
Theoretical Foundations of the UML
Lecture 13: Verifying PDL Formulas

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

7. Januar 2013

Joost-Pieter Katoen Theoretical Foundations of the UML 1/32

Outline

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking CFMs
Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/32

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking CFMs
Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/32

A logic for MSCs

This lecture will be devoted to a logic that is interpreted over MSCs

The logic is used to umambigously express properties of MSCs
does a given MSC M satisfy the logical formula ϕ?

And to characterise a set of MSCs by means of a logical formula
all MSCs that satisfy the formula ϕ

Our logic is a variant of propositional dynamic logic (PDL) [Fischer
& Ladner, 1979]

combines easy-to-grasp concepts such as regular expressions and
Boolean operators

We consider syntax, semantics, examples and the membership
problem.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/32

Some informal examples

1 The (unique) maximal event of M is labeled by ?(2, 1, a) Yes. No.
2 The maximal event on process 2 is labeled by ?(2, 1, a) Yes. Yes.
3 No two consecutive events are labeled with ?(2, 3, c) No. Yes.
4 The number of send events at process 3 is odd. No. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/32

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking CFMs
Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 6/32

Local formulas

Local formulas
These are statements over single events in an MSC. That is, an event
either satisfies or refutes such formula.

Example local formulas
!(1, 2, a) The current event is labeled with !(1, 2, a)

〈proc〉true There is a next event at the same process
〈proc; proc〉true There are (at least) two next events at this process
[proc]−1false There is no preceding event at this process
〈msg〉true This send event matches a (next) receive event
〈{ !(1, 2, a) }; proc〉 ?(1, 2, b) Event !(1, 2, a) is followed by ?(1, 2, b)

[proc + msg]¬{ !(1, 2, a) } Any next event differs from !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/32

Local formulas

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar
of local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Path expressions will be defined later on.

Definition (Derived operators)

false = ¬true
ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2

[α]ϕ = ¬〈α〉¬ϕ
[α]−1ϕ = ¬〈α〉−1¬ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

Intuitive meaning of local formulas

true Valid statement. Satisfied by every event.

σ Current event is labelled with σ

¬ϕ Current event does not satisfy ϕ

ϕ1 ∨ ϕ2 Current event satisfies ϕ1 or ϕ2

〈α〉ϕ Some forward path satisfying α reaches an event satisfying ϕ

〈α〉−1ϕ Some backward path α reaches an event satisfying ϕ

[α]ϕ All forward paths satisfying α reach an event satisfying ϕ

[α]−1ϕ All backward paths satisfying α reach an event satisfying ϕ

How are path expressions like α defined?

Joost-Pieter Katoen Theoretical Foundations of the UML 9/32

Path expressions

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α, the grammar of
local formulas is given by:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Syntax of path expressions)
For local formula ϕ, the grammar of path expressions is given by:

α ::= {ϕ } | proc | msg | α;α | α+ α | α∗

Joost-Pieter Katoen Theoretical Foundations of the UML 10/32

Intuitive meaning of path expressions

{ϕ } specifies an event that satisfies ϕ

proc requires a (direct) successor relation between events at the
same process

msg requires a matching between current event and a receive event

The composition α;β defines the set of pairs (e, e′) for which there
exist event e′′ such that (e, e′′) |= α and (e′′, e′) |= β

α+ β denotes the union of the relations α and β

α∗ denotes the reflexive and transitive closure of the relation α

Joost-Pieter Katoen Theoretical Foundations of the UML 11/32

Intuitive meaning of local formulas

Local formulas are interpreted over MSC events

Event e satisfies !(p, q, a)︸ ︷︷ ︸
σ

iff e is labelled with action !(p, q, a)︸ ︷︷ ︸
σ

Path expression α defines a binary relation between events:

1 {ϕ} is the set of pairs (e, e′) such that e satisfies ϕ

2 (e, e′) |= proc iff e and e′ reside at the same process and e′ is a direct
successor of e wrt. <p

3 (e, e′) |= msg iff e′ is the matching event of e, i.e., e′ = m(e)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/32

Forward and backward local formulas

Event e satisfies 〈α〉ϕ iff there is an event e′ such that a path from
e to e′ satisfies α and e′ satisfies ϕ

Formula 〈α〉ϕ looks “forward” along the partial order of the MSC
starting from the current event

