

Foundations of the UML

Lecture 8+9: Realisability

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/370>

23. November 2009

What is realisability?

Definition (Realisability)

- ① MSC M is **realisable** whenever $\{M\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ② A finite set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ③ MSG G is **realisable** whenever $L(G) = L(\mathcal{A})$ for some CFM \mathcal{A} .

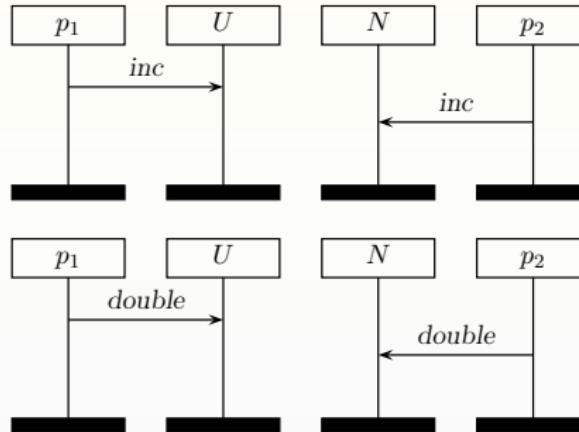
Alternatively

- ① MSC M is **realisable** whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ② Set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ③ MSG G is **realisable** whenever $Lin(G) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

We will consider realisability using its characterisation by linearisations.

Two example MSCs

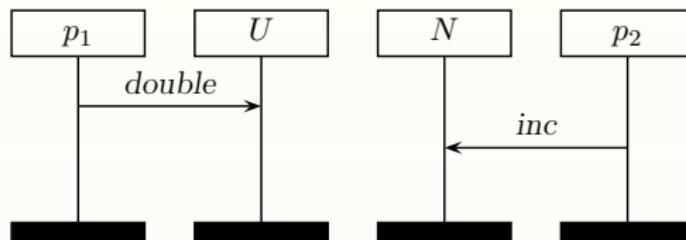
Consider the MSCs M_{inc} (left) and M_{db} (right):



Intuition

In M_{inc} , the volume of U (uranium) and N (nitric acid) is increased by one unit; in M_{db} both volumes are doubled. For safety reasons, it is essential that both ingredients are increased by the same amount!

A third, unavoidable fatal scenario



So:

The set $\{ M_{inc}, M_{db} \}$ is not realisable, as any CFM that realises this set also realises the inferred MSC M_{bad} above.

Note that:

Either of the MSCs M_{inc} or M_{db} alone does not imply M_{bad} .

Definition (Inference)

The set L of MSCs is said to **infer** MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $L \subseteq L(\mathcal{A})$ implies $M \in L(\mathcal{A})$.

Definition (Realisability)

The set L of MSCs is **realisable** iff L contains all MSCs that infers.

Intuition

A realisable MSC contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.

Projection

Definition (Projection)

- ① For MSC M and process p let $M \upharpoonright p$, the projection of M on process p , be the ordered sequence of actions occurring at process p in M .
- ② For word $w \in Act^*$ and process p , the projection of w on process p , denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned}\epsilon \upharpoonright p &= \epsilon \\ (!r, q, a) \cdot w \upharpoonright p &= \begin{cases} !(r, q, a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases}\end{aligned}$$

and similarly for receive actions.

Example

$w =$

$!(1, 2, \text{req})!(1, 2, \text{req})?(2, 1, \text{req})!(2, 1, \text{ack})?(2, 1, \text{req})!(2, 1, \text{ack})?(1, 2, \text{ack})!(1, 2, \text{req})$

$w \upharpoonright 1 = !(1, 2, \text{req})!(1, 2, \text{req})?(1, 2, \text{ack})!(1, 2, \text{req})$

Definition (Inference relation)

For well-formed $L \subseteq \text{Act}^*$, and well-formed word $w \in \text{Act}^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p = v \upharpoonright p)$$

Definition (Closure under \models)

Language L is **closed** under \models whenever $L \models w$ implies $w \in L$.

Intuition

The closure condition says that the set of MSCs (or, equivalently, well-formed words) can be obtained from the projections of the MSCs in L onto individual processes.

