Foundations of the UML

Lecture 7: Languages and Subclasses of CFMs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/370

16. November 2009

Joost-Pieter Katoen Foundations of the UML

http://moves.rwth-aachen.de/i2/370

Communicating finite-state machines

@ A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

@ Communication between these machines takes place via (a priori)

unbounded reliable FIFO channels

The underlying system architecture is parametrised by the set P of

processes and the set C of messages

©

©

Action !(p, ¢, m) puts message m at the end of the channel (p, q)

©

Action ?(q,p,m) is enabled only if m is at head of buffer, and its
execution by process ¢ removes m from the channel (p, q)

@ Synchronisation messages are used to avoid deadlocks

Joost-Pieter Katoen Foundations of the UML p:

Example communicating finite-state machine

Joost-Pieter Katoen Foundations of

Formal definition

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A= (((Spv Ap))pép’]D)’ Sinit F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Actp, x D x S is a set of local transitions

@ Sinit € S4 is the global initial state
o where S4 :=[[,cp Sp is the set of global states of A
@ F C 54 is the set of global final states

We often write s ﬂp s’ instead of (s,0,m,s’) € A, RWTH

Joost-Pieter Katoen Foundations of the UML 4

Formal semantics of CFMs

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition
Configurations of A: Conf, :=Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
o sending a message: ((3,7n),!(p,q,a),m, (5,n)) € =4 if
> 3lol, (0, ,0),m,Tpl) € A,
o 0" =nl(p,q) := (a,m) - n((p,q))]
o 5[r] =3[r] for all 7 € P\ {p}
@ receipt of a message: ((3,7),?(p,q,a),m, (3,n)) € =4 if
o (3[p], ?(p, ¢, a),m, 5 [p]) € Ap
° 7((¢;p)) =w- (a,m) # € and 1" = nl(q,p) := w]
o S[r] =9r] for allr € P\ {p}

Joost-Pieter Katoen Foundations of the UML

Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CFM over P and C.

A run of Aon oy...0, € Act™ is a sequence p =Yg M1 Y1 - - - Yn—1Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to

04 ,My;

@ yi_j———= 7 forany i € {1,...,n}
Run p is accepting if v, € F x {n:}.

The set of linearizations of CFM A:
Lin(A) := {w € Act™ | there is an accepting run of A on w}

KWin

Joost-Pieter Katoen Foundations of the UML 6

Well-formedness

Let Ch:={(p,q) | p # q, p,q € P} be a set of channels over P.

We call w =ay ...a, € Act™ proper if
© every receive in w is preceded by a corresponding send, i.e.:
¥(p,q) € Ch and prefix u of w, we have:

Z ulipgm)y = Z |ul2(q.p,m)
meC meC
N — N —

sends from p to ¢ # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

© the FIFO policy is respected, i.e.:
v1 < 1< j < n, (p7 q) € Ch7 and a; = !(pvqaml)v a; = 7(qap7 m2):

E |a1 500 ai,1|!(p,q,m) = E |a1 000 aj,1|?(q,p7m) implies mi; = mso
meC meC

A proper word w is well-formed if Zmec |w|!(p7q7m) = Zmec \wh(q’p’m)

Joost-Pieter Katoen Foundations of the UML 7

Well-formedness and CFMs

Proposition:
For any CFM A and w € Lin(A), w is well-formed.

Joost-Pieter Katoen Foundations of the UML 8

From linearizations to partial orders

Associate to w = aq ...a, € Act® an Act-labelled poset
M(w) = (B, <,6)
such that:
o £ ={1,...,n} are the positions in w labelled with £(i) = a;

*
9 <= (<msg U UpeP <217) where
o { <, jifand only if ¢ < j for any 4,5 € E,
o i <msg J if for some (p,q) € Ch and m € C we have:

L(i) =!(p,q,m) and £(j) =7?(q,p, m) and

Z lay...ai—1lyp,gm) = Z lax - aj1l2(g.pm)

meC meC

construct M (w) for w =!(r, g, m)!(p, g, m1)!(p, g, m2)?(q, p,m1)?(q, p,m2)?(q,7,m)

Joost-Pieter Katoen Foundations of the UML [

CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed w € Act*, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = { M(w) | w € Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words v and v with M (u) is isomorphic to M (v):

for any CFM A: uwe L(A) iff ve L(A).

Joost-Pieter Katoen Foundations of the UML

Elementary questions are undecidable for CFMs

The following problem:

INPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?

is undecidable (even if C is a singleton).

Proof (sketch)

Reduction from halting problem for nondeterministic Turing machine to
emptiness for a CFM with two processes.

o’

Joost-Pieter Katoen Foundations of the UML 11

Bounded words

Definition (B-bounded words)

Let BeNand B > 0. A word w € Act* is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:

0 < Z|u|!(p,q,a)_Z|U|7(q,p,a) < B

acC aeC

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to g cannot be more than B ahead of the number of
receipts by ¢ from p (for every message a).

(1,2,a) 1(1,2,b) 7(2,1,a) ?(2,1,b) is 2-bounded but not 1-bounded.

Joost-Pieter Katoen Foundations of the UML

Bounded MSCs

Definition (Universally bounded MSCs)

Let Be Nand B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

Lin(M) = Lin®(M)

where LinB(M) := {w € Lin(M) | w is B-bounded}.

