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Specification to implementation

@ Consider an MSGs as complete system specifications
o they describe a full set of possible system scenarios

@ Can we obtain ‘“realisations” that exhibit precisely these scenarios?

@ Map MSGs, i.e., scenarios onto an executable model

@ model each process by a finite-state automaton
@ that communicate via unbounded FIFO channels

= Communicating finite-state machines
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The need for synchronisation messages
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The architecture of a message-passing system

Definition

We fix the following parameters:
o P a finite set of at least two (sequential) processes

o C a finite set of message contents
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The architecture of a message-passing system

We fix the following parameters:

e P a finite set of at least two (sequential) processes

e a finite set of message contents

Definition (communication actions, channels)

o Act,:={!(p,q,a) | ¢ € P\ {p}, a€C} (forpeP)
“p sends message a to ¢
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The architecture of a message-passing system

We fix the following parameters:

e P a finite set of at least two (sequential) processes

e a finite set of message contents

Definition (communication actions, channels)

o Act,:={!(p,q,a) | ¢ € P\ {p}, a€C} (forpeP)
“p sends message a to ¢

o Act):={?(p,q,a) | g€ P\ {p}, a €C}

“p receives message a from ¢
! ?
@ Acty = Act, U Act,

Joost-Pieter Katoen Foundations of the UML 5



The architecture of a message-passing system

We fix the following parameters:

e P a finite set of at least two (sequential) processes

e a finite set of message contents

Definition (communication actions, channels)

o Act,:={!(p,q,a) | ¢ € P\ {p}, a€C} (forpeP)
“p sends message a to ¢

o Acty:={2(p,q,a) | ¢ € P\ {p}, a €C}
“p receives message a from ¢
o Acty := Actij U Act;j

o Act = ep Acty
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The architecture of a message-passing system

We fix the following parameters:

o P a finite set of at least two (sequential) processes

e a finite set of message contents

Definition (communication actions, channels)

o Act,:={!(p,q,a) | ¢ € P\ {p}, a€C} (forpeP)
“p sends message a to ¢

o Act):={?(p,q,a) | g€ P\ {p}, a €C}

“p receives message a from ¢
o Acty := Actij U Act;j
o Act = ep Acty
° Ch:={(p,q) |p,q€P, p#q} ‘“channels”
o Comm :={(!(p,q,a),?(q,p,a)) | (p,q) € Ch, a €C}
D ——————




Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’ ]D)’ Sinit F)
where

o D is a nonempty finite set of synchronization messages (or data)
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’ ]D)’ Sinit F)
where

o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Actp, x D x S is a set of local transitions

We often write s ﬂp s’ instead of (s,0,m,s’) € A, RWTH
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Communicating finite-state machines

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’ ]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Actp, x D x S is a set of local transitions

@ Sinit € S4 is the global initial state
o where S4 :=[[,cp Sp is the set of global states of A
@ F C 54 is the set of global final states

We often write s ﬂp s’ instead of (s,0,m,s’) € A, RWTH
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Communicating finite-state machines

CFM A over
{1,2} and {req,ack}

° D:{ 7-7:}
o 51 = {s0,51,52}

1(2,1, ack) o SQ = {t07t1?t2}
1(1,2, req )
7(271,) @ Ai: sg ————1 80 ..

7(2,1, req )
Agi to —9 tl

[

Sinit = (80, t0)
° F= {(82?t2)}
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Communicating finite-state machines

o
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Communicating finite-state machines

!(1,2,req) O

1(1,2,req)

Joost-Pieter Katoen Foundations of the UML 7



Communicating finite-state machines

l(l.?,req)i
1(1,2,req)

1(1,2,req) (1,2, req)
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Communicating finite-state machines

Example
1(1,2,req) :—x ?(2,1,req)
1(1,2,req)

1(1,2,req) 1(1,2,req) ?7(2,1,req)
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Communicating finite-state machines

Example
1(1,2,req) ?(2,1,req)
2;!(2,1,ack)
1(1,2,req)

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1, ack)
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Communicating finite-state machines

Example
1(1,2,req) ?(2,1,req)
1(2,1, ack)
1(1,2,req) ?(2,1,req)
1(2,1, ack)

ack | ack

1(1,2,req) 1(1,2,req) 7(2,1,req) !(2,1,ack) ?(2,1,req) !(2,1,ack)
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Communicating finite-state machines

Example

1(1,2,req) ?(2,1,req)
1(2, 1, ack)
1(1,2,req) ?(2,1,req)
1(2,1, ack)
?(1, 2, ack)

1(1,2,req) 1(1,2,req) 7(2,1,req) (2,1, ack) ?(2,1,req) !(2,1,ack) ?(1,2,ack)
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Example
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1(2, 1, ack)
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?(1,2, ack),
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Communicating finite-state machines

Example

1(1,2,req) ?(2,1,req)

1(2, 1, ack)

1(1,2,req) ?(2,1,req)

1(2,1, ack) 1(2,1,ack)

?(1, 2, ack)
1(1,2,req)
1(2,1, ack) (1,2, ack)

1(1,2,req)
@ )CLE

1(1,2,req) 1(1,2,req) ?(2,1,req) !(2,1,ack) ?(2,1,req) !(2,1,ack) ?(1,2,ack) (1,2,req) ?(1,2,ack) !(1,2,req)
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Communicating finite-state machines

Example

1(1,2,req) ?(2,1,req)

1(2, 1, ack)

1(1,2,req) ?(2,1,req)

1(2,1, ack) 1(2,1,ack)

?(1, 2, ack)
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1(1,2,req)
@ )CLE

J

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) ?(2
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Communicating finite-state machines

