

Theoretical Foundations of the UML

Lecture 13: Verifying PDL Formulas

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

7. Januar 2013

Outline

1 Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

- Model checking CFMs
- Model checking MSGs

Overview

1 Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

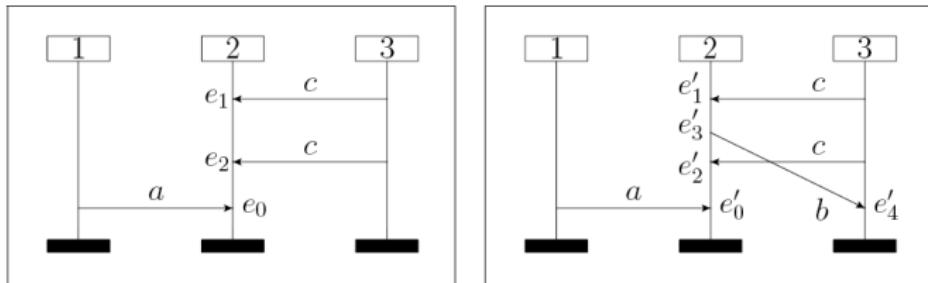
4 Verification problems for PDL

- Model checking CFMs
- Model checking MSGs

A logic for MSCs

- This lecture will be devoted to a **logic** that is interpreted over MSCs
- The logic is used to **unambiguously express properties** of MSCs
 - does a given MSC M satisfy the logical formula φ ?
- And to **characterise a set of MSCs** by means of a logical formula
 - all MSCs that satisfy the formula φ
- Our logic is a variant of **propositional dynamic logic** (PDL) [Fischer & Ladner, 1979]
 - combines easy-to-grasp concepts such as regular expressions and Boolean operators
- We consider syntax, semantics, examples and the membership problem.

Some informal examples



- ① The (unique) maximal event of M is labeled by $?(2, 1, a)$ Yes. No.
- ② The maximal event on process 2 is labeled by $?(2, 1, a)$ Yes. Yes.
- ③ No two consecutive events are labeled with $?(2, 3, c)$ No. Yes.
- ④ The number of send events at process 3 is odd. No. No.

Overview

1 Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

- Model checking CFMs
- Model checking MSGs

Local formulas

These are statements over **single** events in an MSC. That is, an event either satisfies or refutes such formula.

Example local formulas

- $!(1, 2, a)$ The current event is labeled with $!(1, 2, a)$
- $\langle \text{proc} \rangle \text{true}$ There is a next event at the same process
- $\langle \text{proc; proc} \rangle \text{true}$ There are (at least) two next events at this process
- $[\text{proc}]^{-1} \text{false}$ There is no preceding event at this process
- $\langle \text{msg} \rangle \text{true}$ This send event matches a (next) receive event
- $\langle \{ !(1, 2, a) \}; \text{proc} \rangle ?(1, 2, b)$ Event $!(1, 2, a)$ is followed by $?(1, 2, b)$
- $[\text{proc} + \text{msg}] \neg \{ !(1, 2, a) \}$ Any next event differs from $!(1, 2, a)$

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α , the grammar of **local formulas** is given by:

$$\varphi ::= \text{true} \mid \sigma \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \alpha \rangle \varphi \mid \langle \alpha \rangle^{-1} \varphi$$

Path expressions will be defined later on.

Definition (Derived operators)

$$\text{false} = \neg \text{true}$$

$$\varphi_1 \wedge \varphi_2 = \neg(\neg\varphi_1 \vee \neg\varphi_2)$$

$$\varphi_1 \rightarrow \varphi_2 = \neg\varphi_1 \vee \varphi_2$$

$$[\alpha]\varphi = \neg\langle \alpha \rangle \neg\varphi$$

$$[\alpha]^{-1}\varphi = \neg\langle \alpha \rangle^{-1} \neg\varphi$$

Intuitive meaning of local formulas

<i>true</i>	Valid statement. Satisfied by every event.
σ	Current event is labelled with σ
$\neg\varphi$	Current event does not satisfy φ
$\varphi_1 \vee \varphi_2$	Current event satisfies φ_1 or φ_2
$\langle \alpha \rangle \varphi$	Some forward path satisfying α reaches an event satisfying φ
$\langle \alpha \rangle^{-1} \varphi$	Some backward path α reaches an event satisfying φ
$[\alpha] \varphi$	All forward paths satisfying α reach an event satisfying φ
$[\alpha]^{-1} \varphi$	All backward paths satisfying α reach an event satisfying φ

How are path expressions like α defined?

