
Foundations of the UML
Lecture 5: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

2. November 2009

Joost-Pieter Katoen Foundations of the UML 1

http://moves.rwth-aachen.de/i2/370

Restriction of MSGs [Yannakakis 1999]

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

This MSC cannot be decomposed as

M1 • M2 • . . . • Mn for n > 1

This can be seen as follows:

e1 and e2 = m(e1) must reside in same Mi

e3 < e2 and e1 < e4 thus
e3, e4 /∈ Mj , j < i or j > i

=⇒ e3, e4 ∈ Mi

by similar reasoning: e5, e6 ∈ Mi etc.

Problem:

Compulsory matching between send and receive in same MSG vertex
(i.e., send e and receive m(e))

Joost-Pieter Katoen Foundations of the UML 2

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition

M = (P, E, C, l,m,<) is a compositional MSC (CMSC, for short) where
P, E, C and l are as before, and

m : E! → E? is a partial, injective function such that (as before):

m(e) = e′ ∧ l(e) = !(p, q, a) =⇒ l(e′) = ?(q, p, a)

< =
(⋃

p∈P <p ∪ {(e,m(e)) | e ∈ dom(m)
︸ ︷︷ ︸

domain of m
︸ ︷︷ ︸

“m(e) is defined”

}
)∗

Note:

An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Foundations of the UML 3

CMSC example

p1 p2

a
p2

b

c
p1

e1

e2 e3

e4

message
content intended

recipient

intended sender

m(e2) = e3

e1 /∈ dom(m)
e4 /∈ rng(m)

Definition

A compositional MSG (CMSG) G = (V,→, v0, F, λ) with λ : V → CM,
where CM is the set of all CMSCs, and V,→, v0, and F as before.

Joost-Pieter Katoen Foundations of the UML 4

Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 • M2 = (P1 ∪ P2, E, C1 ∪ C2, l,m,<) with:

E = E1 ∪ E2

l(e) = l1(e) if e ∈ E1 , l2(e) otherwise

m(e) = E! → E? satisfies:
1 m extends m1 and m2, i.e., e ∈ dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process
(matching from top to bottom)
the k-th unmatched send in M1 is matched with
the k-th unmatched receive in M2 (of the same “type”)

3 M1 • M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Foundations of the UML 5

Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 • M2 = (P1 ∪ P2, E1 ∪ E2, C1 ∪ C2, l,m,<) with:

< is the reflexive and transitive closure of:
(
⋃

p∈P <p,1 ∪ <p,2

)

∪ {(e, e′) | e ∈ E1 ∩ Ep , e′ ∈ E2 ∩ Ep}

∪ {(e,m(e) | e ∈ dom(m)}

Joost-Pieter Katoen Foundations of the UML 6

Examples
p1 p2

a
p2

c
p2

e1

e2

•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b
p1

a

c
p2

e1

e2

e3

e4

p1 p2

a
p2

b

c
p2

e1

e2 e3

e4

•

p1 p2

c
p1

a
p1

e5

e6

=

p1 p2

a

b

c

e1

e2

e4

e3

e5

e6

p1 p2

a
p2

b
p2

e1

e2

•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b a

e1

e2

e3

e4

M1 M2

M1 M2 non-FIFO!

M1 M2 cyclic!

Joost-Pieter Katoen Foundations of the UML 7

Associativity
p1 p2

a
p2

p1 p2

a
p1

a
p1

M M ′

(M • M) • M ′: p1 p2

a

a

M • (M • M ′): p1 p2

a

a =⇒
this is non-FIFO

(and thus undefined)

Note:

Concatenation of CMSCs is not associative.

Joost-Pieter Katoen Foundations of the UML 8

Paths

Let G = (V,→, v0, F, λ) be a CMSG.

Definition

A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition

Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition

The CMSC of a path π = u0 . . . un is:

M(π) = (. . . (λ(u0) • λ(u1)) • λ(u2) . . .) • λ(un) =

n∏

i=0

λ(ui)

where CMSC concatenation is left associative.
Joost-Pieter Katoen Foundations of the UML 9

The MSC language of a CMSG

Definition

The (MSC) language of CMSG G is defined by:

L(G) = { M(π) ∈ M
︸ ︷︷ ︸

only MSCs are considered

| π is an accepting path of G}.