Example

$L = \text{Lin}(\{M_{up}, M_{db}\})$ is not closed under \models :

$w = !(p_1, U, \text{double})?(U, p_1, \text{double})!(p_2, N, \text{inc})?(N, p_2, \text{inc}) \notin L$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, \text{double}) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, \text{inc}) = v \upharpoonright p_2$, and
- similar holds for processes U and N .

Definition (Weak CFM)

CFM $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ is **weak** if \mathbb{D} is a singleton set.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation.

Realisability revisited

A finite set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some **weak** CFM \mathcal{A}

Weak CFMs are closed under \models

Lemma:

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed.

Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$.

To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$.

By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$.

Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of “local“ automaton \mathcal{A}_p on the word $v^p \upharpoonright p = w \upharpoonright p$.

The “local“ accepting runs $\pi \upharpoonright p$ for all processes p together can be combined to obtain an accepting run of \mathcal{A} on w .

Thus, $w \in Lin(\mathcal{A})$. □

Characterisation of realisability

Theorem: [Alur et al., 2001]

$L \subseteq Act^*$ is realisable iff L is closed under \models .

Proof

On the black board.

Corollary

The finite set of MSCs $\{M_1, \dots, M_n\}$ is realisable iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models .

Theorem

For any well-formed $L \subseteq Act^*$:

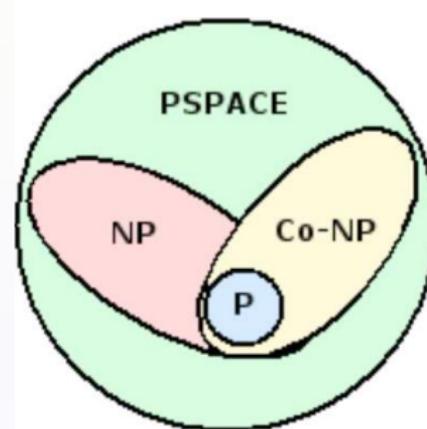
L is regular and closed under \models
if and only if

$L = Lin(\mathcal{A})$ for some \forall -bounded weak CFM \mathcal{A} .

Complexity of realisability

Let **co-NP** be the class of all decision problems C with \overline{C} , the complement of C , is in NP.

A problem C is **co-NP complete** if it is in co-NP, and it is co-NP hard, i.e., each for any co-NP problem there is a polynomial reduction to C .



Theorem: [Alur et al., 2001]

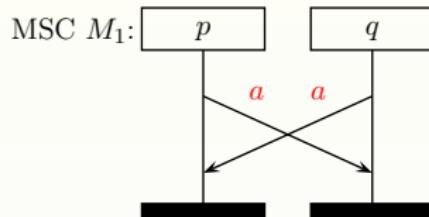
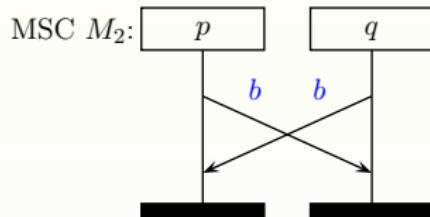
The decision problem “is a given set of MSCs realisable?” is co-NP complete.

Proof

- ① Membership in co-NP is proven by showing that its complement is in NP. This is rather standard.
- ② The co-NP hardness proof is based on a polynomial reduction of the join dependency problem to the above realisability problem. (Details on the black board.)

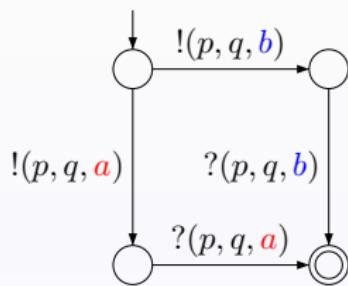
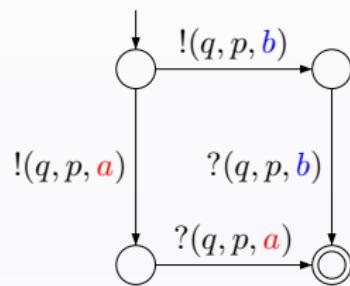
Safe realisability