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α , the grammar of **local formulas** is given by:

$$\varphi ::= \text{true} \mid \sigma \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \alpha \rangle \varphi \mid \langle \alpha \rangle^{-1} \varphi$$

Definition (Syntax of path expressions)

For local formula φ , the grammar of **path expressions** is given by:

$$\alpha ::= \{ \varphi \} \mid \text{proc} \mid \text{msg} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

- $\{\varphi\}$ specifies an event that satisfies φ
- proc requires a (direct) successor relation between events at the same process
- msg requires a matching between current event and a receive event
- The composition $\alpha; \beta$ defines the set of pairs (e, e') for which there exist event e'' such that $(e, e'') \models \alpha$ and $(e'', e') \models \beta$
- $\alpha + \beta$ denotes the union of the relations α and β
- α^* denotes the reflexive and transitive closure of the relation

- Local formulas are interpreted over MSC events
- Event e satisfies $\underbrace{!(p, q, a)}_{\sigma}$ iff e is labelled with action $\underbrace{!(p, q, a)}_{\sigma}$
- Path expression α defines a binary relation between events:
 - ➊ $\{\varphi\}$ is the set of pairs (e, e') such that e satisfies φ
 - ➋ $(e, e') \models \text{proc}$ iff e and e' reside at the same process and e' is a direct successor of e wrt. $<_p$
 - ➌ $(e, e') \models \text{msg}$ iff e' is the matching event of e , i.e., $e' = m(e)$

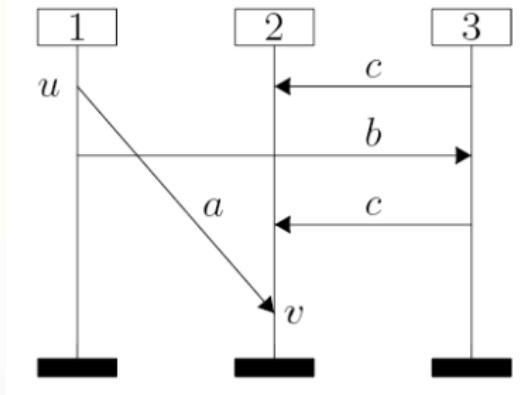
- Event e satisfies $\langle \alpha \rangle \varphi$ iff there is an event e' such that a path from e to e' satisfies α and e' satisfies φ

Formula $\langle \alpha \rangle \varphi$ looks “forward” along the partial order of the MSC starting from the current event

- The interpretation of $\langle \alpha \rangle^{-1} \varphi$ is dual, i.e., e satisfies it iff there is an event e' such that some path from e' to e satisfies α and e' satisfies φ

Formula $\langle \alpha \rangle^{-1} \varphi$ looks “backward” along the partial order of the MSC starting from the current event

Example



- ① $u \models !(1, 2, a)$ u is labelled with the action $!(1, 2, a)$
- ② $u \models [\text{proc}]^{-1} \text{false}$ u is the first event on the process line
- ③ $u \models \langle (\text{proc} + \text{msg})^* \rangle ?(2, 1, a)$ event u happens before the event v

Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action $\sigma \in Act$ and path expression α :

$$\varphi ::= \text{true} \mid \sigma \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \alpha \rangle \varphi \mid \langle \alpha \rangle^{-1} \varphi$$

Definition (Semantics of base local formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$.