MSC M is VB-bounded if all its linearizations are B-bounded. l

Consequence
All runs of MSC M can be realised with a buffer capacity B.
13

Joost-Pieter Katoen Foundations of the UML

Bounded MSCs

Definition (Existentially bounded MSCs)

Let BeNand B > 0. An MSC M € M is called existentially
B-bounded (3B-bounded, for short) if Lin(M) N Lin®(M) # @.

MSC M is 3B-bounded if at least one linearization is B-bounded. l

Consequence

At least one run of MSC M can be realised with a buffer capacity B.

RWTH
14

Joost-Pieter Katoen Foundations of the UML

Bounded MSCs

7]
1:(1.0) reqt -t 2:(0,0)
rack 4:(L1)
1 (1,0) req¢ - (0, 1)
oack $:1(2,2)
6:(1,1 req i -t 10% €1, 1]
_ tack 133 641
| 2 | r".’q# - IIZIIAVI
¥:(21 ¥ oack 152 (1. 2)
-l ..‘] r(_\qb -4 “l.l‘.l ,.‘
12:(¢2.0 g
17:(1,2) reqj - 21 : (1.0
I8 l [g
19: (2,1 req i - 2 (0,0
')) () iy
24 1.0 req + - 24 (0, 0))
== j=——]

Joost-Pieter Katoen Foundations of

Bounded MSCs

Example
1] [27]
req 1] [27]
ack 1] [27]
red ack req ack req
req
ack req
req ack req ack req
req
= req
red req
req
I'eq L —— —— — —
| |
V4-bounded V3-bounded V5-bounded
342-bounded d1-bounded d1-bounded
not J1-bounded RWIH

Joost-Pieter Katoen Foundations of the

Bounded CFMs

Definition (Universally bounded CFM)

Q@ Let Be Nand B > 0. CFM A is universally B-bounded if any
MSC in L(A) is VB-bounded.

© CFM A is universally bounded if it is VB-bounded for some B € N
and B > 0.

Definition (Existentially bounded CFM)

Let B €N and B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is 3B-bounded.

Joost-Pieter Katoen Foundations of the UML

Example (1)

process p: process q:

'(p, q,req) ?(q,p,req)

existentially 1-bounded, but not VB-bounded for any B

Joost-Pieter Katoen Foundations of the UML

[P_] []
req
req
req
req
req
— —
RWTH

Example (2)

process p: process q:
P
. req ack
'(p, q,req) ?(q, p,req)
req ack
req
(p,q,req)| |?(p,q,ack)
‘ [] [|

existentially 1-bounded, and V3-bounded

Joost-Pieter Katoen Foundations of the UML

Example (3)

existentially [%]-bounded, but not VB-bounded for any B
RWTH

Joost-Pieter Katoen Foundations of the UML

Justification

@ Phase 1: process p sends n messages to ¢
o messages of phase 1 are tagged with data req

@ ... and waits for the first acknowledgement of ¢

@ Phase 2: each ack is directly answered by p by another message
o messages of phase 2 are tagged with data

@ So, p sends 2n reqgs to ¢ and ¢ sends n acks
o existentially [4]-bounded, but not V-bounded

@ The CFM is also non-deterministic, and may deadlock

Joost-Pieter Katoen Foundations of the UML

Determinism

Definition (Deterministic CFM)
A CFM A is deterministic if for all p € P, the transition relation A,
satisfies the following two conditions:
9 (S’ '(p’ q, ((1, ml))’ 81) € Ap and (87 '(pv q, (CL, m?))’ 82) € A;D 1mphes
mi1 = mo and s; = Sy

e (87?(p7Q7 (m7)‘))781) = AP and (57?(p7Q7 (ma)‘))782) € AP lmphes
S1 = S92

Example CFM (1) and (2) are deterministic, while (3) is not.

Joost-Pieter Katoen Foundations of the UML

Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w € Act® and all runs v of A on w,
there exist w’ € Act* and run 4/ in A such that -y is an accepting run

of A on w-w'.

Example CFM (1) and (2) are deadlock-free, while (3) is not.

Definition (Product CFM)
A CFM is called a product CFM if [D| = 1.

Joost-Pieter Katoen Foundations of the UML

CFM vs. product CFM

Product CFM are less expressive than CFM. \

Proof.

For m,n > 1, let M (m,n) € M over {1,2} and {req, ack} be given by:
o M 1= (I(1,2,req))™ (?(1,2,ack) !(1,2,req))"
o MI|2=7(2,1,req) !(2,1,ack))™ (7(2,1,req))™

Claim: there is no product CFM over {1, 2} and {req, ack} whose language is
L = {M(n,n) | n > 0}. By contraposition. Suppose there is a product CFM
A= ((A1,A2),D, 8init, F) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n,n). If n is sufficiently large, then

@ A; visits a cycle of length¢ > 0 to read the first n letters of M(n,n)[1
@ A, visits a cycle of length 7 > 0 to read the last n letters of M(n,n)[2

But then, there is an accepting run of A on M(n+ (i-j),n) & L. O

Joost-Pieter Katoen Foundations of the UML pZ

	Lecture 6: Communicating Finite-State Machines