Joost-Pieter Katoen Foundations of the UML 10

Consider again

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

M

Recall: this behavior cannot be modeled for
n > 1 by:

M = M1 • M2 • . . . • Mn with Mi ∈ M

p1 p2

a
p2

p1 p2

a
p2

b a
p1

p1 p2

a
p1

v0 v1 v2

The (safe) CMSG for the above MSC.

Joost-Pieter Katoen Foundations of the UML 11

Safe paths and CMSGs

Definition

Path π of CMSG G is safe whenever M(π) ∈ M.

Definition (safeness)

CMSG G is safe if for any accepting path π of G, M(π) is an MSC.

So:

CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its executions is an MSC.

Joost-Pieter Katoen Foundations of the UML 12

Properties on CMSG safeness

Theorem:

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem:

The decision problem “is CMSG G safe?” is decidable in PTIME.

Joost-Pieter Katoen Foundations of the UML 13

Existence of safe accepting paths

Theorem

The decision problem:

does CMSG G have a safe, accepting path?

is undecidable.

Proof.

Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Foundations of the UML 14

All accepting paths are safe

Theorem

The decision problem:

are all accepting paths of CMSG G safe?

is decidable.

Proof.

Polynomial reduction to reachability problem in pushdown automata

. . . black board . . .

Joost-Pieter Katoen Foundations of the UML 15

Pushdown automata

Definition

A pushdown automaton (PDA, for short) K = (Q, q0,Γ,Σ,∆) with

Q, a finite set of control states

q0 ∈ Q, the initial state

Γ, a finite stack alphabet

Σ, a finite input alphabet

∆ ⊆ Q × Σ × Γ × Q × {push, pop, skip}, the transition relation.

Example

(q, a, γ, q′, pop) ∈ ∆ means: in state q, on reading input symbol a and

top of stack is symbol γ, change to q′ and pop γ.

Joost-Pieter Katoen Foundations of the UML 16

Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).

Definition

Given a transition in ∆, a (direct) successor configuration c′ of c is
obtained: c ⊢ c′.

Reachability problem

For configuration c, and initial configuration c0: c0 ⊢∗ c?

Theorem: [Esparza et al. 2000]

The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Foundations of the UML 17

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,Γ,Σ,∆) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with

ρ0 . . . ρk where ρi ∈ Lin(λ(ui))

Possible violations that Ki,j may encounter:
1 # unmatched !(pi, pj, ·) > # unmatched ?(pj , pi, ·)
2 type of k-th unmatched send 6= type of k-th unmatched receive
3 non-FIFO communication

Joost-Pieter Katoen Foundations of the UML 18

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,Γ,Σ,∆) where:

Control states Q = {q0, qa1
, . . . , qak

, qerr , qF }

Stack alphabet Γ = {1,⊥}

1 counts # unmatched !(pi, pj , am), and ⊥ is stack bottom

Input alphabet Σ =







unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), !?(pj , pi, am)

Transition function ∆ is described on next slide

Joost-Pieter Katoen Foundations of the UML 19

Safeness of CMSGs (2)

Initial configuration is (q0,⊥, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack
nondeterministically move to state qam

or stay in q0

On reading ?(pj, pi, am) in q0, proceed as follows:
if 1 is on stack, pop it
otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj, ak) in q0

stack empty? ignore input; otherwise, accept

Do nothing in q0,
on reading matched send events !?(pj , pi, ak), or
on reading unmatched sends or receipts not related to pi and pj

Input empty? Accept, if stack non-empty; otherwise reject
Joost-Pieter Katoen Foundations of the UML 20

Safeness of CMSGs (3)

The behaviour in state qam
for 0 < m 6 k:

Ignore all actions except ?(pi, pj , aℓ)

On reading ?(pi, pj , aℓ) in qam
proceed as follows

if 1 is on top of stack, pop it

If stack is empty:

if last receive differs from am, accept
otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Foundations of the UML 21

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)

=⇒ CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is
reachable.

=⇒ reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (pi, pj) is in PTIME.

Time complexity

The time complexity of checking whether CMSG G is safe is in
O(k2·N2·M ·|E|2) where k = |P|, N = |V |, and M = |C|.

Proof.

Checking reachability in PDA Ki,j is in O(M ·|E|2). The number of
PDAs is k2, as we consider ordered pairs. The number of paths that
need to be considered in the CMSG is in O(N2), as it suffices to
consider a single traversal for each loop in the CMSG.

Joost-Pieter Katoen Foundations of the UML 22

	Lecture 5: Compositional Message Sequence Graphs