Binary relation \models is defined such that $((M, e), \varphi) \in \models$ iff event e of MSC M satisfies local formula φ . We write $M, e \models \varphi$ for $((M, e), \varphi) \in \models$.

$$M, e \models \text{true} \quad \text{for all } e \in E$$

$$M, e \models \sigma \quad \text{iff} \quad l(e) = \sigma$$

$$M, e \models \neg\varphi \quad \text{iff} \quad \text{not } M, e \models \varphi$$

$$M, e \models \varphi_1 \vee \varphi_2 \quad \text{iff} \quad M, e \models \varphi_1 \text{ or } M, e \models \varphi_2$$

Semantics of local formulas (2)

Definition (Semantics of **forward** path formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$.

- $e \models \langle \{\psi\} \rangle \varphi$ iff $e \models \psi$ and $e \models \varphi$
- $e \models \langle \text{proc} \rangle \varphi$ iff $\exists e' \in E. e <_p e'$ and $e' \models \varphi$
- $e \models \langle \text{msg} \rangle \varphi$ iff $\exists e' \in E. e' = m(e)$ and $e' \models \varphi$
- $e \models \langle \alpha_1; \alpha_2 \rangle \varphi$ iff $e \models \langle \alpha_1 \rangle \langle \alpha_2 \rangle \varphi$
- $e \models \langle \alpha_1 + \alpha_2 \rangle \varphi$ iff $e \models \langle \alpha_1 \rangle \varphi$ or $e \models \langle \alpha_2 \rangle \varphi$
- $e \models \langle \alpha^* \rangle \varphi$ iff $\exists n \in \mathbb{N}. e \models (\langle \alpha \rangle)^n \varphi$

Where $e <_p e'$ iff $e <_p e'$ and $\neg(\exists e''. e <_p e'' <_p e')$, i.e., e' is a direct successor of e under $<_p$.

Semantics of local formulas (3)

Definition (Semantics of **backward** path formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC and $e \in E$.

$$e \models \langle \{\psi\} \rangle^{-1} \varphi \quad \text{iff} \quad e \models \psi \text{ and } e \models \varphi$$

$$e \models \langle \text{proc} \rangle^{-1} \varphi \quad \text{iff} \quad \exists e' \in E. \textcolor{blue}{e'} <_p e \text{ and } \textcolor{blue}{e'} \models \varphi$$

$$e \models \langle \text{msg} \rangle^{-1} \varphi \quad \text{iff} \quad \exists e' \in E. \textcolor{blue}{e'} = m^{-1}(e) \text{ and } \textcolor{blue}{e'} \models \varphi$$

$$e \models \langle \alpha_1; \alpha_2 \rangle^{-1} \varphi \quad \text{iff} \quad e \models \langle \alpha_1 \rangle^{-1} \langle \alpha_2 \rangle^{-1} \varphi$$

$$e \models \langle \alpha_1 + \alpha_2 \rangle^{-1} \varphi \quad \text{iff} \quad e \models \langle \alpha_1 \rangle^{-1} \varphi \text{ or } e \models \langle \alpha_2 \rangle^{-1} \varphi$$

$$e \models \langle \alpha^* \rangle^{-1} \varphi \quad \text{iff} \quad \exists n \in \mathbb{N}. e \models (\langle \alpha \rangle^{-1})^n \varphi$$

Overview

1 Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

4 Verification problems for PDL

- Model checking CFMs
- Model checking MSGs

Definition (Syntax of PDL formulas)

For local formula φ , the grammar of **PDL formulas** is given by:

$$\Phi ::= \exists \varphi \mid \forall \varphi \mid \Phi \wedge \Phi \mid \Phi \vee \Phi$$

- MSC M satisfies $\exists\varphi$ if it has some event e satisfying φ
- MSC M satisfies $\exists\langle\alpha\rangle\varphi$ if from some event e in M , there **exists** an α -labelled path from e to an event e' , say, satisfying φ
- MSC M satisfies $\exists[\alpha]\varphi$ if from some event e in M , **any** event that can be reached via an α -labelled path satisfies φ

Definition (Semantics of PDL formulas)

Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <) \in \mathbb{M}$ be an MSC.

