

Theoretical Foundations of the UML

Lecture 10: Regular MSCs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

3. Dezember 2012

Outline

- 1 Realisability and safe realisability
- 2 Regular MSCs
- 3 Regularity and realisability for MSCs
- 4 Regularity and realisability for MSGs
 - Communication closedness
 - Summary of realisability of MSGs

Overview

- 1 Realisability and safe realisability
- 2 Regular MSCs
- 3 Regularity and realisability for MSCs
- 4 Regularity and realisability for MSGs
 - Communication closedness
 - Summary of realisability of MSGs

Definition (Realisability)

- ① MSC M is **realisable** whenever $\{M\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ② A finite set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ③ MSG G is **realisable** whenever $L(G) = L(\mathcal{A})$ for some CFM \mathcal{A} .

Definition (Safe realisability)

Same as above except that the CFM should be **deadlock-free**.

Approach so far:

The (safe) realisation of a (finite) set of MSCs by a weak CFM is the one where the automaton \mathcal{A}_p of process p generates the projections of these MSCs on p .

Results so far:

- ❶ Conditions for (safe) realisability for languages obtained by finite sets of MSCs.
- ❷ Checking safe realisability for such languages is in P.
- ❸ Checking realisability for such languages is co-NP complete.

- Can results be obtained for **larger classes** of MSGs?
- What happens if we allow **synchronisation messages**?
 - recall that weak CFMs do not involve synchronisation messages
- How do we obtain a CFM realising an MSG **algorithmically**?
 - in particular, for non-local choice MSGs
- Are there **simple conditions** on MSGs that guarantee realisability?
 - e.g., easily identifiable subsets of (safe) realisable MSGs

Today's lecture

Today's setting

(Safe) Realisability of a **regular** set of MSCs.

Or, equivalently: (safe) realisability of a **regular** set of well-formed words (that is, a regular language).

Results:

- ❶ Checking whether a regular language L is well-formed is decidable.
- ❷ For well-formed language L :
 - L is regular iff it is (safely) realisable by a \forall -bounded CFM.
- ❸ Checking whether an MSG is regular is undecidable.
- ❹ If an MSG is (locally) communication-closed, it is regular.
- ❺ Checking whether an MSG is comm.-closed is coNP-complete.
- ❻ Checking whether an MSG is locally communication-closed is in P.

Overview

- 1 Realisability and safe realisability
- 2 Regular MSCs
- 3 Regularity and realisability for MSCs
- 4 Regularity and realisability for MSGs
 - Communication closedness
 - Summary of realisability of MSGs

Let \mathbb{M} be the set of MSCs over \mathcal{P} and \mathcal{C} .

Definition (Regular)

- ① $\mathcal{M} = \{ M_1, \dots, M_n \}$ with $n \in \mathbb{N} \cup \{ \infty \}$ is called **regular** if $\text{Lin}(\mathcal{M}) = \bigcup_{i=1}^n \text{Lin}(M_i)$ is a regular word language over Act^* .
- ② MSG G is **regular** if $\text{Lin}(G)$ is a regular word language over Act^* .
- ③ CFM \mathcal{A} is **regular** if $\text{Lin}(\mathcal{A})$ is a regular word language over Act^* .

Here, Act is the set of actions in \mathcal{M} , G , and \mathcal{A} , respectively.

Lemma:

Every \forall -bounded CFM is regular.

Why?

Examples

On the black board.

Theorem

[Henriksen et. al, 2005]

The decision problem “is a regular language $L \subseteq Act^*$ well-formed”? —that is, does L represent a set of MSCs?— is decidable.

Proof

Since L is regular, there exists a minimal DFA $\mathcal{A} = (S, Act, s_0, \delta, F)$ that accepts L . Consider the productive states in this DFA, i.e., all states from which some state in F can be reached. We label any productive state s with a **channel-capacity** function $K_s : Ch \rightarrow \mathbb{N}$ such that four constraints (cf. next slide) are fulfilled. Then: L is well-formed iff each productive state in the DFA \mathcal{A} can be labeled with K_s satisfying these constraints. In fact, if a state-labeling violates any of these constraints, it is due to a word that is not well-formed.

