Theoretical Foundations of the UML

Lecture 13: Verifying PDL Formulas

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/um109100/

7. Januar 2013

Joost-Pieter Katoen Theoretical Foundations of the UML 1/32

@ Introduction

© Local Formulas and Path Expressions
@ Syntax
@ Formal Semantics

© PDL Formulas

Q@ Verification problems for PDL
@ Model checking CFMs
@ Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/32

Overview

@ Introduction

Joost-Pieter Katoen Theoretical Foundations of the UML

A logic for MSCs

@ This lecture will be devoted to a logic that is interpreted over MSCs

@ The logic is used to umambigously express properties of MSCs
o does a given MSC M satisfy the logical formula ¢?

o And to characterise a set of MSCs by means of a logical formula
o all MSCs that satisfy the formula ¢

@ Our logic is a variant of propositional dynamic logic (PDL) [Fischer
& Ladner, 1979
@ combines easy-to-grasp concepts such as regular expressions and
Boolean operators

@ We consider syntax, semantics, examples and the membership
problem. RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 4/32

Some informal examples

2 3 3
c c
el
€9 ¢ ¢
a eo P
— — —

© The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.
@ The maximal event on process 2 is labeled by 7(2,1,a) VYes. Yes.

© No two consecutive events are labeled with 7(2, 3, ¢) No. Yes.
@ The number of send events at process 3 is odd. No. No.
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML

Overview

© Local Formulas and Path Expressions
@ Syntax
@ Formal Semantics

Joost-Pieter Katoen Theoretical Foundations of the

Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

o I(1,2,a) The current event is labeled with !(1,2,a)
(proc) true There is a next event at the same process
(proc; proc)true There are (at least) two next events at this process
[proc]~!false There is no preceding event at this process
(msg) true This send event matches a (next) receive event
({1(1,2,a) };proc) ?7(1,2,b) Event !(1,2,a) is followed by ?(1,2,b)
[proc + msg]—{!(1,2,a) } Any next event differs from (1,2, a)

KWL

Joost-Pieter Katoen Theoretical Foundations of the UML 7/32

e ¢ ¢ ¢ ¢ ¢

Local formulas

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar
of local formulas is given by:

o == true | o | o | eV | (a)p | (oz)_lgp

Path expressions will be defined later on.

Definition (Derived operators)

false = —true
P1 A2 = (-1 Vo)
1> P2 = TP1 Ve
[ale = —{a)-¢p
[e] ' =) oe

v
Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.
o Current event is labelled with o
- Current event does not satisfy ¢
w1V o Current event satisfies 1 or o
() Some forward path satisfying « reaches an event satisfying ¢
()L Some backward path « reaches an event satisfying ¢
[All forward paths satisfying « reach an event satisfying ¢
[a] Lo All backward paths satisfying o reach an event satisfying ¢

How are path expressions like o defined?

Joost-Pieter Katoen Theoretical Foundations of the UML 9/32

Path expressions

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar of
local formulas is given by:

g u=true | o | v | Ve | (ae | (@)l

Definition (Syntax of path expressions)

For local formula ¢, the grammar of path expressions is given by:

*

a = {p} | proc | msg | ;a | ata | «

Joost-Pieter Katoen Theoretical Foundations of the U

Intuitive meaning of path expressions

o { ¢} specifies an event that satisfies ¢

@ proc requires a (direct) successor relation between events at the
same process

® msg requires a matching between current event and a receive event

@ The composition «; 3 defines the set of pairs (e, e’) for which there
exist event €’ such that (e,e”) E « and (e”,¢') E

@ « + [denotes the union of the relations a and /3

o o denotes the reflexive and transitive closure of the relationremH

Joost-Pieter Katoen Theoretical Foundations of the UML 11/32

Intuitive meaning of local formulas

@ Local formulas are interpreted over MSC events

o Event e satisfies (p, ¢, a) iff e is labelled with action !(p, ¢, a)
———— ——

o g

o Path expression « defines a binary relation between events:

