
Foundations of the UML
Lecture 7: Languages and Subclasses of CFMs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

16. November 2009

Joost-Pieter Katoen Foundations of the UML 1

http://moves.rwth-aachen.de/i2/370

Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

The underlying system architecture is parametrised by the set P of
processes and the set C of messages

Action !(p, q,m) puts message m at the end of the channel (p, q)

Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)

Synchronisation messages are used to avoid deadlocks

Joost-Pieter Katoen Foundations of the UML 2

Example communicating finite-state machine

Joost-Pieter Katoen Foundations of the UML 3

Formal definition

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P , D, sinit , F)

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp × Actp × D × Sp is a set of local transitions

sinit ∈ SA is the global initial state

where SA :=
∏

p∈P
Sp is the set of global states of A

F ⊆ SA is the set of global final states

We often write s
σ,m
−→p s′ instead of (s, σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Foundations of the UML 4

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P , D, sinit , F) be a CFM over P and C.

Definition

Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D × ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], !(p, q, a), m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a, m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], ?(p, q, a), m, s′[p]) ∈ ∆p

η((q, p)) = w · (a, m) 6= ǫ and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
Joost-Pieter Katoen Foundations of the UML 5

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P , D, sinit , F) be a CFM over P and C.

Definition

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1 mn γn

such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition

The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Foundations of the UML 6

Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q, m1), aj = ?(q, p, m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C
|w|!(p,q,m) =

∑

m∈C
|w|?(q,p,m)

Joost-Pieter Katoen Foundations of the UML 7

Well-formedness and CFMs

Proposition:

For any CFM A and w ∈ Lin(A), w is well-formed.

Joost-Pieter Katoen Foundations of the UML 8

From linearizations to partial orders

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

≺=
(

≺msg ∪
⋃

p∈P ≺p

)∗

where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q, m) and ℓ(j) = ?(q, p, m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Example

construct M(w) for w = !(r, q, m)!(p, q, m1)!(p, q, m2)?(q, p,m1)?(q, p,m2)?(q, r,m)

Joost-Pieter Katoen Foundations of the UML 9

CFMs and well-formed words

Relating well-formed words to MSCs

For any well-formed w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).

Joost-Pieter Katoen Foundations of the UML 10

Elementary questions are undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]

The following problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable (even if C is a singleton).

Proof (sketch)

Reduction from halting problem for nondeterministic Turing machine to
emptiness for a CFM with two processes.

Joost-Pieter Katoen Foundations of the UML 11

Bounded words

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Intuition

Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to q cannot be more than B ahead of the number of
receipts by q from p (for every message a).

Example

!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.

Joost-Pieter Katoen Foundations of the UML 12

Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition

MSC M is ∀B-bounded if all its linearizations are B-bounded.

Consequence

All runs of MSC M can be realised with a buffer capacity B.

Joost-Pieter Katoen Foundations of the UML 13

Bounded MSCs

Definition (Existentially bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) 6= ∅.

Intuition

MSC M is ∃B-bounded if at least one linearization is B-bounded.

Consequence

At least one run of MSC M can be realised with a buffer capacity B.

Joost-Pieter Katoen Foundations of the UML 14

Bounded MSCs

Joost-Pieter Katoen Foundations of the UML 15

Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded

Joost-Pieter Katoen Foundations of the UML 16

Bounded CFMs [Henriksen et. al 2005]

Definition (Universally bounded CFM)

1 Let B ∈ N and B > 0. CFM A is universally B-bounded if any
MSC in L(A) is ∀B-bounded.

2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)

Let B ∈ N and B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is ∃B-bounded.

Joost-Pieter Katoen Foundations of the UML 17

Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q

req

req

req

req

req

existentially 1-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Foundations of the UML 18

Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

existentially 1-bounded, and ∀3-bounded

Joost-Pieter Katoen Foundations of the UML 19

Example (3)

!(p, q, req)

?(q, p, req)

?(p, q, ack)

!(q, p, ack)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

existentially ⌈n
2 ⌉-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Foundations of the UML 20

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message

messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks

existentially ⌈n
2 ⌉-bounded, but not ∀-bounded

The CFM is also non-deterministic, and may deadlock

Joost-Pieter Katoen Foundations of the UML 21

Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:

1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies
m1 = m2 and s1 = s2

2 (s, ?(p, q, (m,λ)), s1) ∈ ∆p and (s, ?(p, q, (m,λ)), s2) ∈ ∆p implies
s1 = s2

Example:

Example CFM (1) and (2) are deterministic, while (3) is not.

Joost-Pieter Katoen Foundations of the UML 22

Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w ∈ Act∗ and all runs γ of A on w,
there exist w′ ∈ Act∗ and run γ′ in A such that γ·γ′ is an accepting run
of A on w·w′.

Example:

Example CFM (1) and (2) are deadlock-free, while (3) is not.

Definition (Product CFM)

A CFM is called a product CFM if |D| = 1.

Joost-Pieter Katoen Foundations of the UML 23

CFM vs. product CFM

Theorem:

Product CFM are less expressive than CFM.

Proof.

For m, n > 1, let M(m, n) ∈ M over {1, 2} and {req, ack} be given by:

M ↾1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M ↾2 = ?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no product CFM over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n > 0}. By contraposition. Suppose there is a product CFM
A = ((A1,A2), D, sinit , F) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)↾1

A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)↾2

But then, there is an accepting run of A on M(n + (i · j), n) 6∈ L.

Joost-Pieter Katoen Foundations of the UML 24

	Lecture 6: Communicating Finite-State Machines

