

Theoretical Foundations of the UML

Lecture 6: Communicating Finite-State Machines

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

4. November 2012

Outline

- 1 Introduction
- 2 Communicating Finite-State Machines
- 3 Semantics of Communicating Finite-State Machines
- 4 Emptiness Problem for CFMs

Overview

- 1 Introduction
- 2 Communicating Finite-State Machines
- 3 Semantics of Communicating Finite-State Machines
- 4 Emptiness Problem for CFMs

- Consider an MSGs as **complete** system **specifications**
 - they describe a full set of possible system scenarios
- Can we obtain “realisations“ that exhibit precisely these scenarios?
- Map MSGs, i.e., scenarios onto an executable **model**
 - model each process by a **finite-state automaton**
 - that communicate via **unbounded FIFO channels**

⇒ Communicating finite-state machines

The need for synchronisation messages

Overview

- 1 Introduction
- 2 Communicating Finite-State Machines
- 3 Semantics of Communicating Finite-State Machines
- 4 Emptiness Problem for CFMs

Definition

We fix the following parameters:

- \mathcal{P} a finite set of at least two (sequential) **processes**
- \mathcal{C} a finite set of **message contents**

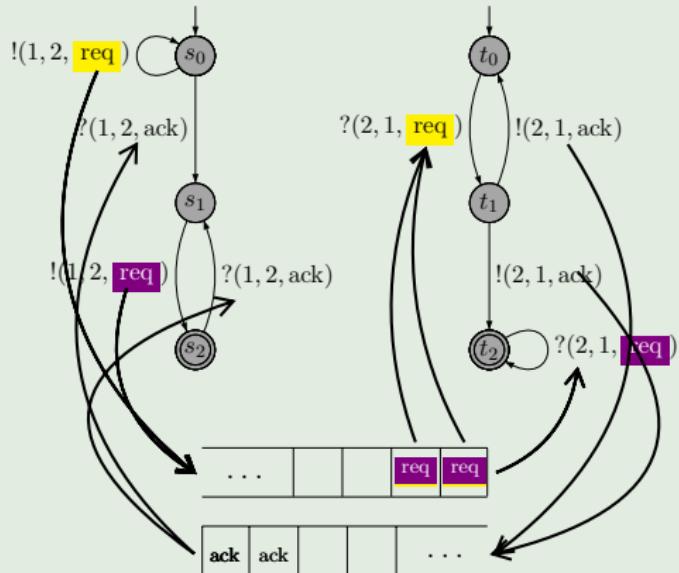
Definition (communication actions, channels)

- $Act_p^! := \{!(p, q, a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$ (for $p \in \mathcal{P}$)
“ p sends message a to q “
- $Act_p^? := \{?(p, q, a) \mid q \in \mathcal{P} \setminus \{p\}, a \in \mathcal{C}\}$
“ p receives message a from q “
- $Act_p := Act_p^! \cup Act_p^?$
- $Act := \bigcup_{p \in \mathcal{P}} Act_p$
- $Ch := \{(p, q) \mid p, q \in \mathcal{P}, p \neq q\}$ “channels“
- $Comm := \{!(p, q, a), ?(q, p, a) \mid (p, q) \in Ch, a \in \mathcal{C}\}$

Definition

A **communicating finite-state machine** (CFM) over \mathcal{P} and \mathcal{C} is a structure

$$\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$$


where

- \mathbb{D} is a nonempty finite set of **synchronization messages** (or **data**)
- for each $p \in \mathcal{P}$:
 - S_p is a non-empty finite set of **local states** (the S_p are disjoint)
 - $\Delta_p \subseteq S_p \times Act_p \times \mathbb{D} \times S_p$ is a set of **local transitions**
- $s_{init} \in S_{\mathcal{A}}$ is the **global initial state**
 - where $S_{\mathcal{A}} := \prod_{p \in \mathcal{P}} S_p$ is the set of **global states** of \mathcal{A}
- $F \subseteq S_{\mathcal{A}}$ is the set of **global final states**

We often write $s \xrightarrow{\sigma, m} p s'$ instead of $(s, \sigma, m, s') \in \Delta_p$

Communicating finite-state machines

Example

$!(1,2,\text{req}) \quad !(1,2,\text{req}) \quad ?(2,1,\text{req}) \quad !(2,1,\text{ack}) \quad ?(2,1,\text{req}) \quad !(2,1,\text{ack}) \quad ?(1,2,\text{ack}) \quad !(1,2,\text{req}) \quad ?(1,2,\text{ack}) \quad !(1,2,\text{req}) \quad ?(2,1,\text{req})$

Overview

- 1 Introduction
- 2 Communicating Finite-State Machines
- 3 Semantics of Communicating Finite-State Machines
- 4 Emptiness Problem for CFMs

Formal semantics of CFMs

Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be a CFM over \mathcal{P} and \mathcal{C} .

