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Overview

@ Introduction
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A logic for MSCs

@ This lecture will be devoted to a logic that is interpreted over MSCs

@ The logic is used to umambigously express properties of MSCs
o does a given MSC M satisfy the logical formula ¢?

o And to characterise a set of MSCs by means of a logical formula
o all MSCs that satisfy the formula ¢

@ Our logic is a variant of propositional dynamic logic (PDL) [Fischer
& Ladner, 1979
@ combines easy-to-grasp concepts such as regular expressions and
Boolean operators

@ We consider syntax, semantics, examples and the membership
problem. RWTH
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Some informal examples

2 3 3
c c
el
€9 ¢ ¢
a eo P
— — —

© The (unique) maximal event of M is labeled by 7(2,1,a) Yes. No.
@ The maximal event on process 2 is labeled by 7(2,1,a) VYes. Yes.

© No two consecutive events are labeled with 7(2, 3, ¢) No. Yes.
@ The number of send events at process 3 is odd. No. No.
RWTH
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Overview

© Local Formulas and Path Expressions
@ Syntax
@ Formal Semantics
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Local formulas

Local formulas

These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas

o I(1,2,a) The current event is labeled with !(1,2,a)
(proc) true There is a next event at the same process
(proc; proc)true There are (at least) two next events at this process
[proc]~!false There is no preceding event at this process
(msg) true This send event matches a (next) receive event
({1(1,2,a) };proc) ?7(1,2,b)  Event !(1,2,a) is followed by ?(1,2,b)
[proc + msg]—{!(1,2,a) } Any next event differs from (1,2, a)

KWL
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Local formulas

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar
of local formulas is given by:

o == true | o | o | eV | (a)p | (oz)_lgp

Path expressions will be defined later on.

Definition (Derived operators)

false = —true
P1 A2 = (-1 Vo)
1> P2 = TP1 Ve
[ale = —{a)-¢p
[e] ' = ) oe

v
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Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.
o Current event is labelled with o
- Current event does not satisfy ¢
w1V o Current event satisfies 1 or o
() Some forward path satisfying « reaches an event satisfying ¢
()L Some backward path « reaches an event satisfying ¢
[ All forward paths satisfying « reach an event satisfying ¢
[a] Lo All backward paths satisfying o reach an event satisfying ¢

How are path expressions like o defined?
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Path expressions

Definition (Syntax of local formulas)

For communication action o € Act and path expression «, the grammar of
local formulas is given by:

g u=true | o | v | Ve | (ae | (@)l

Definition (Syntax of path expressions)

For local formula ¢, the grammar of path expressions is given by:

*

a = {p} | proc | msg | ;a | ata | «
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Intuitive meaning of path expressions

o { ¢} specifies an event that satisfies ¢

@ proc requires a (direct) successor relation between events at the
same process

® msg requires a matching between current event and a receive event

@ The composition «; 3 defines the set of pairs (e, e’) for which there
exist event €’ such that (e,e”) E « and (e”,¢') E

@ « + [ denotes the union of the relations a and /3

o o denotes the reflexive and transitive closure of the relationremH
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Intuitive meaning of local formulas

@ Local formulas are interpreted over MSC events

o Event e satisfies (p, ¢, a) iff e is labelled with action !(p, ¢, a)
———— ——

o g

o Path expression « defines a binary relation between events:

© {¢} is the set of pairs (e, e’) such that e satisfies ¢

Q (e, ') = prociff e and e’ reside at the same process and €’ is a direct
successor of e wrt. <,

© (e,¢) = msg iff ¢’ is the matching event of e, i.e., ¢/ = m(e)
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Forward and backward local formulas

o Event e satisfies ()¢ iff there is an event e’ such that a path from
e to € satisfies o and ¢’ satisfies ¢

Formula ()¢ looks “forward” along the partial order of the MSC
starting from the current event

@ The interpretation of ()l is dual, i.e., e satisfies it iff there is an
event €' such that some path from e’ to e satisfies o and €’ satisfies

2

Formula (o) ~!¢ looks “backward” along the partial order of the
MSC starting from the current event
RWTH
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1] [2] (3]
Uu < ¢
b,
a C
v
— — —
Q@ ukE!(1,2,a) u is labelled with the action !(1,2,a)
Q u |= [proc]~! false u is the first event on the process line

© u = ((proc + msg)*)?(2,1,a) event u happens before the event v
RWTH
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Semantics of local formulas (1)

Definition (Syntax of local formulas)

For communication action o € Act and path expression «a:

true | o | @ | eV | (@ | (o) tp

P

Definition (Semantics of base local formulas)
Let M = (P,E,C,l,m,<) € M be an MSC and e € E.

Binary relation |= is defined such that ((M,e), ) € |= iff event e of MSC M
satisfies local formula . We write M, e = ¢ for ((M,e),p) € .

