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@ Introduction
© Local Choice MSGs

© Regular Expressions over MSCs

@ A Realisation Algorithm for MSGs
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Overview

@ Introduction
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Safe realisability

Definition (Realisability of MSGs)

© MSG G is realisable whenever L(G) = L(A) for some CFM A.

© MSG G is safely realisable whenever L(G) = L(A) for some
deadlock-free CFM \A.
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Summary of results

Results so far:

© Conditions for (safe) realisability for finite sets of MSCs.

@ Checking these conditions is co-NP complete (in P).

© Regular MSGs are (safely) realisable by V-bounded CFMs.

@ Checking regularity of MSGs is undecidable.

© Communication-closedness implies regularity, but its check is
co-NP complete.

@ Local communication-closedness implies regularity, and can be
checked in P.
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Some remaining questions

@ Can results be obtained for larger classes of MSGs?

@ What happens if we allow synchronisation messages?
o recall that weak CFMs do not involve synchronisation messages

@ How do we obtain a CFM realising an MSG algorithmically?
@ in particular, for non-local choice MSGs
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Today's topics

Today's lecture

Safe realisability of (a restricted class of ) MSGs. So as to obtain
deadlock-free CFMs, the input MSG is required to be local choice. The
CFM are not required to be weak. The algorithm will exploit
synchronisation messages.

© Realisability for constrained regular expressions of local-choice
MSGs.

© An algorithm that generates a CFM from such local-choice MSG.
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Overview

© Local Choice MSGs
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Non-local choice

Inconsistency if process p behaves according to vertex v;
and process q behaves according to vertex ve

= possible distributed realization may yield a deadlock

Subsequent behavior is determined by distinct processes. When several

processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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A (hidden) non local-choice

b

Problem:

Inconsistency if p; decides to send a and ps decides to send c.
Which branch to take in the initial vertex?
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Preliminaries

Definition (Minimal event)

Let (E, <) be a poset. Event ¢ € E is a minimal event wrt. < if
—(3e' #£e. e <e).

Intuition: there is no event that has to happen before e happens.
Or: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)

For path 7 = vy ... v, in MSG G, let <j;(;) be the partial order of the
MSC M(7) = A(v1) ® ... @ A(vy,).

For path 7 let min(7) be the set of minimal events along m wrt. <jp(x)-
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Branching vertices

A branching vertex either has at least two successors, or is a final'
vertex with at least one successor.

Pictorially, vertex v is branching if:

A

LCorrection of Lecture 4.
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Local choice property

Definition (Local choice)

Let MSG G = (V, =, v, F, A\). MSG G is called local choice if for every
branching vertex v € V it holds:

Jprocess p. (Vr € Paths(v). |min(7)| =1 A min(7) C Ep)

Along every path from a branching vertex in the MSG, there is a single process

that initiates behavior. This process decides how to proceed. In a (distributed)
implementation, it can inform the other processes how to proceed.

Local choice or not?

Checking whether MSG G is local choice can be done with a worst-case time
complexity which is polynomial in the size of G. (Exercise.)
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Local choice

How to resolve a non-local choice?

Amend your MSG and add control messages (cf. above example)
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Overview

© Regular Expressions over MSCs
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Regular expressions over MSCs

Definition (Asynchronous iteration)
For M7, My C M sets of MSCs, let:

Mie My = {M10M2|M1€M1,M2€M2}

For M C M let
)y {M.} if i=0, where M, denotes the empty MSC
| MeMTL i >0

The asynchronous iteration of M is now defined by:

M= M.

120
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Regular expressions over MSCs

Definition (Regular expressions over MSCs)

The set REXy; of regular expressions over M is given by the grammar:
a:=0 | M | ag-ay | ar+as | af

where MSC M € M.

Definition (Semantics of regular expressions, L(.) : REXy; — 2M)

o
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Locally accepting CFMs

Definition (Locally accepting CFM)
CFM A = (((Sp, Ap))peP, D, Sinit, F') is locally accepting if

F = HFp where F, C 5.
peEP

An la CFM abbreviates a locally accepting CFM.
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Regular expressions for MSCs

Let P ={1,2,3,4} and C = {req, ack}.

Example

req ack req

A B C
Consider the following regular expressions over M:
o oy =(A-B)* det. V1-bounded deadlock-free weak la CFM
o ay = (A+ B)* det. 31-bounded la CFM
o a3=(A-0O) not realisable

oay=A-(A+B)* 31-bounded deadlock-free la CFM

How about realisability of L(a;)?
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Realising local-choice expressions by deadlock-free CFMs
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Realising local-choice expressions by deadlock-free CFMs

!(1,2,req,L)

1(1,2, req, R)

2(2,1,req, L)

2(2,1,req, R)

11,2, req, L)

(reqL)
‘ 1—2: (req,L)
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Realising local-choice expressions by deadlock-free CFMs

!(1,2,req,L)

1(1,2, req, R)

2(2,1,req, L)

2(2,1,req, R)

11,2, req, L)