$(M, \Phi) \in \models$ iff PDL formula Φ holds in MSC M .

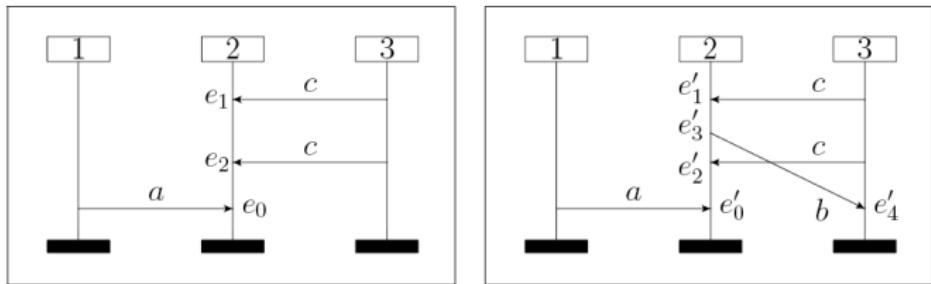
$$M \models \exists \varphi \quad \text{iff} \quad \exists e \in E. M, e \models \varphi$$

$$M \models \forall \varphi \quad \text{iff} \quad \forall e \in E. M, e \models \varphi$$

$$M \models \Phi_1 \wedge \Phi_2 \quad \text{iff} \quad M \models \Phi_1 \text{ and } M \models \Phi_2$$

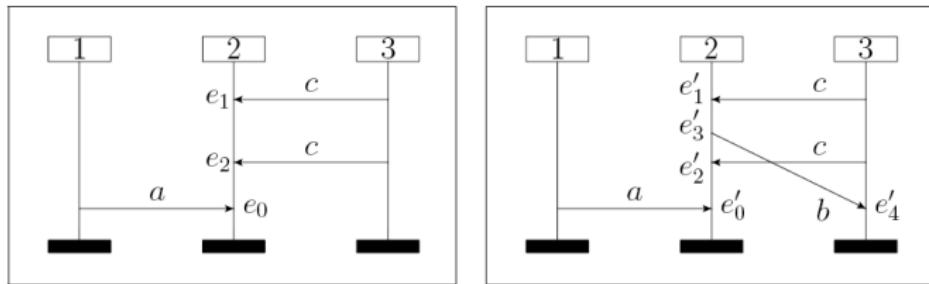
$$M \models \Phi_1 \vee \Phi_2 \quad \text{iff} \quad M \models \Phi_1 \text{ or } M \models \Phi_2$$

Example (1)



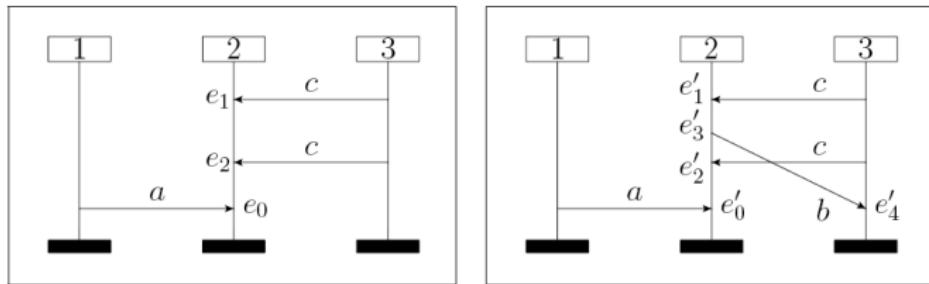
- The (unique) maximal event of M is labelled by $?(2, 1, a)$ Yes. No.
- $\forall \langle ((\text{proc} + \text{msg})^*) \rangle ([\text{proc}] \text{false} \wedge ?(2, 1, a))$ Yes. No.