© {¢} is the set of pairs (e, e’) such that e satisfies ¢

Q (e, ') = prociff e and e’ reside at the same process and €’ is a direct
successor of e wrt. <,

© (e,¢) = msg iff ¢’ is the matching event of e, i.e., ¢/ = m(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/32

Forward and backward local formulas

o Event e satisfies ()¢ iff there is an event e’ such that a path from
e to € satisfies o and ¢’ satisfies ¢

Formula ()¢ looks “forward” along the partial order of the MSC
starting from the current event

@ The interpretation of ()l is dual, i.e., e satisfies it iff there is an
event €' such that some path from e’ to e satisfies o and €’ satisfies

2

Formula (o) ~!¢ looks “backward” along the partial order of the
MSC starting from the current event
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 13/32

1] [2] (3]
Uu < ¢
b,
a C
v
— — —
Q@ ukE!(1,2,a) u is labelled with the action !(1,2,a)
Q u |= [proc]~! false u is the first event on the process line

© u = ((proc + msg)*)?(2,1,a) event u happens before the event v
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML

Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action o € Act and path expression «a:

true | o | @ | eV | (@ | (o) tp

P

Definition (Semantics of base local formulas)
Let M = (P,E,C,l,m,<) € M be an MSC and e € E.

Binary relation |= is defined such that ((M,e),) € |= iff event e of MSC M
satisfies local formula . We write M, e = ¢ for ((M,e),p) € .

M, e |= true forallee E
M,el=o iff I(e) =0
M,el=—p iff not M,el=¢
M,el=p1 Voo iff M,el 1 or Mye = ¢

v

Joost-Pieter Katoen Theoretical Foundations of the UML 15/32

Semantics of local formulas (2)

Definition (Semantics of path formulas)
Let M = (P, E,C,l,m,<) € M be an MSC and e € E.

v iff eE=¢Yandel=gp

o iff Je€Fe<peande =g

e iff Fe'€ E.¢/! =m(e) and ¢ = ¢
@ if el {a1)(a2)p

e (o1 +an)p iff el {ar)p or e b= {an)p

e iff IneN.efE ((a)"¢

Where e <p €' iff e <, ¢/ and =(3Fe". e <, € <, €), i.e., € is a direct
successor of e under <.

o

Joost-Pieter Katoen Theoretical Foundations of the UML 16/32

Semantics of local formulas (3)

Definition (Semantics of path formulas)

Let M = (P, E,C,l,m,<) € M be an MSC and e € E.
eE (Ul e if ekypandelo
e = (proc)lyp iff Fe' € E.€ <peand e o
el (msg)~ly iff '€ B¢/ =m7i(e)and € ¢
e E(aya2) e iff el (o) Haz) e
el (g +ag) ly iff el () tporel= () tp
ek (a*)"tp iff IneNel ((a)‘l)nnp

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Overview

© PDL Formulas

Joost-Pieter Katoen Theoretical Foundations of the U

PDL formulas

Definition (Syntax of PDL formulas)

For local formula ¢, the grammar of PDL formulas is given by:

du=Tp | Vo | BAD | dV D

Joost-Pieter Katoen Theoretical Foundations of the UML 19/32

Intuitive meaning of PDL formulas

@ MSC M satisfies Jp if it has some event e satisfying ¢

@ MSC M satisfies 3(a) if from some event e in M, there exists an
a-labelled path from e to an event €, say, satisfying ¢

@ MSC M satisfies [a]ep if from some event e in M, any event that
can be reached via an a-labelled path satisfies ¢

Joost-Pieter Katoen Theoretical Foundations of the UML 20/32

Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E,C,l,m,<) € M be an MSC.
(M, ®) € iff PDL formula ® holds in MSC M.