Constraints on state-labelling

- ① $s \in F \cup \{s_0\}$, implies $K_s((p, q)) = 0$ for every channel (p, q) .
- ② $\delta(s, !(p, q, a)) = s'$ implies

$$K_{s'}(c) = \begin{cases} K_s(c) + 1 & \text{if } c = (p, q) \\ K_s(c) & \text{otherwise.} \end{cases}$$

- ③ $\delta(s, ?(p, q, a)) = s'$ implies $K_s((q, p)) > 0$ and

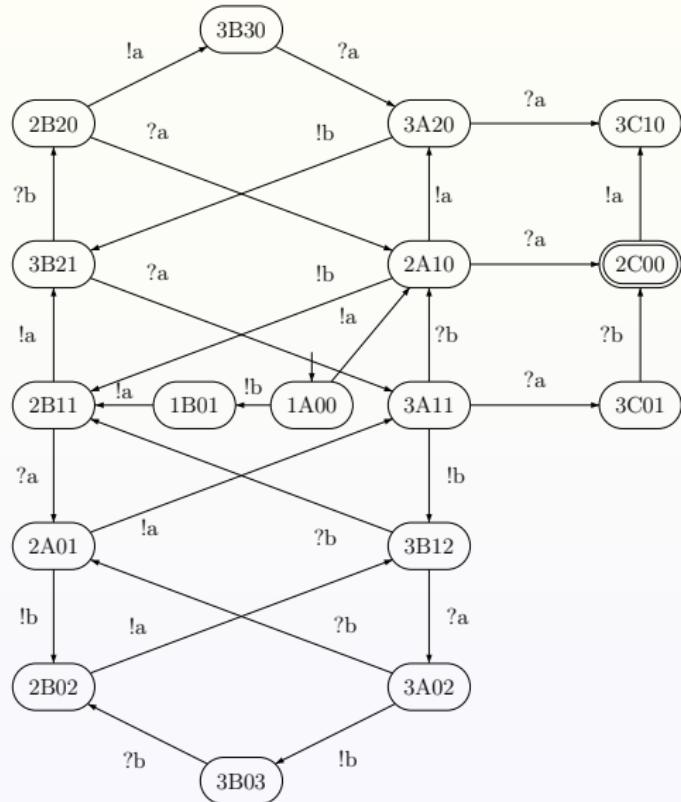
$$K_{s'}(c) = \begin{cases} K_s(c) - 1 & \text{if } c = (q, p) \\ K_s(c) & \text{otherwise.} \end{cases}$$

- ④ $\delta(s, \alpha) = s_1$ and $\delta(s_1, \beta) = s_2$ with $\alpha \in Act_p$ and $\beta \in Act_q$, $p \neq q$, implies

not $(\alpha = !(p, q, a) \text{ and } \beta = ?(q, p, a))$, or $K_s((p, q)) > 0$
implies $\delta(s, \beta) = s'_1$ and $\delta(s'_1, \alpha) = s_2$ for some $s'_1 \in S$.

These constraints can be checked in linear time in the size of δ .

Yannakakis' example



Boundedness and regularity

Definition (B -bounded words)

Let $B \in \mathbb{N}$ and $B > 0$. A word $w \in Act^*$ is called **B -bounded** if for any prefix u of w and any channel $(p, q) \in Ch$:

$$0 \leq \sum_{a \in \mathcal{C}} |u|_{!(p,q,a)} - \sum_{a \in \mathcal{C}} |u|_{?(q,p,a)} \leq B$$

Corollary:

For any regular, well-formed language L , there exists $B \in \mathbb{N}$ and $B > 0$ such that every $w \in L$ is B -bounded.

Proof

The bound is the largest value attained by the channel-capacity functions assigned to productive states in the proof of the previous theorem.

Overview

- 1 Realisability and safe realisability
- 2 Regular MSCs
- 3 Regularity and realisability for MSCs
- 4 Regularity and realisability for MSGs
 - Communication closedness
 - Summary of realisability of MSGs

Regularity and realisability

Theorem:

[Henriksen et al., 2005, Baudru & Morin, 2007]

For any set L of well-formed words, the following statements are equivalent:

- ① L is regular.
- ② L is realisable by a \forall -bounded CFM.
- ③ L is realisable by a deterministic \forall -bounded CFM.
- ④ L is safely realisable by a \forall -bounded CFM.

