2) Lehrstuhl fiir Informatik 2 Theoretical Foundations of UML WS2012/13

Modellierung und Verifikation von Software Exercise 2 (Hand in until 07.11.2012)
Prof. Dr. Ir. Joost-Pieter Katoen Falak Sher, Sabrina von Styp
Note:

e Solution have to be handed in in groups of two.

Exercise 1 (Prove or disprove): (5 Points)

Formally prove or disprove the correctness of the following statements for CMSGs (i.e., M; € CM, / € {1,2,3}):
(remember: | = choice, ® = (weak) sequence, * = iteration)
1. Mi|My = Mo| My

2. (M1|M2)|M3 = Mq|(M2|M3)

3. (M1 @ Ma)|M3 = (M| M3) @ (M2|M3)
4. (My|M) @ M3 = (My @ M3)|(M, & Ms)
5. Mi{|M3 = (Myi|M:)*

Exercise 2 (Linearisation): (8 Points)

In this exercise we consider words over sending and receiving actions, only (i.e., there are no local actions).
Write down a pseudo-code function that, given a word w € Act®, determines whether w is a linearization of
an MSC. If w is not a linearization of an MSC the algorithm has to terminate at the first location where a
contradiction to an MSC linearization occurs. The header of the function to implement looks as follows:

public static boolean isMSCLinearization(Act[] w)

Use the following methods to ease your work:
Class ChannelSystem:

A ChannelSystem is a collection of channels.
ChannelSystem(Process from, Process to)
//constructor for an empty channel system

boolean addChannel (Process from, Process to)
//creates a new channel (from,to) (if it does not exist, yet) and
//returns true iff new channel was created

void putToChannelEnd(Process from, Process to, Message m)
//appends m to channel (from,to) if channel exists

Message lookAtChannelHead(Process from, Process to)
//peeks at head of channel without removing the element and returns message
//content of head element

void removeFromChannelHead(Process from, Process to)
//removes the element at the head of buffer (from,to)

boolean allChannelsEmpty ()
//returns true iff all channels within the channel system are empty

boolean channelExists(Process from, Process to)
//returns true iff channel (from,to) exists
Class Act:

Q

Lehrstuhl fir Informatik 2 Theoretical Foundations of UML WS2012/13
Modellierung und Verifikation von Software Exercise 2 (Hand in until 07.11.2012)

boolean isSending()
//returns true iff this action is of type sending

boolean isReceiving()
//returns true iff this action is of type receiving

Process getSendingProcess()
//returns the sending process of this action

Process getReceivingProcess()
//returns the receiving process of this action

Message getMessage()
//returns the message content of this action
Class Message:

boolean equals(Message m)
//returns whether this message is equal to m

Exercise 3 (CMSGs Properties): (6+6+3 Points)

Consider the (C)MSGs from figure 1 (last page):
1. Prove or disprove the following properties for the MSGs G1, G> and Gs:
a) local-choice (as defined in the lecture)

b) regularity (as defined in Definition 1 at the end of this assignment)

2. Prove or disprove the following property for the CMSG Gy:
a) safety (as defined in Definition 2 at the end of this assignment)

In each case justify your answer in detail. If there are several reasons why a property does not hold, state at least
two of them.

Definition 1: A Message Sequence Graph G is regular if each MSC labeling a loop in G has a strongly connected
communication graph.

Definition 2: A compositional Message Sequence Graph G is called safe if every sequence of CMSCs (using the
concatenation defined in the lecture) describing an accepting path of G results in an MSC.

2) Lehrstuhl fiir Informatik 2 Theoretical Foundations of UML WS2012/13
Modellierung und Verifikation von Software Exercise 2 (Hand in until 07.11.2012)

P a
P q
M5 M7Z
\]] —

Lo J e P e e]

YN
et | P | e [E5
~— @V
Y
P q > P
" w | 2L |
~—

Ml,M4: M3,M5I

MQ:

F>eq
[X P

Abbildung 1: (C)MSGs for exercise 3