1(2,1,ack, R)

(req.L)
® (req L)

1— 2: (req,L) (req,L)
21:

-
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Realising local-choice expressions by deadlock-free CFMs
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!(1,2,req,L)

1(1,2,req, L)
I(1,2,req, R)
2(2,1,veq, L)

1(2,1, ack, R)
2(2,1,req, R)

‘1 — 2 (req,L) (req,L) (req,R)
21:
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Realising local-choice expressions by deadlock-free CFMs
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1(1,2,req, L)
I(1,2,req, R)
2(2,1,veq, L)
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Realising local-choice expressions by deadlock-free CFMs

!(1,2,req,L)

1(1,2, req, R)

2(2,1,req, L)

2(2,1,req, R)

e (req.R)

11,2, req, L)
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Realising local-choice expressions by deadlock-free CFMs

!(1,2,req,L)

1(1,2, req, R)

2(2,1,req, L)

2(2,1,req, R)

11,2, req, L)

1—-2:
2—21:
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Realising local-choice expressions by deadlock-free CFMs

!(1,2,req,L)

11,2, req, L)

1(1,2, req, R)

2(2,1,req, L)

1(2,1, ack, R)
2(2,1,req, R)
1 2
((((( |
rea
req
[(ack,L) @e— 1—2:
— —

2 — 1: (ack,L)
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Realising local-choice expressions by deadlock-free CFMs
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Star-connected regular expressions

Definition (Connected MSC)

An MSC M = (P,E,C,l,m,<) € M is connected if:

Ve,e' € E.(e,e)) € (< U <7 H*

Examples on the black board. J

Definition (Star-connected)

Regular expression a@ € REXyy is star-connected if, for any
subexpression 5* of a, L(f) is a set of connected MSCs.

Examples on the black board. ]
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Regular expressions vs. CFMs

Definition (Finitely generated)

Set of MSCs M C M is finitely generated if there is a finite set of MSCs
M C M such that M C M?*.

Theorem

Let M be finitely generated. Then:
M is realisable
iff

there exists a star-connected regular expression a with L(a) = M.
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Overview

@ A Realisation Algorithm for MSGs
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Local choice MSGs

An example local-choice MSG on black board. |
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Realising local choice (C)MSGs

Any local-choice MSG @ is safely realisable by a CFM with additional
synchronisation data (which is of size linear in G).

Proof
As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:
© Process p(v) determines the successor vertex of v.
@ Process p(v) informs all other processes about its decision by
adding synchronisation data to the exchanged messages.

© Synchronisation data is the path (in G) from v to the next
branching vertex along the direction chosen by p(v).

o
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Maximal non-branching paths

Definition (Maximal non-branching paths)
For MSG G = (V,—,vg, F, \), let nbp : V. — V* be defined by:

v if v € F or v is a branching vertex

nbp(v) = {

v1...0, otherwise

where v; ... v, € V* is a maximal path (i.e., a path that cannot be
prolonged) satisfying:

@ v; = v for some i, 0 < i < n, and

© v, € F or is a branching vertex, and

© w1 = v or is a direct successor of a branching vertex, and

Q vy,...,v, 1 € F and are all non-branching vertices

Intuition

nbp(v) is the maximal non-branching path to which v belongs.
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Structure of the CFM of local choice MSG GG

Let MSG G = (V, —,vg, F', \) be local choice.
Define the CFM Ag = (((Sp, Ap))per, D, Sinit, F') with:
© Local automaton A, = (Sp,A,) as defined on next slides

Q@D = {npb(v) |veV}

synchronisation data = maximal non-branching paths in G

O sinit = { (vo, D) }™ where n = |P|
each local automaton A, starts in initial state (vo, @), i.e.,
in initial vertex vg while no events of p have been performed

Q 5 ¢ F'iff for all p € P, local state 5[p| = (v, E) with E C E, and:
@ v € F and E contains a maximal event wrt. <, in MSC A(v), or
®@ véd Fandm=wv...wis apath in G with w € F and E contains a
maximal event wrt. <, in MSC A(m). b
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State space of local automaton A4,

o S, =V x E, such that for any s = (v, E) € Sp:
Ve,e' € A(v). (e <, € and ¢ € E implies e € E)

that is, F is downward-closed with respect to <, in MSC A(v)

o Intuition: a state (v, E') means that process p is currently in vertex
v of G and has already performed the events E of \(v)

o Initial state of A}, is Sin[p] = (vo, @)
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Transition relation of local automaton .Ap

@ Executing events within a vertex of the MSG G:
ec E,NA(v)ande ¢ E
(v, B) SRR, (0, BU{e})

Note: since F'U {e} is downward-closed wrt. <, e is enabled
o Taking an edge (possibly a self-loop) of the MSG G:

E =FE, N Av) and e € E, N A(w) and
vug ... Upw € V* with p not active in ug ... up,

(v, B) PR, (o e}

Note: vertex w is the first successor vertex of v on which p is active
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Examples

A couple of examples on the black board. |
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