

Note:

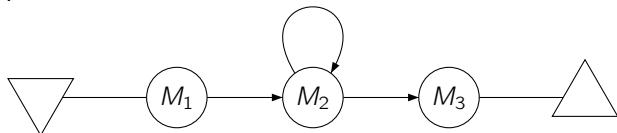
- The solutions have to be handed in, in groups of two.
- The solution of exercise 5 has to be handed in until 21.11.2012 before the exercise class. The points of this exercise are extra points, meaning you can get more than 100% if you do this exercise.

Exercise 1 (CMMSG and PDA):

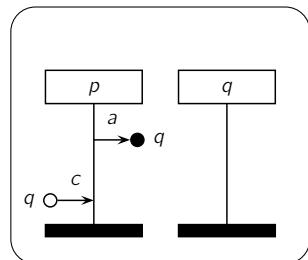
(5+2 Points)

Given the CMMSG G as follows:

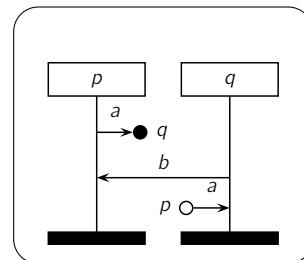
G :



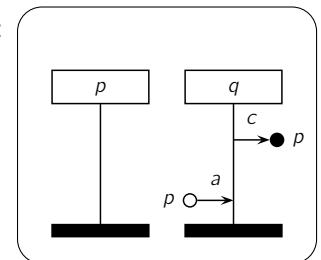
M_1 :



M_2 :



M_3 :

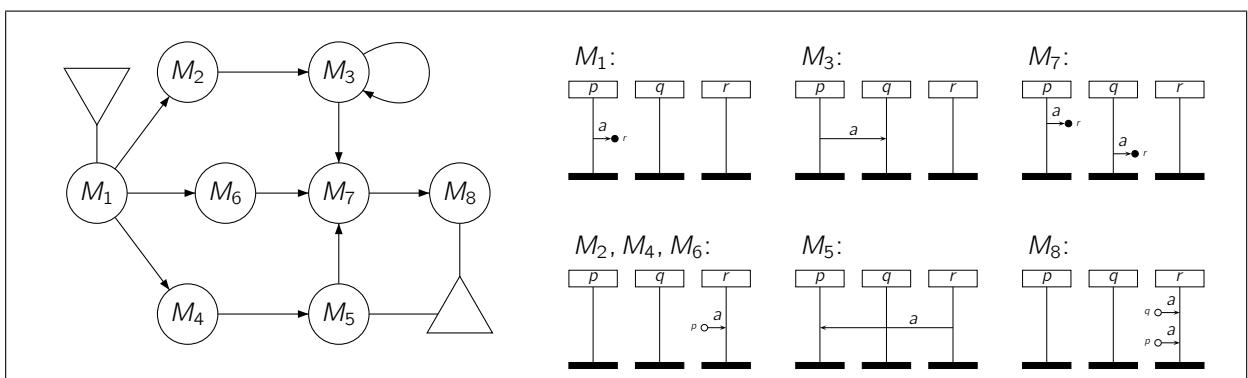


1. Construct the pushdown automaton corresponding to G .
2. Determine whether all accepting paths of G are safe.

Exercise 2 (Locally Safe CMMSG):

(2+6+3 Points)

1. Given the definition of *locally safe* (cf. Definition 1): is the following CMMSG locally safe? Justify your answer in detail by calculating the sets V^1, V^2, \prod and arguing about $M(\pi), \pi \in \prod$.



2. Prove the following statement:

If a CMMSG \mathcal{G} is *locally safe* then \mathcal{G} is finitely generated (cf. Definition 2) and there exists an MSG \mathcal{G}' , such that $L(\mathcal{G}') = L(\mathcal{G})$.

3. Can the statement from b) be used to create an MSG \mathcal{G}' for the CMSG from a)? If the answer is yes, write down \mathcal{G}' , if the answer is no justify your answer.