Example (2)



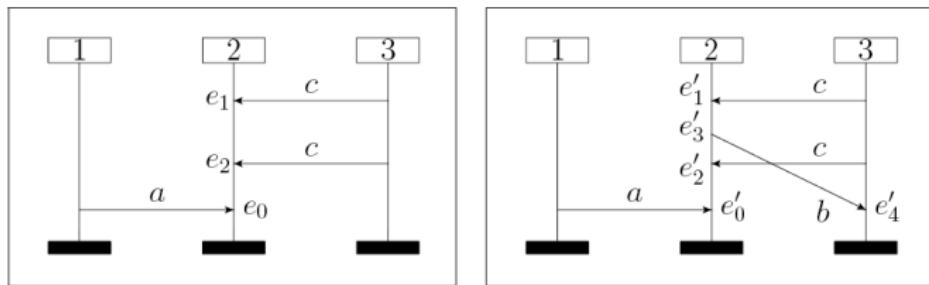
- The maximal event on process 2 is labelled by $?(2, 1, a)$ Yes. Yes.
- $\exists ([\text{proc}] \text{ false} \wedge ?(2, 1, a))$ Yes. Yes.

Example (3)



- No two consecutive events are labelled with $?(2, 3, c)$ No. Yes.
- $\forall ([?(2, 3, c); \text{proc}; ?(2, 3, c)] \text{ false})$ No. Yes.

Example (4)



- The number of send events at process 3 is odd. No. No.
- See next slide

Example (slightly changed)

MSC M has an **even number** of messages sent from process 1 to 2:

$$\forall \left(\underbrace{[\text{proc}]^{-1} \text{false} \wedge P_1}_{\text{minimal event on process 1}} \rightarrow \langle \alpha \rangle \underbrace{[\text{proc}] \text{false}}_{\text{maximal event on process}} \right)$$

where $P_1 = \bigvee_{j \in \mathcal{P}, j \neq 1} (!_{1,j} \vee ?_{1,j})$ with $!_{1,j} = \bigvee_{a \in \mathcal{C}} !(1, j, a)$ and $?_{1,j}$ is defined in a similar way, i.e., $e \models P_1$ iff e occurs at process 1.

Path expression α is defined by:

$$\alpha = ((\{\neg !_1\}; \text{proc})^*; \{!_1\}; \text{proc}; (\{\neg !_1\}; \text{proc})^*; \{!_1\}; \text{proc}; (\{\neg !_1\}; \text{proc})^*)^*$$

and where $!_1$ abbreviates $\bigvee_{a \in \mathcal{C}} !(1, 2, a)$

Overview

1 Introduction

2 Local Formulas and Path Expressions

- Syntax
- Formal Semantics

3 PDL Formulas

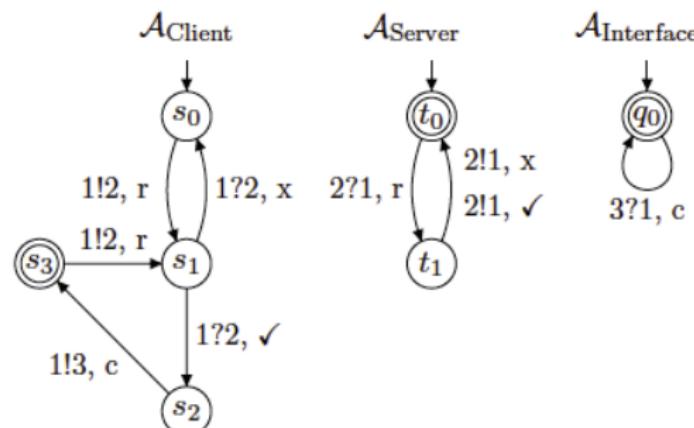
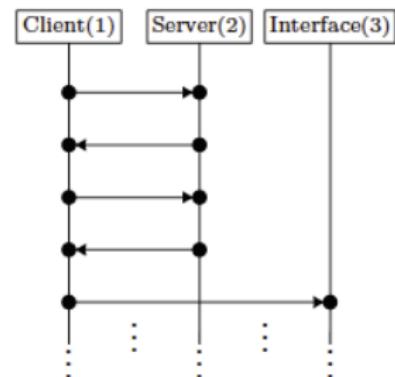
4 Verification problems for PDL

- Model checking CFMs
- Model checking MSGs

Communication finite-state machines

A CFM is accepting if all its processes have reached a local accepting state and either halt there or visit a local accepting state infinitely often.