M, e |= true forallee E
M,el=o iff I(e) =0
M,el=—p iff not M,el=¢
M,el=p1 Voo iff M,el 1 or Mye = ¢

v
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Semantics of local formulas (2)

Definition (Semantics of path formulas)
Let M = (P, E,C,l,m,<) € M be an MSC and e € E.

v iff eE=¢Yandel=gp

o iff Je€Fe<peande =g

e iff Fe'€ E.¢/! =m(e) and ¢ = ¢
@ if el {a1)(a2)p

e (o1 +an)p iff el {ar)p or e b= {an)p

e iff IneN.efE ((a)"¢

Where e <p €' iff e <, ¢/ and =(3Fe". e <, € <, €), i.e., € is a direct
successor of e under <.

o
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Semantics of local formulas (3)

Definition (Semantics of path formulas)

Let M = (P, E,C,l,m,<) € M be an MSC and e € E.
eE (Ul e if ekypandelo
e = (proc)lyp iff Fe' € E.€ <peand e o
el (msg)~ly iff '€ B¢/ =m7i(e)and € ¢
e E(aya2) e iff el (o) Haz) e
el (g +ag) ly iff el () tporel= () tp
ek (a*)"tp iff IneNel ((a)‘l)nnp
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Overview

© PDL Formulas
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PDL formulas

Definition (Syntax of PDL formulas)

For local formula ¢, the grammar of PDL formulas is given by:

du=Tp | Vo | BAD | dV D
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Intuitive meaning of PDL formulas

@ MSC M satisfies Jp if it has some event e satisfying ¢

@ MSC M satisfies 3(a) if from some event e in M, there exists an
a-labelled path from e to an event €, say, satisfying ¢

@ MSC M satisfies [a]ep if from some event e in M, any event that
can be reached via an a-labelled path satisfies ¢
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Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E,C,l,m,<) € M be an MSC.
(M, ®) €  iff PDL formula ® holds in MSC M.

ME3p iff Je€e E.M,eE=o
MEVy iff Yee E.M,ef=o
ME® A®, iff ME® and M &,
ME® V& iff ME® or ME

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32



Example (1)

: L E‘ z*
C C
C C
b€l
I |

@ The (unique) maximal event of M is labelled by ?(2,1,a) Yes. No.

o V ({(proc 4+ msg)*)([proc]| false A ?(2,1,a))) Yes. No.
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Example (2)

: L E‘ z*
C C
C C
b€l
I |

@ The maximal event on process 2 is labelled by 7(2,1,a) Yes. Yes.

o J([proc] false N?(2,1,a)) Yes. Yes.
RWTH
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Example (3)

(3] (3]
C C
C C
b€l
I |
@ No two consecutive events are labelled with ?(2, 3, ¢) No. Yes.
o V([?(2,3,c¢); proc; ?(2,3, ¢)] false) No. Yes.
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Example (4)

@ The number of send events at process 3 is odd. No. No.

@ See next slide
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Example (slightly changed)

MSC M has an even number of messages sent from process 1 to 2:

V(  [proc] ! false APy — (a) [proc] false )
—_—
minimal event on process 1 maximal event on process

where P| = vjE'P,j;él(!lvj V7?1) with I j = V,ee !(1,4,a) and 7y ;5 is
defined in a similar way, i.e., e = P; iff e occurs at process 1.

Path expression « is defined by:

a = (({=l1};proc)*; {11}; proc; ({=!1}; proc)™; {11 }; proc; ({=!1 }; proc)™)”

and where !; abbreviates \/ . !(1,2,a)
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Q@ Verification problems for PDL
@ Model checking CFMs
@ Model checking MSGs
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Communication finite-state machines

state and either halt there or visit a local accepting state infinitely often.

A CFM is accepting if all its processes have reached a local accepting J

An example CFM and an infinite MSC accepted by it

AC‘-]ient. Aserver AInt»erfaﬂ:e

|Client(1)| |Server[2)| |Imerl’ace{3)|

‘2Tl X
21, v 3?1 c

172, x 271, r

Client-server interaction to get access to an interface. Accepting state is (ss, 0, qo)-

v
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PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL

A CFM A satisfies PDL-formula ®, denoted A |= ®, whenever for all
MSCs M it holds: M € L(A) if and only if M = ®.

The example CFM satisfies V (P; — ({proc*; msg; proc*; msg) P3) where for
i € P, formula P; = \/;p (% ; V7:,5), ie., M,e = P iff e occurs at process
i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1

(Client) by exactly two messages using an intermediate process in between.
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PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is undecidable:
InpuT: a CFM A, PDL-formula &
OUTPUT: is there an MSC M € L(A) with M = ®?

Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula ¢rue, the above problem encodes the

emptiness problem. O

To obtain decidability of the model-checking problem, we restrict ourselves to

B-bounded MSCs.
RWTH
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PDL model checking problem

Model checking CFMs versus PDL

The following model-checking problem is PSPACE-complete:
InpuT: a CFM A and B € Ny, PDL-formula &
OuTPUT: is there an 3B-bounded MSC M € L(A) with M = @7

Proof.
(Sketch). Every PDL formula ® can effectively be translated into a CFM Ag
such that Ag = ®. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
Ag is exponential in the length of ® and the number of processes in P. Then
construct a CFM accepting L(A) N L(Ag). Decide whether the resulting CFM
accepts some dB-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LTL model checking. [
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Model checking an MSG versus PDL

Model checking MSGs versus PDL

The following model-checking problem is PSPACE-complete:
InpPUT: a MSG G and PDL-formula ¢
OuTPUT: is there an MSC M € L(G) with M = ®?

Proof.

(Sketch.) For every vertex v, we can determine a linearization of the MSC A(v).
Construct a finite automaton A that accepts a linearization for every M € L(G),
and vice versa, each word accepted by Ag is a linearization of some M € L(G). The
size of Agq is linear in the size of G. Construct a CFM As¢ for PDL-formula ® with
M € L(As) iff M |= ®. Construct a transition system by running Ag and Ag
simultaneously. This construction terminates as Ag only accepts linearizations that
are B-bounded (as every linearization of MSG G is 3B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking. [

o
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