

Winter term 2009/10

Prof. Dr. Ir. J.-P. Katoen

Exam for *Foundations of the UML***February 18, 2010**

Family name: _____

First name: _____

Student number: _____

Field of study: Software Systems Engineering
 Informatik (Diplom)
 Others: _____**Please note the following hints:**

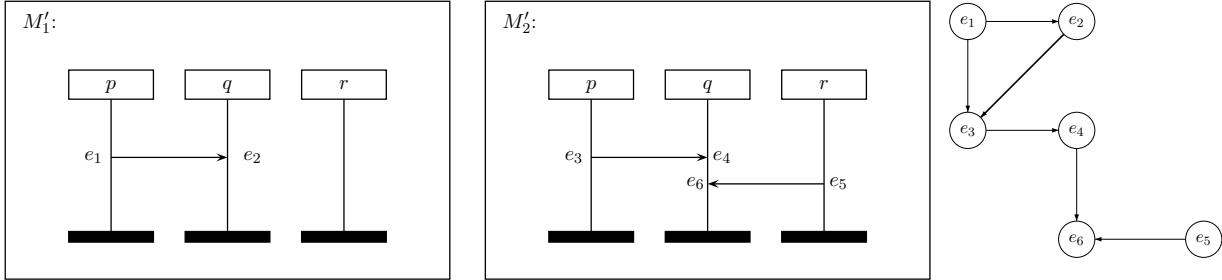
- Keep your student id card and a passport ready.
- The only allowed material is a copy of the lecture slides.
No other materials (i.e. lecture notes, exercises, solutions, handwritten notes) are admitted.
- This test should have 5 pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is **90 minutes**.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
Total	40	
Grade		

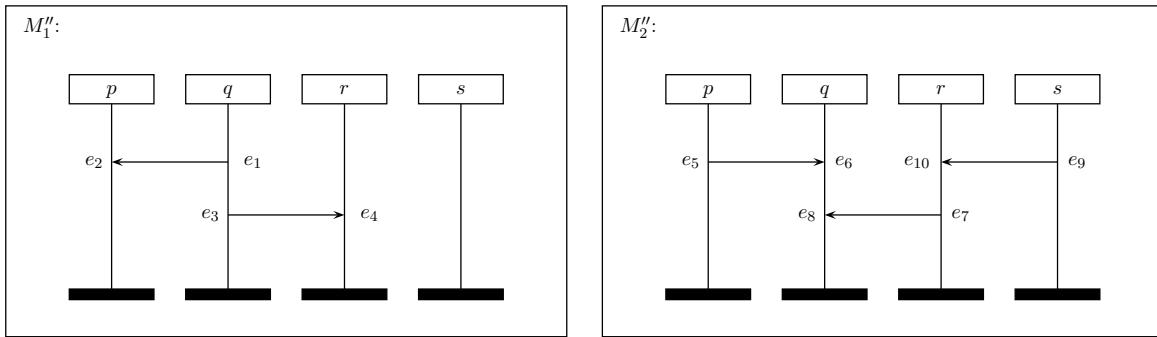
Question 1

(2+5+3=10 points)

Consider the following notion of concatenation \odot of MSCs M_1 and M_2 : *all (and only) the processes that are active in M_1 must finish before any process of M_2 that was also active in M_1 can start executing again.* For example, given the following M'_1 and M'_2 , the partial order $<_c$ in $M'_1 \odot M'_2$ is shown in the rightmost figure.



(a) Given the following MSCs M''_1 , M''_2 , write down the partial order relation $<_c$ in $M''_1 \odot M''_2$, preferably in the graphical form as shown above.