Possibly a set of MSCs is realisable only by a CFM that may deadlock



process p and q have to agree on either a or b

Realisation of $\{ M_1, M_2 \}$:



Deadlock occurs when, e.g.,
 p sends a and q sends b

process p

process q

Definition (Safe realisability)

- ① MSC M is **safely realisable** whenever $\{M\} = L(\mathcal{A})$ for some **deadlock-free** CFM \mathcal{A} .
- ② A finite set $\{M_1, \dots, M_n\}$ of MSCs is **safely realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some **deadlock-free** CFM \mathcal{A} .
- ③ MSG G is **safely realisable** whenever $L(G) = L(\mathcal{A})$ for some **deadlock-free** CFM \mathcal{A} .

Consider linearisations

$L \subseteq Act^*$ is **safely realisable** if $L = Lin(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Note:

Safe realisability implies realisability, but the converse does not hold.

Closure revisited

For language L , let $\text{pref}(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L .

Definition (Inference relation, revisited)

For well-formed $L \subseteq \text{Act}^*$, and proper word $w \in \text{Act}^*$, i.e., w is a prefix of a well-formed word, let:

$$L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$$

Definition (Closure under \models^{df})

Language L is closed under \models^{df} whenever $L \models^{df} w$ implies $w \in \text{pref}(L)$.

Intuition

The closure condition says that the set of partial MSCs (i.e., prefixes of L) can be constructed from the projections of the MSCs in L onto individual processes.

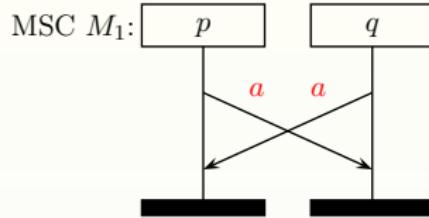
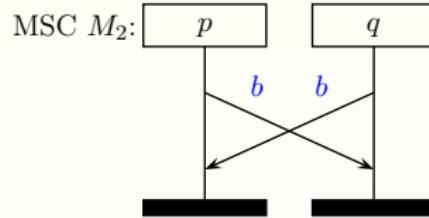
Lemma:

For any deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof

Similar proof strategy as for the closure of weak CFMs under \models . Basic intuition is that if $w \upharpoonright p$ is a prefix of $v^p \upharpoonright p$, then from the point of view of process p , w can be prolonged with the word u , say, such that $w \cdot u = v^p$. This applies to all processes, and as the weak CFM is deadlock-free, such continuation is always possible.

Example



Example

$L = \text{Lin}(\{M_1, M_2\})$ is not closed under \models^{df} :

$$w = !(p, q, \textcolor{red}{a})!(q, p, \textcolor{blue}{b}) \notin \text{pref}(L)$$

But: $L \models^{df} w$ since w is a proper prefix of a well-formed word, and

- for process p , there exists $u \in L$ with $w \upharpoonright p = !(p, q, \textcolor{red}{a}) \in \text{pref}(\{u \upharpoonright p\})$, and
- for process q , there exists $v \in L$ with $w \upharpoonright q = !(q, p, \textcolor{blue}{b}) \in \text{pref}(\{v \upharpoonright q\})$.

Characterisation of safe realisability

Theorem: [Alur et al., 2001]

$L \subseteq Act^*$ is safely realisable iff L is closed under \models and \models^{df} .

Proof

On the black board.

Corollary

The finite set of MSCs $\{M_1, \dots, M_n\}$ is safely realisable iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models and \models^{df} .

Theorem

For any well-formed $L \subseteq Act^*$:

L is regular and closed under \models and \models^{df}
if and only if

$L = Lin(\mathcal{A})$ for some \forall -bounded deadlock-free weak CFM \mathcal{A} .

Theorem: [Alur et al., 2001]

The decision problem “is a given set of MSCs safely realisable?” is in P.

Proof

- ① For a given finite set of MSCs, safe realisability can be checked in time $\mathcal{O}((k^2 + r) \cdot n)$ where n is the number of processes, k the number of MSCs, and r the number of events in all MSCs together.
- ② If the MSCs are not safely realisable, the algorithm returns an MSC which is implied, but not included in the input set of MSCs.

(Details on the black board.)