Definition

Configurations of \mathcal{A} : $Conf_{\mathcal{A}} := S_{\mathcal{A}} \times \{\eta \mid \eta : Ch \rightarrow (\mathcal{C} \times \mathbb{D})^*\}$

Definition (global step)

$\Rightarrow_{\mathcal{A}} \subseteq Conf_{\mathcal{A}} \times Act \times \mathbb{D} \times Conf_{\mathcal{A}}$ is defined as follows:

- sending a message: $((\bar{s}, \eta), !(p, q, a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - $(\bar{s}[p], !(p, q, a), m, \bar{s}'[p]) \in \Delta_p$
 - $\eta' = \eta[(p, q) := (a, m) \cdot \eta((p, q))]$
 - $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$
- receipt of a message: $((\bar{s}, \eta), ?(p, q, a), m, (\bar{s}', \eta')) \in \Rightarrow_{\mathcal{A}}$ if
 - $(\bar{s}[p], ?(p, q, a), m, \bar{s}'[p]) \in \Delta_p$
 - $\eta(q, p) = w \cdot (a, m) \neq \epsilon$ and $\eta' = \eta[(q, p) := w]$
 - $\bar{s}[r] = \bar{s}'[r]$ for all $r \in \mathcal{P} \setminus \{p\}$

Example

Linearizations of a CFM

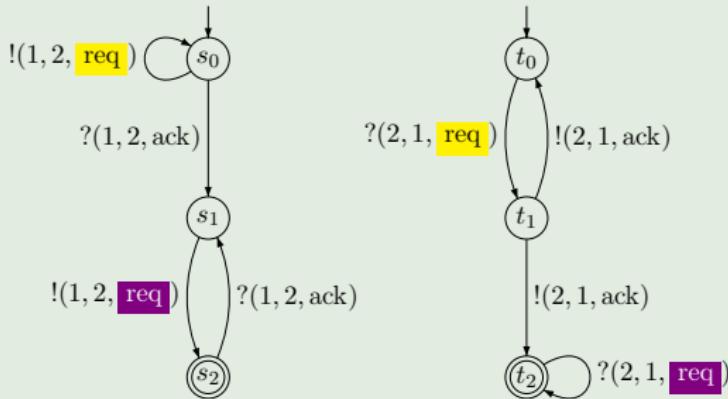
Let $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ be a CFM over \mathcal{P} and \mathcal{C} .

Definition (accepting runs)

A **run** of \mathcal{A} on $\sigma_1 \dots \sigma_n \in Act^*$ is a sequence $\rho = \gamma_0 m_1 \gamma_1 \dots \gamma_{n-1} m_n \gamma_n$ such that

- $\gamma_0 = (s_{init}, \eta_\varepsilon)$ with η_ε mapping any channel to ε
- $\gamma_{i-1} \xrightarrow{\sigma_i, m_i} \mathcal{A} \gamma_i$ for any $i \in \{1, \dots, n\}$

Run ρ is **accepting** if $\gamma_n \in F \times \{\eta_\varepsilon\}$.


Definition (linearization of a CFM)

The set of **linearizations** of CFM \mathcal{A} :

$Lin(\mathcal{A}) := \{w \in Act^* \mid \text{there is an accepting run of } \mathcal{A} \text{ on } w\}$

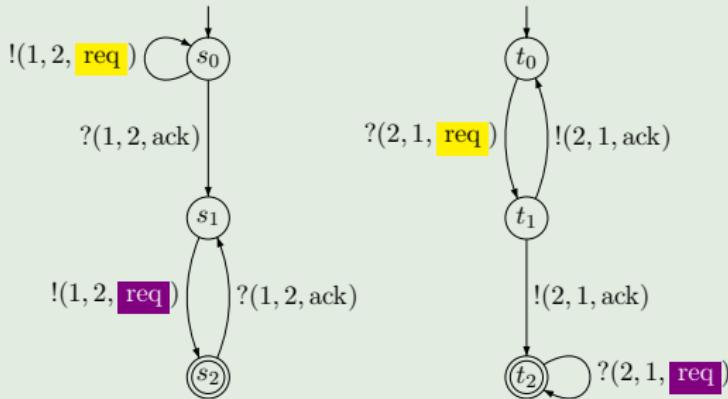
Linearizations of an example CFM

Example

CFM \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

$Lin(\mathcal{A}) = \{w \in Act^* \mid \text{there is } n \geq 1 \text{ such that:}$

$$w \upharpoonright 1 = !(1, 2, \text{req})^n \ (?(1, 2, \text{ack}) \ !(1, 2, \text{req}))^n$$


$$w \upharpoonright 2 = (?(2, 1, \text{req}) \ !(2, 1, \text{ack}))^n \ (?!(2, 1, \text{req}))^n$$

for any $u \in Pref(w)$ and $(p, q) \in Ch$:

$$\sum_{a \in C} |u|_{!(p,q,a)} - \sum_{a \in C} |u|_{?(q,p,a)} \geq 0 \}$$

Linearizations and MSCs of an example CFM

Example

CFM \mathcal{A} over
 $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$

$Lin(\mathcal{A}) = \{w \in Act^* \mid \text{there is } n \geq 1 \text{ such that:}$