Example

1(1,2,req)

e
O!(2,1, ack)
O ?(2,1,r'eq)

1(1,2,req)

?(1,2,ack)
!((1,2‘req)) O7?(2,1,req)
1(2,1, ack) ?(1,2,ack)J

1(1,2,1eq) O
@ )CLE

J

1(1,2,req) 1(1,2,req) ?7(2,1,req) !(2,1,ack) ?(2,1,req) (2,1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) ?(2
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Communicating finite-state machines

1 2
req
req
ack
ack
req
L
req
| |

1(1,2,req) 1(1,2,req) 7(2,1,req) (2,1, ack) ?(2,1,req) (2, 1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) ?
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Formal semantics of CFMs

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition

Configurations of A: Conf, :=Sa x {n|n: Ch— (C x D)*}
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Formal semantics of CFMs

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition
Configurations of A: Conf, :=Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
o sending a message: ((3,7n),!(p,q,a),m, (5,n)) € =4 if
o (3[p,!(p,q,a),m,5'[p]) € A

o 0 =nl(p,q) = (a,m) - n((p, 7))]
o 5[r] =3[r] for all r € P\ {p}
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Formal semantics of CFMs

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition
Configurations of A: Conf, :=Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
o sending a message: ((3,7n),!(p,q,a),m, (5,n)) € =4 if
> 3lol, (0, ,0),m,Tpl) € A,
o 0" =nl(p,q) := (a,m) - n((p,q))]
o 5[r] =3[r] for all 7 € P\ {p}
@ receipt of a message: ((3,7),?(p,q,a),m, (3,n)) € =4 if
o (3[p], ?(p, ¢, a),m, 5 [p]) € Ap
° 1(g,p)) =w- (a,m) # € and 7' = n[(q,p) := w]
o S[r] =9r] for allr € P\ {p}
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CFM over P and C.

Definition

A run of Aon oy...0, € Act™ is a sequence p =Yg M1 Y1 - - - Yn—1Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to

05,15 o
@ yi_j———= 7 forany i € {1,...,n}
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CFM over P and C.

Definition

A run of Aon oy...0, € Act™ is a sequence p =Yg M1 Y1 - - - Yn—1Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to

05,15 o
@ yi_j———= 7 forany i € {1,...,n}

Run p is accepting if v, € F x {n.}.
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CFM over P and C.

A run of Aon oy...0, € Act™ is a sequence p =Yg M1 Y1 - - - Yn—1Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to

04 ,My;

@ yi_j———= 7 forany i € {1,...,n}
Run p is accepting if v, € F x {n:}.

The set of linearizations of CFM A:
Lin(A) := {w € Act™ | there is an accepting run of A on w}
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=11,2req))" (?(1,2,ack) !(1,2,req))"™
wl2=(7(2,1,req) (2,1, ack))™ (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a> > O}

acC acC v,
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

@ !(1,2,req) and !(2, 1, ack) are always independent.

@ !(1,2,req) and ?(1,2,ack) are always dependent.

@ !(1,2,req) and ?(2,1,req) are sometimes independent.
~» non-regular (word) languages
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=(1(1,2,req))" (?(1,2,ack) !(1,2,req))"™
wl2=(7(2,1,req) (2,1, ack))™ (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a> > O}

acC acC y
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

L(A) = {]M € M | there is n > 1 such that:
M1 =(1(1,2,req))* (7(1,2,ack) !(1,2,req))"
M2 = (2(2,1,req) (2,1, ack))™ (2(2, m-q))*}
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Elementary questions are undecidable for CFMs

Proposition (

The following problem is undecidable (even if C is a singleton):

INPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?
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Elementary questions are undecidable for CFMs

The following problem is undecidable (even if C is a singleton):

InPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine
T™ = (Q,%,A,0,q0,qf) to emptiness for a CFM with two processes.
Build CFM A = ((A1,.A2), D, Sinit, F') over {1,2} and some singleton
set such that L(A) # @ iff TM can reach gy .

@ Process 1 sends current configurations to process 2

@ Process 2 chooses successor configurations and sends them to 1

o D= ((ZU{D}) x QU{_N) u{#
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (g2, a,d’, L, g3) is applied so
that process 2

@ sends b unchanged back to process 1

o detects (receives) a < g2

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J «— g3 has to be inserted before
returning #
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (g2, a,d’, L, g3) is applied so
that process 2

@ sends b unchanged back to process 1

o detects (receives) a < g2

@ sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

@ receives # so that the symbol [J «— g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (g2,a,d’, R, q3) while reading b, it would have to

o send b < g3 instead of just b, entering some state ¢t(a < g2)
o receive a < g2 (no other symbol can be received in state t(a < g2))
o send a’ back to process 1
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A CFM simulating a Turing machine

Proof (contd.)

@ Introduce local final states sy and 7, one for process 1 and one for
process 2, respectively (i.e., F'= {(sy,ts)} and A is locally
accepting).
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A CFM simulating a Turing machine

Proof (contd.)

@ Introduce local final states sy and 7, one for process 1 and one for
process 2, respectively (i.e., F'= {(sy,ts)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).
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A CFM simulating a Turing machine

Proof (contd.)

@ Introduce local final states sy and 7, one for process 1 and one for
process 2, respectively (i.e., F'= {(sy,ts)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ < ¢y for some c.
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A CFM simulating a Turing machine

Proof (contd.)

@ Introduce local final states sy and 7, one for process 1 and one for
process 2, respectively (i.e., F'= {(sy,ts)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ < ¢y for some c.

@ As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. O

Joost-Pieter Katoen Foundations of the UML
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