ME3p iff Je€e E.M,eE=o
MEVy iff Yee E.M,ef=o
ME® A®, iff ME® and M &,
ME® V& iff ME® or ME

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32

Example (1)

: L E‘ z*
C C
C C
b€l
I |

@ The (unique) maximal event of M is labelled by ?(2,1,a) Yes. No.

o V ({(proc 4+ msg)*)([proc]| false A ?(2,1,a))) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Example (2)

: L E‘ z*
C C
C C
b€l
I |

@ The maximal event on process 2 is labelled by 7(2,1,a) Yes. Yes.

o J([proc] false N?(2,1,a)) Yes. Yes.
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Example (3)

(3] (3]
C C
C C
b€l
I |
@ No two consecutive events are labelled with ?(2, 3, ¢) No. Yes.
o V([?(2,3,c¢); proc; ?(2,3, ¢)] false) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/32

Example (4)

@ The number of send events at process 3 is odd. No. No.

@ See next slide

Joost-Pieter Katoen Theoretical Foundations of the

Example (slightly changed)

MSC M has an even number of messages sent from process 1 to 2:

V([proc] ! false APy — (a) [proc] false)
—_—
minimal event on process 1 maximal event on process

where P| = vjE'P,j;él(!lvj V7?1) with I j = V,ee !(1,4,a) and 7y ;5 is
defined in a similar way, i.e., e = P; iff e occurs at process 1.

Path expression « is defined by:

a = (({=l1};proc)*; {11}; proc; ({=!1}; proc)™; {11 }; proc; ({=!1 }; proc)™)”

and where !; abbreviates \/ . !(1,2,a)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/32

Q@ Verification problems for PDL
@ Model checking CFMs
@ Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

Communication finite-state machines

state and either halt there or visit a local accepting state infinitely often.

A CFM is accepting if all its processes have reached a local accepting J

An example CFM and an infinite MSC accepted by it

AC‘-]ient. Aserver AInt»erfaﬂ:e

|Client(1)| |Server[2)| |Imerl’ace{3)|

‘2Tl X
21, v 3?1 c

172, x 271, r

Client-server interaction to get access to an interface. Accepting state is (ss, 0, qo)-

v

Joost-Pieter Katoen Theoretical Foundations of the UML

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL

A CFM A satisfies PDL-formula ®, denoted A |= ®, whenever for all
MSCs M it holds: M € L(A) if and only if M = ®.

The example CFM satisfies V (P; — ({proc*; msg; proc*; msg) P3) where for
i € P, formula P; = \/;p (% ; V7:,5), ie., M,e = P iff e occurs at process
i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1

(Client) by exactly two messages using an intermediate process in between.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:
InpuT: a CFM A, PDL-formula &
OUTPUT: is there an MSC M € L(A) with M = ®?

Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula ¢rue, the above problem encodes the

emptiness problem. O

To obtain decidability of the model-checking problem, we restrict ourselves to

B-bounded MSCs.
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 30/32

PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is PSPACE-complete:
InpuT: a CFM A and B € Ny, PDL-formula &
OuTPUT: is there an 3B-bounded MSC M € L(A) with M = @7

Proof.
(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag = ®. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
Ag is exponential in the length of ® and the number of processes in P. Then
construct a CFM accepting L(A) N L(Ag). Decide whether the resulting CFM
accepts some dB-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LTL model checking. [

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

Model checking an MSG versus PDL

Model checking MSGs versus PDL

The following model-checking problem is PSPACE-complete:
InpPUT: a MSG G and PDL-formula ¢
OuTPUT: is there an MSC M € L(G) with M = ®?

Proof.

(Sketch.) For every vertex v, we can determine a linearization of the MSC A(v).
Construct a finite automaton A that accepts a linearization for every M € L(G),
and vice versa, each word accepted by Ag is a linearization of some M € L(G). The
size of Agq is linear in the size of G. Construct a CFM As¢ for PDL-formula ® with
M € L(As) iff M |= ®. Construct a transition system by running Ag and Ag
simultaneously. This construction terminates as Ag only accepts linearizations that
are B-bounded (as every linearization of MSG G is 3B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking. [

o

Joost-Pieter Katoen Theoretical Foundations of the U 32/32