$$w \upharpoonright 1 = (!(1, 2, \text{req}))^n \ (?(1, 2, \text{ack}) \ !(1, 2, \text{req}))^n$$

$$w \upharpoonright 2 = (?(2, 1, \text{req}) \ !(2, 1, \text{ack}))^n \ (?(2, 1, \text{req}))^n$$

for any $u \in Pref(w)$ and $(p, q) \in Ch$:

$$\sum_{a \in C} |u|_{!(p, q, a)} - \sum_{a \in C} |u|_{?(q, p, a)} \geq 0 \}$$

Overview

- 1 Introduction
- 2 Communicating Finite-State Machines
- 3 Semantics of Communicating Finite-State Machines
- 4 Emptiness Problem for CFMs

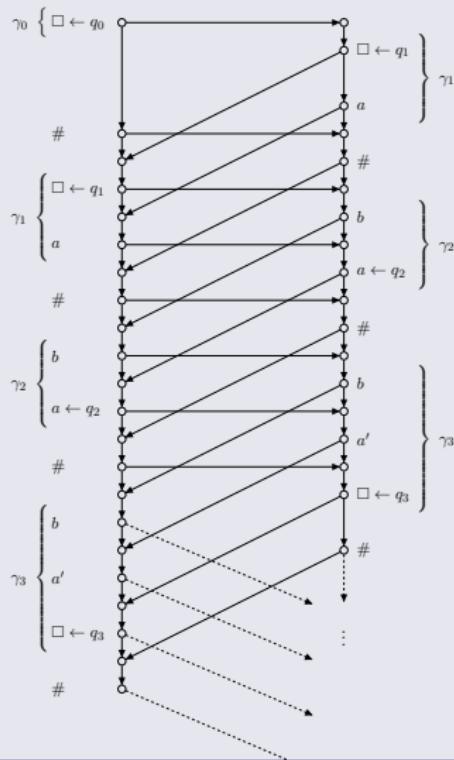
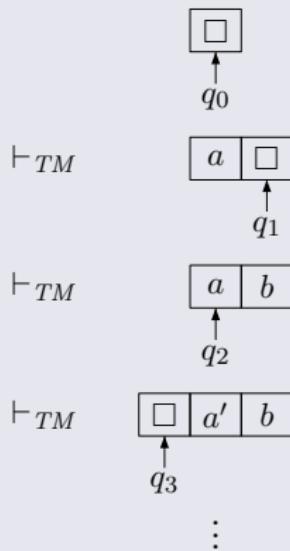
Proposition ([Brand & Zafiropulo 1983])

The following problem is undecidable (even if \mathcal{C} is a singleton):

INPUT: CFM \mathcal{A} over processes \mathcal{P} and message contents \mathcal{C}
QUESTION: Is $L(\mathcal{A})$ empty?

Proof (sketch)

Reduction from halting problem for Turing machine



$TM = (Q, \Sigma, \Delta, \square, q_0, q_f)$ to emptiness for a CFM with two processes.

Build CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), \mathbb{D}, s_{init}, F)$ over $\{1, 2\}$ and some singleton set such that $L(\mathcal{A}) \neq \emptyset$ iff TM can reach q_f .

- Process 1 sends current configurations to process 2
- Process 2 chooses successor configurations and sends them to 1
- $\mathbb{D} = ((\Sigma \cup \{\square\}) \times (Q \cup \{_\})) \cup \{\#\}$

A CFM simulating a Turing machine

Proof (contd.)

Proof (contd.)

- **Left or standstill transition:** Process 2 may just wait for a symbol containing a state of TM and to alter it correspondingly. In the example, the left-moving transition (q_2, a, a', L, q_3) is applied so that process 2
 - sends b unchanged back to process 1
 - detects (receives) $a \leftarrow q_2$
 - sends a' to process 1 entering a state indicating that the symbol to be sent next has to be equipped with q_3
 - receives $\#$ so that the symbol $\square \leftarrow q_3$ has to be inserted before returning $\#$
- **Right transition:** Process 2 has to guess what the position right before the head is. For example, provided process 2 decided in favor of (q_2, a, a', R, q_3) while reading b , it would have to
 - send $b \leftarrow q_3$ instead of just b , entering some state $t(a \leftarrow q_2)$
 - receive $a \leftarrow q_2$ (no other symbol can be received in state $t(a \leftarrow q_2)$)
 - send a' back to process 1

Proof (contd.)

- Introduce local final states s_f and t_f , one for process 1 and one for process 2, respectively (i.e., $F = \{(s_f, t_f)\}$ and \mathcal{A} is locally accepting).
- At any time, process 1 may switch into s_f , in which arbitrary and arbitrarily many messages can be received to empty channel $(2, 1)$.
- Process 2 is allowed to move into t_f and to empty the channel $(1, 2)$ as soon as it receives a letter $c \leftarrow q_f$ for some c .
- As process 2 modifies a configuration of TM locally, finitely many states are sufficient in \mathcal{A} . □