 and M_2 is the CMSC
 $M_1 \bullet M_2 = (\mathcal{P}_1 \cup \mathcal{P}_2, E_1 \cup E_2, \mathcal{C}_1 \cup \mathcal{C}_2, l, m, <)$ with:

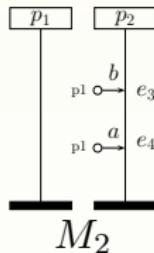
- $<$ is the reflexive and transitive closure of:

$$\begin{aligned} \left(\bigcup_{p \in \mathcal{P}} <_{p,1} \cup <_{p,2} \right) \cup & \quad \{(e, e') \mid e \in E_1 \cap E_p, e' \in E_2 \cap E_p\} \\ \cup & \quad \{(e, m(e)) \mid e \in \text{dom}(m)\} \end{aligned}$$

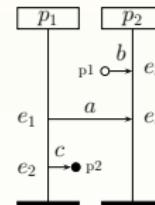
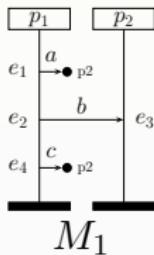
Examples



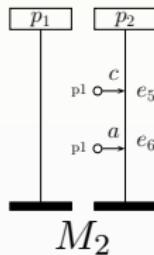
•



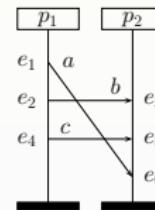
=



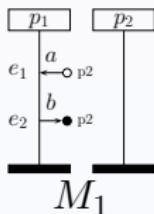
•



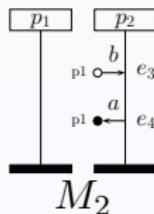
=



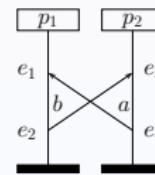
non-FIFO!



•

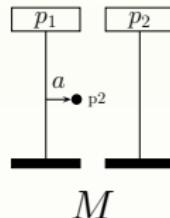
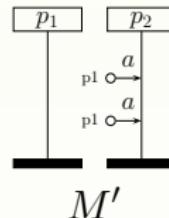


=

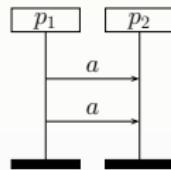


cyclic!

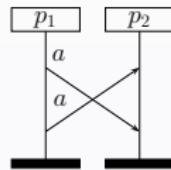
Associativity



$(M \bullet M) \bullet M'$:



$M \bullet (M \bullet M')$:



this is non-FIFO
(and thus undefined)

Note:

Concatenation of CMSCs is not associative.

Paths

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be a CMSG.

Definition

A **path** π of G is a finite sequence

$$\pi = u_0 \ u_1 \ \dots \ u_n \text{ with } u_i \in V \ (0 \leq i \leq n) \text{ and } u_i \rightarrow u_{i+1} \ (0 \leq i < n)$$

Definition

Path $\pi = u_0 \ \dots \ u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **CMSC of a path** $\pi = u_0 \ \dots \ u_n$ is:

$$M(\pi) = (\dots (\lambda(u_0) \bullet \lambda(u_1)) \bullet \lambda(u_2) \dots) \bullet \lambda(u_n) = \prod_{i=0}^n \lambda(u_i)$$

where CMSC concatenation is left associative.

Language of a CMSG

Definition

The (MSC) language of CMSG G is defined by:

$$L(G) = \{ \underbrace{M(\pi) \in \mathbb{M}}_{\text{only MSCs are considered}} \mid \pi \text{ is an accepting path of } G \}.$$

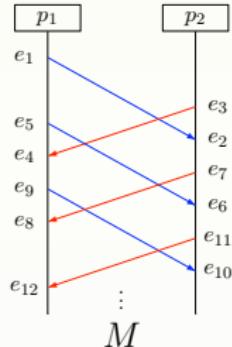
Definition (safeness)

CMSG G is **safe** if for every accepting path π of G , $M(\pi)$ is an MSC.

So:

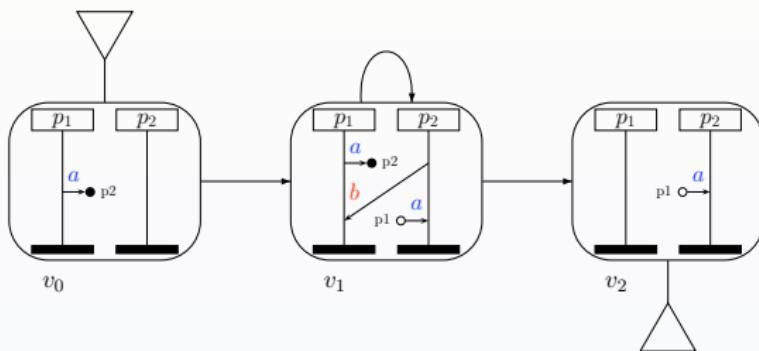
CMSG G is safe if on any of its accepting paths there are no unmatched sends and receipts.

Consider again



Recall: this behavior cannot be modeled for $n > 1$ by:

$$M = M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{with} \quad M_i \in \mathbb{M}$$



The (safe) CMSG for the above MSC.