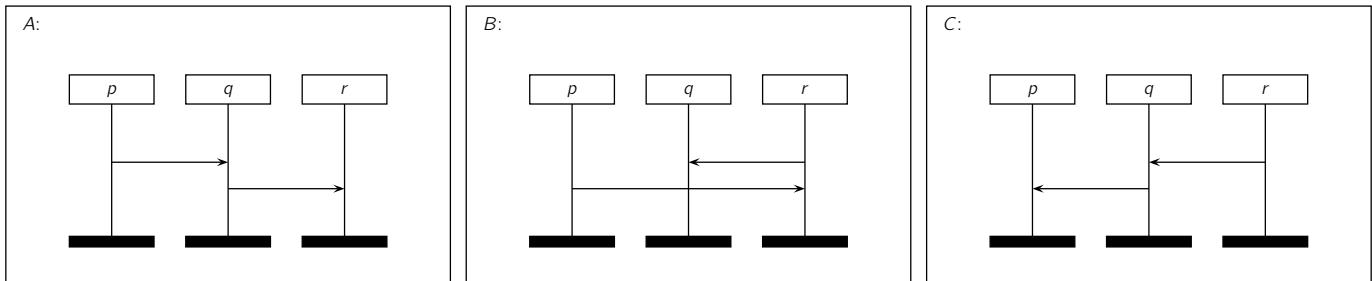


Exercise 1 (Regular Expressions and Realizability):

(5 Points)



Check whether the following regular expressions are realisable or not:

- $\alpha_1 = A^* + B^* + C^*$,
- $\alpha_2 = A \cdot (B + C)^*$,
- $\alpha_3 = (A \cdot B \cdot C)^*$,
- $\alpha_4 = (A \cdot B)^*$,
- $\alpha_5 = (A \cdot C)^*$,

and if so, whether they can be realized by a universally bounded, deadlock-free CFM?

Exercise 2 (Expressiveness of CFMs):

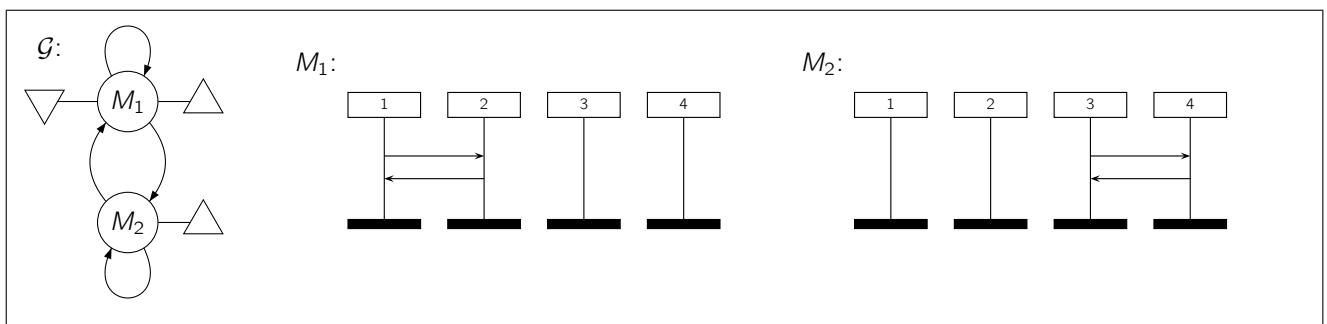
(6 Points)

Prove that for $\mathcal{P} = \{p, q, r, s\}$ and $\mathcal{C} = \{a\}$, locally accepting CFMs are strictly weaker than CFMs.

Exercise 3 (Regular Expressions and MSGs):

(6 Points)

Reconsider the MSG \mathcal{G} from the lecture:

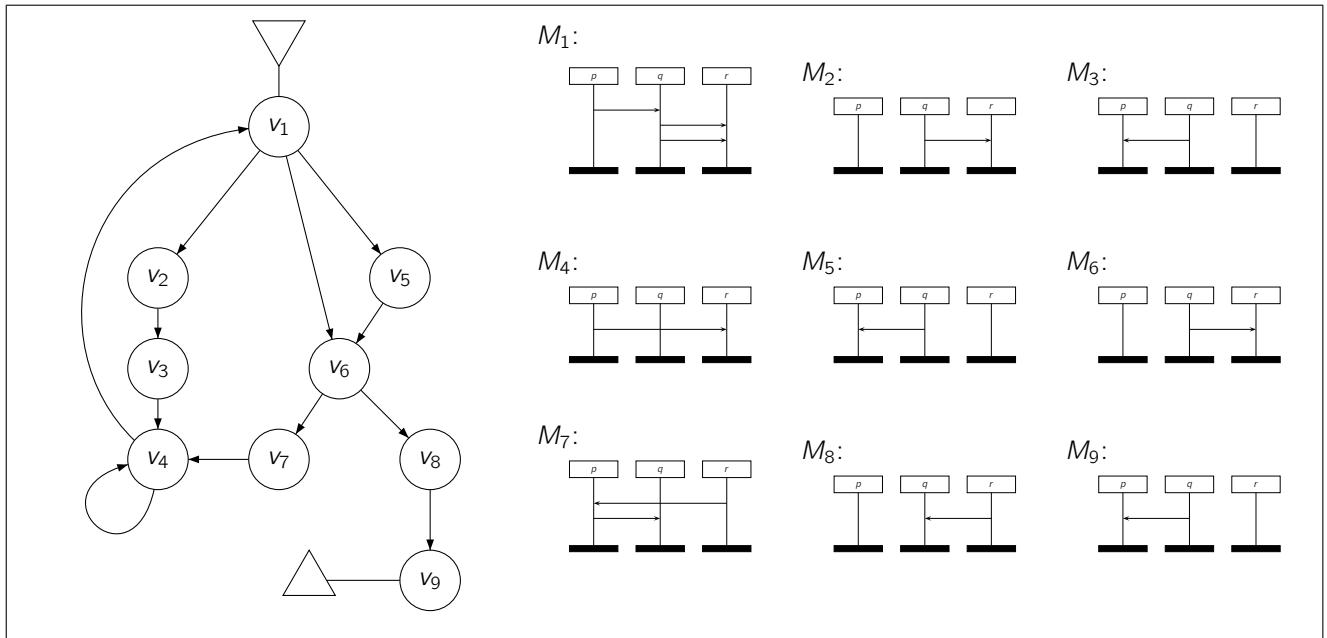


\mathcal{G} is not communication-closed but the set of linearizations $Lin(\mathcal{G})$ is regular. Find a regular expression α over $\{M_1, M_2\}$ such that the MSG \mathcal{G}' induced by α is communication-closed and recognizes the same language as \mathcal{G} . For your solution write down α , \mathcal{G}' and argue why \mathcal{G}' is communication-closed and $L(\mathcal{G}) = L(\mathcal{G}')$.

Exercise 4 (Realizability of MSGs):

(8 Points)

Given the following local-choice MSG \mathcal{G} over $\mathcal{P} = \{p, q, r\}$, where $\lambda(v_i) = M_i$ (for $i \in \{1, \dots, 9\}$):



Construct a deadlock-free CFM \mathcal{A} according to the algorithm presented in lecture 11. Determine, moreover, for every node $v \in V$ of \mathcal{G} the maximal non-branching path $nbp(v)$.