An example CFM and an infinite MSC accepted by it



Client-server interaction to get access to an interface. Accepting state is (s_3, t_0, q_0) .

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting state and reside there ad infinitum.

The language $L(\mathcal{A})$ of CFM \mathcal{A} is the set of MSCs that admit an accepting run.

CFM versus PDL

A CFM \mathcal{A} satisfies PDL-formula Φ , denoted $\mathcal{A} \models \Phi$, whenever for all MSCs M it holds: $M \in L(\mathcal{A})$ if and only if $M \models \Phi$.

The example CFM satisfies $\forall (P_1 \rightarrow (\langle \text{proc}^*; \text{msg}; \text{proc}^*; \text{msg} \rangle P_3)$ where for $i \in \mathcal{P}$, formula $P_i = \bigvee_{j \in \mathcal{P}, j \neq i} (!_{i,j} \vee ?_{i,j})$, i.e., $M, e \models P_i$ iff e occurs at process i . The PDL formula asserts that process 3 (Interface) can be “reached” from 1 (Client) by exactly two messages using an intermediate process in between.

Model checking CFMs versus PDL

The following model-checking problem is **undecidable**:

INPUT: a CFM \mathcal{A} , PDL-formula Φ

OUTPUT: is there an MSC $M \in L(\mathcal{A})$ with $M \models \Phi$?

Proof.

Follows immediately from the fact that the emptiness problem for CFMs is undecidable. By using the formula *true*, the above problem encodes the emptiness problem. □

To obtain decidability of the model-checking problem, we restrict ourselves to **B -bounded** MSCs.

Model checking CFMs versus PDL

[Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

INPUT: a CFM \mathcal{A} and $B \in \mathbb{N}_{>0}$, PDL-formula Φ

OUTPUT: is there an $\exists B$ -bounded MSC $M \in L(\mathcal{A})$ with $M \models \Phi$?

Proof.

(Sketch). Every PDL formula Φ can effectively be translated into a CFM \mathcal{A}_Φ such that $\mathcal{A}_\Phi \models \Phi$. The details are out of the scope of this lecture. This synthesis step is independent of the channel bound size B (if any). The size of \mathcal{A}_Φ is exponential in the length of Φ and the number of processes in \mathcal{P} . Then construct a CFM accepting $L(\mathcal{A}) \cap L(\mathcal{A}_\Phi)$. Decide whether the resulting CFM accepts some $\exists B$ -bounded MSC. This can all be done in polynomial space. The PSPACE-hardness follows from the hardness of LTL model checking. □

Model checking MSGs versus PDL

[Bollig et. al, 2011]

The following model-checking problem is PSPACE-complete:

INPUT: a MSG G and PDL-formula Φ

OUTPUT: is there an MSC $M \in L(G)$ with $M \models \Phi$?

Proof.

(Sketch.) For every vertex v , we can determine a linearization of the MSC $\lambda(v)$.

Construct a finite automaton \mathcal{A}_G that accepts a linearization for every $M \in L(G)$, and vice versa, each word accepted by \mathcal{A}_G is a linearization of some $M \in L(G)$. The size of \mathcal{A}_G is linear in the size of G . Construct a CFM \mathcal{A}_Φ for PDL-formula Φ with $M \in L(\mathcal{A}_\Phi)$ iff $M \models \Phi$. Construct a transition system by running \mathcal{A}_G and \mathcal{A}_Φ simultaneously. This construction terminates as \mathcal{A}_G only accepts linearizations that are B -bounded (as every linearization of MSG G is $\exists B$ -bounded by definition).

Deciding whether some simultaneous run is accepting can be done in polynomial space. The PSPACE-hardness follows from the hardness of LTL model checking. □