Lemma:

The maximal size of the CFM realising L is such that for each process p , the number $|Q_p|$ of states of local automaton \mathcal{A}_p is:

- ① double exponential in the bound B , and n^2 where $n = |\mathcal{P}|$, and
- ② exponential in $m \log m$ where m is the size of a minimal DFA for L .

Overview

- 1 Realisability and safe realisability
- 2 Regular MSCs
- 3 Regularity and realisability for MSCs
- 4 Regularity and realisability for MSGs
 - Communication closedness
 - Summary of realisability of MSGs

Regularity for MSGs is undecidable

Theorem

[Henriksen et. al, 2005]

The decision problem “is MSG G regular“? is **undecidable**.

Proof

Outside the scope of this lecture.

- MSG G is regular if $Lin(G)$ is a regular language
- Regularity yields deterministic, or safe, but bounded CFMs
- But, “is MSG G regular”? is unfortunately **undecidable**
- Is it possible to impose **structural** conditions on MSGs that guarantee regularity?
- **Yes we can.** For instance, by constraining:
 - ① the communication structure of the MSCs in loops of G , or
 - ② the structure of expressions describing the MSCs in G

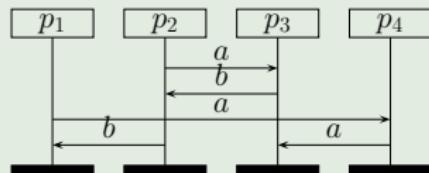
Communication graph

Definition (Communication graph)

The **communication graph** of the MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ is the directed graph (V, \rightarrow) with:

- $V = \mathcal{P} \setminus \{p \in \mathcal{P} \mid E_p = \emptyset\}$, the set of **active** processes
- $(p, q) \in \rightarrow$ if and only if $l(e) = !(p, q, a)$ for some $e \in E$ and $a \in \mathcal{C}$

Example



an example MSC

its communication graph

Strongly connected components

Let $G = (V, \rightarrow)$ be a directed graph.

Strongly connected component

- $T \subseteq V$ is **strongly connected** if for any $v, w \in T$, vertices v and w are mutually reachable (via \rightarrow) from each other.
- T is a **strongly connected component (SCC)** of G if T is strongly connected and T is not properly contained in another SCC.

Determining the SCCs of a digraph can be done in linear time in the size of V and \rightarrow .

Definition (Communication closedness)

MSG G is **communication-closed** if for any loop $\pi = v_1 v_2 \dots v_n$ (with $v_1 = v_n$) in G , the MSC $M(\pi) = \lambda(v_1) \bullet \lambda(v_2) \bullet \dots \bullet \lambda(v_n)$ has a strongly connected communication graph.

Example

On the black board.

Communication-closed vs. regularity

Theorem:

Any communication-closed MSG G is regular.

Example

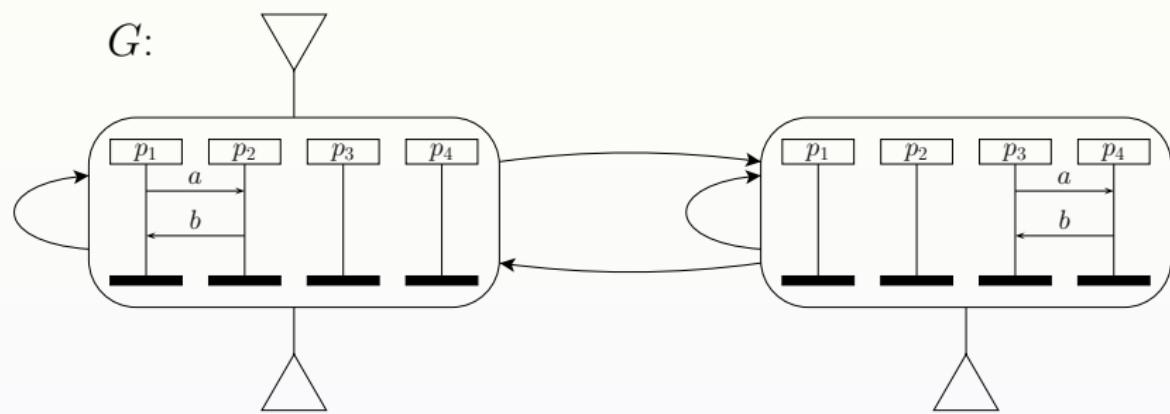
Example on the black board.

