

Foundations of the UML

Lecture 5: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

2. November 2009

Restriction of MSGs [Yannakakis 1999]

This MSC **cannot** be decomposed as

$$M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{for } n > 1$$

This can be seen as follows:

- e_1 and $e_2 = m(e_1)$ must reside in same M_i
- $e_3 < e_2$ and $e_1 < e_4$ thus
 $e_3, e_4 \notin M_j$, $j < i$ or $j > i$
 $\implies e_3, e_4 \in M_i$
- by similar reasoning: $e_5, e_6 \in M_i$ etc.

Problem:

Compulsory matching between send and receive in **same** MSG vertex
(i.e., send e and receive $m(e)$)

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and $m(e)$ belong to the same MSC
(= allow for incomplete message transfer)

Definition

$M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ is a **compositional MSC** (CMSC, for short) where $\mathcal{P}, E, \mathcal{C}$ and l are as before, and

- $m : E_! \rightarrow E_?$ is a partial, injective function such that (as before):

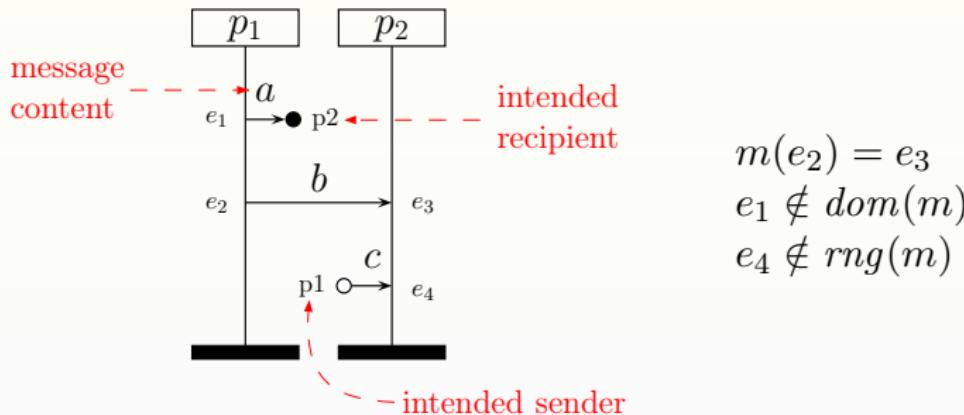
$$m(e) = e' \wedge l(e) = !(p, q, a) \implies l(e') = ?(q, p, a)$$

- $< = (\bigcup_{p \in \mathcal{P}} <_p \quad \cup \quad \{(e, m(e)) \mid e \in \underbrace{\text{dom}(m)}_{\substack{\text{domain of } m \\ \text{"}m(e)\text{ is defined"}}}\})^*$

Note:

An MSC is a CMSC where m is total and bijective.

CMSC example



Definition

A **compositional MSG** (CMSC) $G = (V, \rightarrow, v_0, F, \lambda)$ with $\lambda : V \rightarrow \mathbb{CM}$, where \mathbb{CM} is the set of all CMSCs, and V, \rightarrow, v_0 , and F as before.

Concatenation of CMSCs (1)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i) \in \mathbb{CM}$ $i \in \{1, 2\}$
be CMSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of CMSCs M_1 and M_2 is the CMSC
 $M_1 \bullet M_2 = (\mathcal{P}_1 \cup \mathcal{P}_2, E, \mathcal{C}_1 \cup \mathcal{C}_2, l, m, <)$ with:

- $E = E_1 \cup E_2$
- $l(e) = l_1(e)$ if $e \in E_1$, $l_2(e)$ otherwise
- $m(e) = E_! \rightarrow E_?$ satisfies:
 - ❶ m extends m_1 and m_2 , i.e., $e \in \text{dom}(m_i)$ implies $m(e) = m_i(e)$
 - ❷ m matches unmatched send events in M_1 with unmatched receive events in M_2 according to order on process
(matching from top to bottom)
the k -th unmatched send in M_1 is matched with
the k -th unmatched receive in M_2 (of the same “type”)
- ❸ $M_1 \bullet M_2$ is FIFO (when restricted to matched events)

Concatenation of CMSCs (2)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i) \in \mathbb{CM}$ $i \in \{1, 2\}$

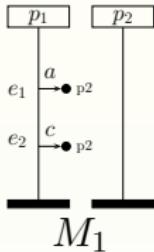
be CMSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of CMSCs M_1 and M_2 is the CMSC
 $M_1 \bullet M_2 = (\mathcal{P}_1 \cup \mathcal{P}_2, E_1 \cup E_2, \mathcal{C}_1 \cup \mathcal{C}_2, l, m, <)$ with:

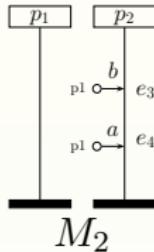
- $<$ is the reflexive and transitive closure of:

$$\begin{aligned} \left(\bigcup_{p \in \mathcal{P}} <_{p,1} \cup <_{p,2} \right) \cup & \quad \{(e, e') \mid e \in E_1 \cap E_p, e' \in E_2 \cap E_p\} \\ \cup & \quad \{(e, m(e)) \mid e \in \text{dom}(m)\} \end{aligned}$$