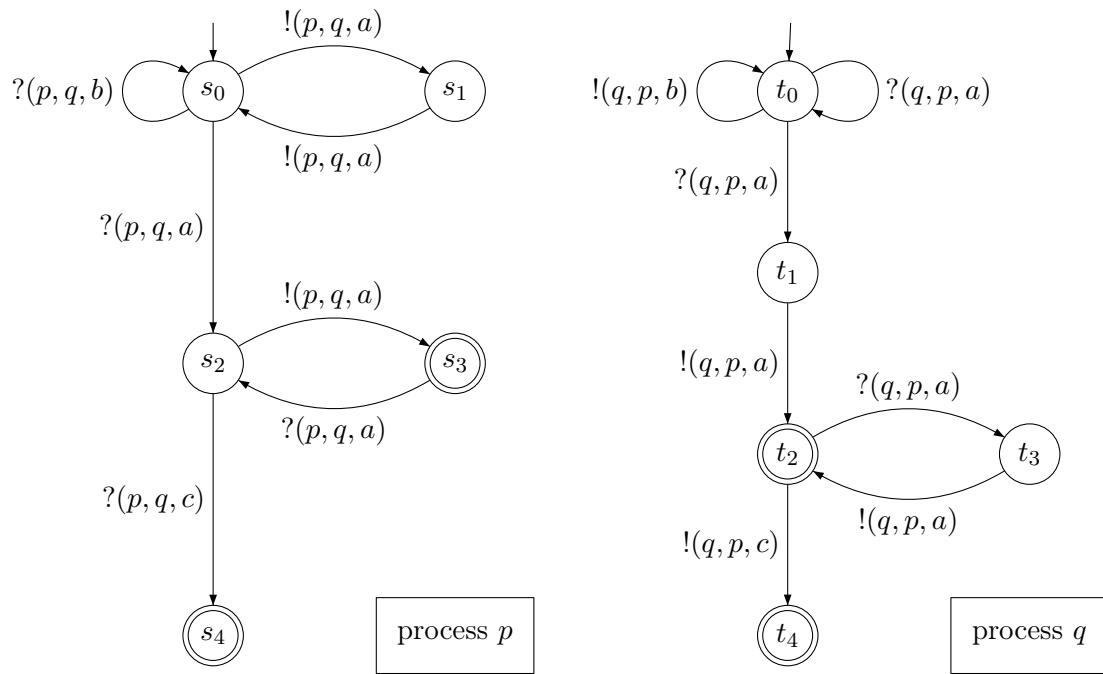


(b) Provide a formal definition of the new concatenation operator \odot .

(c) Prove or disprove that the operator \odot is associative, i.e., $(M_1 \odot M_2) \odot M_3 = M_1 \odot (M_2 \odot M_3)$.

Question 2

(3+4+3=10 points)

Given the CFM \mathcal{A} below, where the set of global final states is $F = \{(s_3, t_2), (s_4, t_4)\}$:

- (a) Give a characterization of $Lin(\mathcal{A})$.
- (b) Prove that \mathcal{A} is deadlock-free, or give a counterexample showing that it is not.
- (c) Is \mathcal{A} universally/existentially bounded? If yes, find the smallest B such that \mathcal{A} is $\forall B$ -/ $\exists B$ -bounded.

Question 3

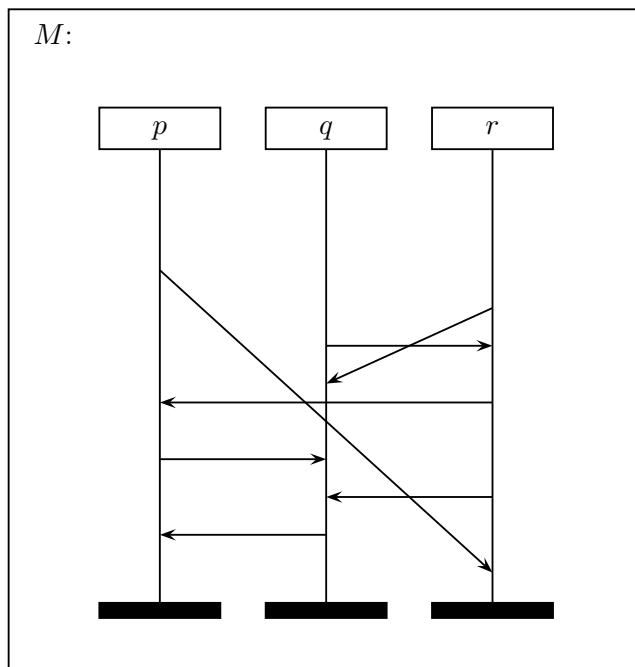
(2+2+2+2+2=10 points)

1) Prove the equivalence of the following PDL formulas:

a) $\langle \alpha; \beta \rangle \varphi \equiv \langle \alpha \rangle \langle \beta \rangle \varphi,$
 b) $\langle \alpha + \beta \rangle \varphi \equiv \langle \alpha \rangle \varphi \vee \langle \beta \rangle \varphi,$

where α, β are path formulas and φ is a local formula.

