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Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

The underlying system architecture is parametrised by the set P of
processes and the set C of messages

Action !(p, q,m) puts message m at the end of the channel (p, q)

Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)

Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine
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Formal definition

Definition

A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P , D, sinit , F )

where

D is a nonempty finite set of synchronization messages (or data)

for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp × Actp × D × Sp is a set of local transitions

sinit ∈ SA is the global initial state

where SA :=
∏

p∈P
Sp is the set of global states of A

F ⊆ SA is the set of global final states

We often write s
σ,m
−→p s′ instead of (s, σ,m, s′) ∈ ∆p
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Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P , D, sinit , F ) be a CFM over P and C.

Definition

Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (global step)

=⇒A ⊆ ConfA × Act × D × ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], !(p, q, a), m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a, m) · η((p, q))]

s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if

(s[p], ?(p, q, a), m, s′[p]) ∈ ∆p

η((q, p)) = w · (a, m) 6= ǫ and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P , D, sinit , F ) be a CFM over P and C.

Definition

A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1 mn γn

such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi

⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition

The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}
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Well-formedness

Let Ch := {(p, q) | p 6= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if

1 every receive in w is preceded by a corresponding send, i.e.:
∀(p, q) ∈ Ch and prefix u of w, we have:

∑

m∈C

|u|!(p,q,m)

︸ ︷︷ ︸

# sends from p to q

>
∑

m∈C

|u|?(q,p,m)

︸ ︷︷ ︸

# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 6 i < j 6 n, (p, q) ∈ Ch, and ai = !(p, q, m1), aj = ?(q, p, m2):

∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C
|w|!(p,q,m) =

∑

m∈C
|w|?(q,p,m)
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Well-formedness and CFMs

Proposition:

For any CFM A and w ∈ Lin(A), w is well-formed.
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From linearizations to partial orders

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, ℓ)

such that:

E = {1, . . . , n} are the positions in w labelled with ℓ(i) = ai

≺=
(

≺msg ∪
⋃

p∈P ≺p

)∗

where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

ℓ(i) = !(p, q, m) and ℓ(j) = ?(q, p, m) and
∑

m∈C

|a1 . . . ai−1|!(p,q,m) =
∑

m∈C

|a1 . . . aj−1|?(q,p,m)

Example

construct M(w) for w = !(r, q, m)!(p, q, m1)!(p, q, m2)?(q, p,m1)?(q, p,m2)?(q, r,m)
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CFMs and well-formed words

Relating well-formed words to MSCs

For any well-formed w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)

For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).
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Elementary questions are undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]

The following problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable (even if C is a singleton).

Proof (sketch)

Reduction from halting problem for nondeterministic Turing machine to
emptiness for a CFM with two processes.
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Bounded words

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Intuition

Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to q cannot be more than B ahead of the number of
receipts by q from p (for every message a).

Example

!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition

MSC M is ∀B-bounded if all its linearizations are B-bounded.

Consequence

All runs of MSC M can be realised with a buffer capacity B.
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Bounded MSCs

Definition (Existentially bounded MSCs)

Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) 6= ∅.

Intuition

MSC M is ∃B-bounded if at least one linearization is B-bounded.

Consequence

At least one run of MSC M can be realised with a buffer capacity B.
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Bounded MSCs
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Bounded MSCs

Example

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded
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Bounded CFMs [Henriksen et. al 2005]

Definition (Universally bounded CFM)

1 Let B ∈ N and B > 0. CFM A is universally B-bounded if any
MSC in L(A) is ∀B-bounded.

2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)

Let B ∈ N and B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is ∃B-bounded.
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Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q

req

req

req

req

req

existentially 1-bounded, but not ∀B-bounded for any B
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Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

existentially 1-bounded, and ∀3-bounded
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Example (3)

!(p, q, req )

?(q, p, req )

?(p, q, ack)

!(q, p, ack)!(p, q, req ) ?(p, q, ack)

?(q, p, req ) !(q, p, ack)

existentially ⌈n
2 ⌉-bounded, but not ∀B-bounded for any B
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Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message

messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks

existentially ⌈n
2 ⌉-bounded, but not ∀-bounded

The CFM is also non-deterministic, and may deadlock
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:

1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies
m1 = m2 and s1 = s2

2 (s, ?(p, q, (m,λ)), s1) ∈ ∆p and (s, ?(p, q, (m,λ)), s2) ∈ ∆p implies
s1 = s2

Example:

Example CFM (1) and (2) are deterministic, while (3) is not.
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w ∈ Act∗ and all runs γ of A on w,
there exist w′ ∈ Act∗ and run γ′ in A such that γ·γ′ is an accepting run
of A on w·w′.

Example:

Example CFM (1) and (2) are deadlock-free, while (3) is not.

Definition (Product CFM)

A CFM is called a product CFM if |D| = 1.
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CFM vs. product CFM

Theorem:

Product CFM are less expressive than CFM.

Proof.

For m, n > 1, let M(m, n) ∈ M over {1, 2} and {req, ack} be given by:

M ↾1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M ↾2 = ?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no product CFM over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n > 0}. By contraposition. Suppose there is a product CFM
A = ((A1,A2), D, sinit , F ) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)↾1

A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)↾2

But then, there is an accepting run of A on M(n + (i · j), n) 6∈ L.
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