Note:

The converse does not hold (cf. next slide).

Communication-closed vs. regularity

Communication-closedness is not a necessary condition for regularity:



MSG G is **not** communication-closed, but $Lin(G)$ is **regular**.

Theorem:

[Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP complete.

Proof

- ① Membership in co-NP can be proven in a standard way: guess a subgraph of G , check in polynomial time whether this subgraph has a loop passing through all its vertices, and check whether its communication graph is not strongly connected.
- ② It can be shown that the problem is co-NP hard by a reduction from the 3-SAT problem.

Communication-closed vs. regularity

Definition (Asynchronous iteration)

For $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathbb{M}$ sets of MSCs, let:

$$\mathcal{M}_1 \bullet \mathcal{M}_2 = \{ M_1 \bullet M_2 \mid M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2 \}$$

For $\mathcal{M} \subseteq \mathbb{M}$ let

$$\mathcal{M}^i = \begin{cases} \{M_\epsilon\} & \text{if } i=0, \text{ where } M_\epsilon \text{ denotes the empty MSC} \\ \mathcal{M} \bullet \mathcal{M}^{i-1} & \text{if } i > 0 \end{cases}$$

The **asynchronous iteration** of \mathcal{M} is now defined by:

$$\mathcal{M}^* = \bigcup_{i \geq 0} \mathcal{M}^i.$$

Definition (Finitely generated)

Set of MSCs $\mathcal{M} \subseteq \mathbb{M}$ is **finitely generated** if there is a finite set of MSCs $\widehat{\mathcal{M}} \subseteq \mathbb{M}$ such that $\mathcal{M} \subseteq \widehat{\mathcal{M}}^*$.

Remarks:

- ❶ Each set of MSCs defined by an MSG G is finitely generated.
- ❷ Not every regular well-formed language is finitely generated.
- ❸ Not every finitely generated set of MSCs is regular.
- ❹ It is decidable to check whether a set of MSCs is finitely generated.
 - details of the last decidability results are outside the scope of this lecture.

Theorem:

[Henriksen et. al, 2005]

Let \mathcal{M} be a set of MSCs. Then:

\mathcal{M} is finitely generated and regular

iff

$\mathcal{M} = L(G)$ for communication-closed MSG G .

Definition (Local communication-closedness)

MSG G is **locally** communication-closed if for each vertex (v, v') in G , the MSCs $\lambda(v)$, $\lambda(v')$, and $\lambda(v) \bullet \lambda(v')$ all have **weakly** connected communication graphs.

Notes:

- ➊ A directed graph is weakly connected if its induced **undirected** graph (obtained by ignoring the directions of edges) is strongly connected.
- ➋ Checking whether MSG G is locally communication-closed can be done in linear time.

Locally communication-closed MSGs are realisable

Theorem:

[Genest et al., 2006]

For any locally communication-closed MSG G , there exists a CFM \mathcal{A} with $L(\mathcal{A}) = L(G)$ of size $n^{\mathcal{O}(|\mathcal{P}|)}$ where n is the number of vertices in G .

Thus: every locally communication-closed MSG is realisable.

FIFO communication:

	finite MSGs*	communication-closed MSGs	general MSGs
realisability	co-NP complete	undecidable	undecidable
safe realisability	PTIME	EXPSPACE-complete	undecidable

* MSG G is finite if $L(G)$ is a finite set of MSCs.

non-FIFO communication¹:

	finite MSGs	communication-closed MSGs	general MSGs
realisability	co-NP complete	PSPACE-hard	undecidable
safe realisability	PTIME	EXPSPACE-complete	undecidable

¹ Considered only for the sake of completeness.