2) For the following MSC M with the set of processes $\mathcal{P} = \{p, q, r\}$



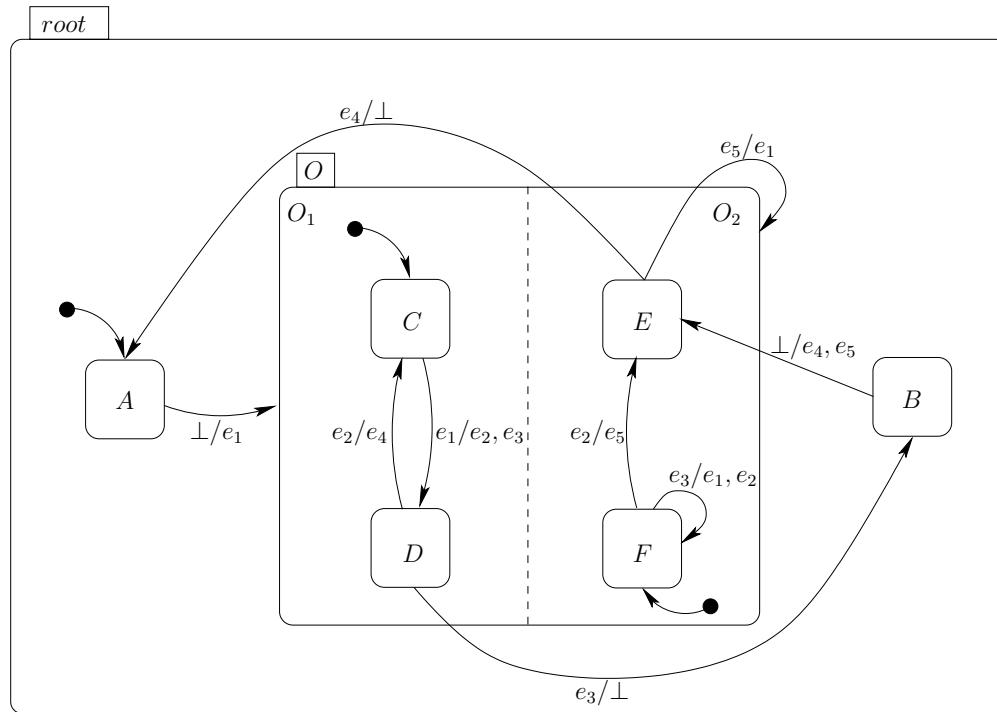
determine whether M satisfies the following formulas or not:

- a) $\exists \langle (proc + msg)^*; \{?(p, q, \cdot)\}; [proc]^{-1}; (proc + msg)^* \rangle ?(p, q, \cdot)$
- b) $\exists \langle \{!\mathit{p}\}; (proc + msg; \{!\mathit{q} \vee ?\mathit{q}\})^* \rangle ?\mathit{p}$
- c) $\exists \langle msg; [proc]^{-1}; msg; [proc]^{-1}; [proc]^{-1} \rangle false$

where $?p_1 = \bigvee_{p' \neq p_1} ?(p_1, p', \cdot)$ and $!p_1 = \bigvee_{p' \neq p_1} !(p_1, p', \cdot)$, $p_1 \in \mathcal{P}$.

Question 4

(1+1+2+6=10 points)



- Describe the statechart formally, i.e., give the components $(N, E, Edges)$.
- Construct the tree that represents the node hierarchy of the statechart. Determine the types of the nodes of the statechart.
- Find all pairs of consistent edges.
- Construct the related Mealy machine (write down all your calculations).