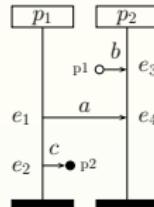
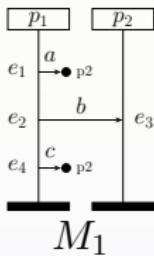
Examples



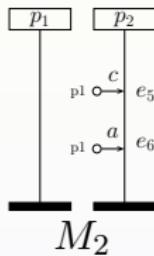
•



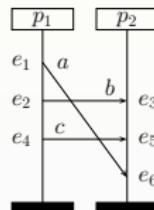
=



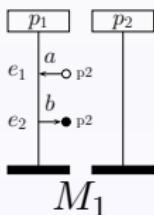
•



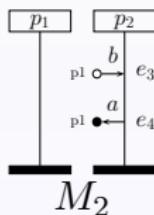
=



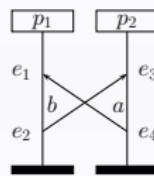
non-FIFO!



•

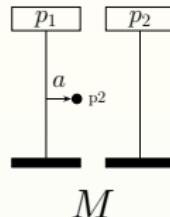
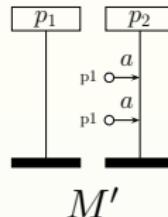


=

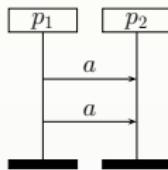


cyclic!

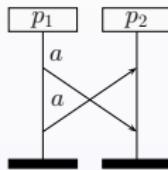
Associativity



$(M \bullet M) \bullet M'$:



$M \bullet (M \bullet M')$:



this is non-FIFO
(and thus undefined)

Note:

Concatenation of CMSCs is not associative.

Paths

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be a CMSG.

Definition

A **path** π of G is a finite sequence

$$\pi = u_0 \ u_1 \ \dots \ u_n \text{ with } u_i \in V \ (0 \leq i \leq n) \text{ and } u_i \rightarrow u_{i+1} \ (0 \leq i < n)$$

Definition

Path $\pi = u_0 \ \dots \ u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **CMSC of a path** $\pi = u_0 \ \dots \ u_n$ is:

$$M(\pi) = (\dots (\lambda(u_0) \bullet \lambda(u_1)) \bullet \lambda(u_2) \dots) \bullet \lambda(u_n) = \prod_{i=0}^n \lambda(u_i)$$

where CMSC concatenation is left associative.

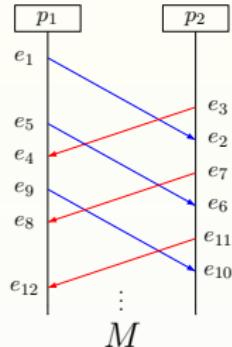
The MSC language of a CMSG

Definition

The **(MSC) language** of CMSG G is defined by:

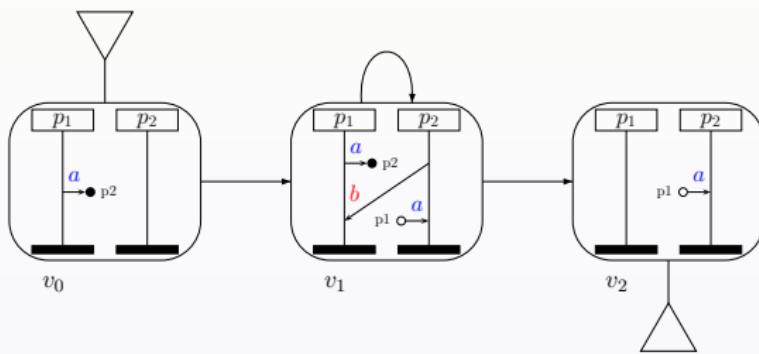
$$L(G) = \{ \underbrace{M(\pi) \in \mathbb{M}}_{\text{only MSCs are considered}} \mid \pi \text{ is an accepting path of } G \}.$$

Consider again



Recall: this behavior cannot be modeled for $n > 1$ by:

$$M = M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{with} \quad M_i \in \mathbb{M}$$



The (safe) CMSG for the above MSC.

Definition

Path π of CMSG G is **safe** whenever $M(\pi) \in \mathbb{M}$.

Definition (safeness)

CMSG G is **safe** if for any accepting path π of G , $M(\pi)$ is an MSC.

So:

CMSG G is safe if on any of its accepting paths there are no unmatched sends and receipts, i.e., if any of its executions is an MSC.

Theorem:

The decision problem “does CMSG G have at least one safe, accepting path?” is **undecidable**.

Theorem:

The decision problem “is CMSG G safe?” is **decidable in PTIME**.

Existence of safe accepting paths

Theorem

The decision problem:

does $CMSG\ G$ have a safe, accepting path?

*is **undecidable**.*

Proof.

Reduction from Post's Correspondence Problem (PCP)

... black board ...

All accepting paths are safe

Theorem

The decision problem:

are all accepting paths of CMSG G safe?

*is **decidable**.*

Proof.

Polynomial reduction to reachability problem in pushdown automata

... black board ...