Exercise 3 (From MSG to CFM):

(8 Points)

Given the following specification \mathcal{S} where a producer p and a consumer c are the acting units:

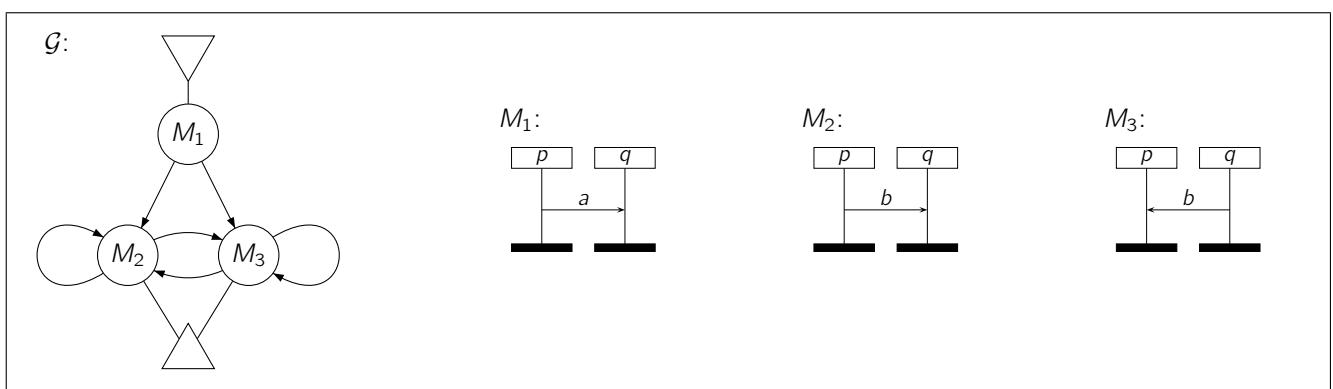
- The producer p starts sending messages with content 0 (one bit) to the consumer c until he receives an acknowledgement message a from the consumer. In that case the bit is swapped to 1 and p starts sending messages with content 1 to c until the next a is received. Then again the bit is inverted and the procedure can continue as before.
- The consumer process c , however, starts by receiving at least one 0. After that he may receive more 0s until finally he sends an a to p . After this acknowledgement the remaining 0s in the buffer (p, c) have to be received. Then process c starts receiving 1s (if p sent at least one). Having received at least one message with content 1, c may send an a after any of the succeeding 1s. Having sent the a , the remaining 1s have to be processed before another round of receiving 0s may start.
- The system may accept directly after any a that is received by process p (as long as the empty-buffer condition is fulfilled).

Question: Find an CFM implementation for \mathcal{S} .

Exercise 4 (CFM for Consumer and Customer):

(5 Points)

Consider the following MSG \mathcal{G} .



Construct an CFM \mathcal{A} which exactly recognizes $L(\mathcal{G})$ (i.e., where $L(\mathcal{A}) = L(\mathcal{G})$).

Note: Pay attention to avoid non-local-choice which would result in unwanted behavior such as deadlocks.

Exercise 5 (PCP Reduction):

(15* Points)

Consider the following decision problem **FIFO**:

Input: a CMSG \mathcal{G}

Output: Yes, if \mathcal{G} is not FIFO and no, otherwise

Prove that **FIFO** is undecidable (do a PCP reduction similar to the proof in the lecture and try to ensure that the constructed CMSG fulfills a local-choice property).

Definition 1: Let the following sets be given for a CMSG $\mathcal{G} = \langle V, \rightarrow, v_0, V^F, \lambda \rangle$

- $V^1 := \{v_0\} \cup \{v \in V \mid |Succ_{\mathcal{G}}(v)| > 1\} \cup \{v \in V^F \mid |Succ_{\mathcal{G}}(v)| > 0\}$
- $V^2 := Pred_{\mathcal{G}}(V^1 \setminus \{v_0\}) \cup F$
- $\prod := \{\pi \text{ is path in } \mathcal{G} \mid \pi = v_1, \dots, v_n, n \in \mathbb{N}, v_1 \in V^1, v_n \in V^2 \setminus V^1, v_i \notin V^2 \text{ for } 1 < i < n\} \cup \{v \mid v \in V^1 \cap V^2\}$

A compositional Message Sequence Graph \mathcal{G} is called *locally safe* if for every path $\pi \in \prod$: $M(\pi) \in \mathbb{M}$ (i.e., if $M(\pi)$ is an MSC).

For a graph $\mathcal{G} = \langle V, \rightarrow \rangle$ and a node $v \in V$:

- $Succ_{\mathcal{G}}(v) := \{(v, w) \in \rightarrow \mid w \in V\}$
- $Pred_{\mathcal{G}}(v) := \{(w, v) \in \rightarrow \mid w \in V\}$ and $Pred_{\mathcal{G}}(V) = \bigcup_{v \in V} Pred_{\mathcal{G}}(v)$

Definition 2: A CMSG \mathcal{G} is called *finitely generated* if there is a finite set $\mathcal{B} = \{M_1, \dots, M_k\}$ of MSCs such that for any $M \in L(\mathcal{G})$ there are $n \in \mathbb{N}$ and indices $i_1, \dots, i_n \in \{1, \dots, k\}$ such that $M = \prod_{j=1}^n M_{i_j}$.