Definition

A **pushdown** automaton (PDA, for short) $K = (Q, q_0, \Gamma, \Sigma, \Delta)$ with

- Q , a finite set of control states
- $q_0 \in Q$, the initial state
- Γ , a finite stack alphabet
- Σ , a finite input alphabet
- $\Delta \subseteq Q \times \Sigma \times \Gamma \times Q \times \{\text{push, pop, skip}\}$, the transition relation.

Example

$(q, a, \gamma, q', \text{pop}) \in \Delta$ means: in state q , on reading input symbol a and top of stack is symbol γ , change to q' and pop γ .

Definition

A **configuration** c is a triple (state q , stack content Z , rest input w).

Definition

Given a transition in Δ , a (direct) **successor** configuration c' of c is obtained: $c \vdash c'$.

Reachability problem

For configuration c , and initial configuration c_0 : $c_0 \vdash^* c$?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Checking whether a CMSG is safe is decidable

- Consider any ordered pair (p_i, p_j) of processes in CMSG G
- Proof idea: construct a PDA $K_{i,j} = (Q, q_0, \Gamma, \Sigma, \Delta)$ such that
CMSG G is not safe wrt. (p_i, p_j) iff PDA $K_{i,j}$ accepts
- For accepting path $u_0 \dots u_k$ in G , feed $K_{i,j}$ with
$$\rho_0 \dots \rho_k \text{ where } \rho_i \in \text{Lin}(\lambda(u_i))$$
- Possible violations that $K_{i,j}$ may encounter:
 - ① $\# \text{unmatched } !(p_i, p_j, \cdot) > \# \text{unmatched } ?(p_j, p_i, \cdot)$
 - ② type of k -th unmatched send \neq type of k -th unmatched receive
 - ③ non-FIFO communication

The nondeterministic PDA $K_{i,j}$

Let $\{a_1, \dots, a_k\}$ be the message contents in CMSG G for (p_i, p_j) .

Nondeterministic PDA $K_{i,j} = (Q, q_0, \Gamma, \Sigma, \Delta)$ where:

- Control states $Q = \{q_0, q_{a_1}, \dots, q_{a_k}, q_{err}, q_F\}$
- Stack alphabet $\Gamma = \{1, \perp\}$
 - 1 counts # unmatched $!(p_i, p_j, a_m)$, and \perp is stack bottom
- Input alphabet $\Sigma = \begin{cases} \text{unmatched action } !(p_i, p_j, a_m) \\ \text{unmatched action } ?(p_j, p_i, a_m) \\ \text{matched actions } !?(p_i, p_j, a_m), !?(p_j, p_i, a_m) \end{cases}$
- Transition function Δ is described on next slide

Safeness of CMSGs (2)

- Initial configuration is (q_0, \perp, w)
 - w is linearization of actions at p_i and p_j on an accepting path of G
- On reading $!(p_i, p_j, a_m)$ in q_0 , push 1 on stack
 - nondeterministically move to state q_{a_m} or stay in q_0
- On reading $?(p_j, p_i, a_m)$ in q_0 , proceed as follows:
 - if 1 is on stack, pop it
 - otherwise, i.e., if stack is empty, **accept** (i.e., move to q_F)
- On reading matched send $!?(p_i, p_j, a_k)$ in q_0
 - stack empty? ignore input; otherwise, **accept**
- Do nothing in q_0 ,
 - on reading matched send events $!?(p_j, p_i, a_k)$, or
 - on reading unmatched sends or receipts not related to p_i and p_j
- Input empty? **Accept**, if stack non-empty; otherwise reject

Safeness of CMSGs (3)

The behaviour in state q_{a_m} for $0 < m \leq k$:

- Ignore all actions except $?(\textcolor{red}{p_i}, \textcolor{blue}{p_j}, a_\ell)$
- On reading $?(\textcolor{red}{p_i}, \textcolor{blue}{p_j}, a_\ell)$ in q_{a_m} proceed as follows
 - if 1 is on top of stack, pop it
- If stack is empty:
 - if last receive differs from a_m , **accept**
 - otherwise reject, while ignoring the rest (if any) of the input

Safeness of CMSGs (4)

It follows: PDA $K_{i,j}$ accepts iff CMSG G is not safe wrt. (p_i, p_j)

\implies CMSG G is not safe wrt. (p_i, p_j) iff configuration (q_F, \cdot, \cdot) is reachable.

\implies reachability of a configuration in a PDA is in PTIME, hence checking safeness wrt. (p_i, p_j) is in PTIME.

Time complexity

The time complexity of checking whether CMSG G is safe is in $\mathcal{O}(k^2 \cdot N^2 \cdot M \cdot |E|^2)$ where $k = |\mathcal{P}|$, $N = |V|$, and $M = |\mathcal{C}|$.

Proof.

Checking reachability in PDA $K_{i,j}$ is in $\mathcal{O}(M \cdot |E|^2)$. The number of PDAs is k^2 , as we consider ordered pairs. The number of paths that need to be considered in the CMSG is in $\mathcal{O}(N^2)$, as it suffices to consider a single traversal for each loop in the CMSG. □