The interpretation of 〈α〉−1ϕ is dual, i.e., e satisfies it iff there is an
event e′ such that some path from e′ to e satisfies α and e′ satisfies
ϕ

Formula 〈α〉−1ϕ looks “backward” along the partial order of the
MSC starting from the current event

Joost-Pieter Katoen Theoretical Foundations of the UML 13/32

Example

1 u |=!(1, 2, a) u is labelled with the action !(1, 2, a)

2 u |= [proc]−1 false u is the first event on the process line
3 u |= 〈(proc + msg)∗〉?(2, 1, a) event u happens before the event v

Joost-Pieter Katoen Theoretical Foundations of the UML 14/32

Semantics of local formulas (1)

Definition (Syntax of local formulas)
For communication action σ ∈ Act and path expression α:

ϕ ::= true | σ | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | 〈α〉−1ϕ

Definition (Semantics of base local formulas)
Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

Binary relation |= is defined such that ((M, e), ϕ) ∈ |= iff event e of MSC M

satisfies local formula ϕ. We write M, e |= ϕ for ((M, e), ϕ) ∈ |=.

M,e |= true for all e ∈ E

M, e |= σ iff l(e) = σ

M, e |= ¬ϕ iff not M,e |= ϕ

M, e |= ϕ1 ∨ ϕ2 iff M,e |= ϕ1 or M,e |= ϕ2

Joost-Pieter Katoen Theoretical Foundations of the UML 15/32

Semantics of local formulas (2)

Definition (Semantics of forward path formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

e |= 〈{ψ}〉ϕ iff e |= ψ and e |= ϕ

e |= 〈proc〉ϕ iff ∃e′ ∈ E. e <·p e′ and e′ |= ϕ

e |= 〈msg〉ϕ iff ∃e′ ∈ E. e′ = m(e) and e′ |= ϕ

e |= 〈α1;α2〉ϕ iff e |= 〈α1〉〈α2〉ϕ
e |= 〈α1 + α2〉ϕ iff e |= 〈α1〉ϕ or e |= 〈α2〉ϕ

e |= 〈α∗〉ϕ iff ∃n ∈ N. e |= (〈α〉)n ϕ

Where e <·p e′ iff e <p e
′ and ¬(∃e′′. e <p e

′′ <p e
′), i.e., e′ is a direct

successor of e under <p.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/32

Semantics of local formulas (3)

Definition (Semantics of backward path formulas)

Let M = (P, E, C, l,m,<) ∈ M be an MSC and e ∈ E.

e |= 〈{ψ}〉−1ϕ iff e |= ψ and e |= ϕ

e |= 〈proc〉−1ϕ iff ∃e′ ∈ E. e′ <·p e and e′ |= ϕ

e |= 〈msg〉−1ϕ iff ∃e′ ∈ E. e′ = m−1(e) and e′ |= ϕ

e |= 〈α1;α2〉−1ϕ iff e |= 〈α1〉−1〈α2〉−1ϕ

e |= 〈α1 + α2〉−1ϕ iff e |= 〈α1〉−1ϕ or e |= 〈α2〉−1ϕ

e |= 〈α∗〉−1ϕ iff ∃n ∈ N. e |= (〈α〉−1
)n
ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking CFMs
Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 18/32

PDL formulas

Definition (Syntax of PDL formulas)
For local formula ϕ, the grammar of PDL formulas is given by:

Φ ::= ∃ϕ | ∀ϕ | Φ ∧ Φ | Φ ∨ Φ

Joost-Pieter Katoen Theoretical Foundations of the UML 19/32

Intuitive meaning of PDL formulas

MSC M satisfies ∃ϕ if it has some event e satisfying ϕ

MSC M satisfies ∃〈α〉ϕ if from some event e in M , there exists an
α-labelled path from e to an event e′, say, satisfying ϕ

MSC M satisfies ∃[α]ϕ if from some event e in M , any event that
can be reached via an α-labelled path satisfies ϕ

Joost-Pieter Katoen Theoretical Foundations of the UML 20/32

Semantics of PDL formulas

Definition (Semantics of PDL formulas)
Let M = (P, E, C, l,m,<) ∈ M be an MSC.

(M,Φ) ∈ |= iff PDL formula Φ holds in MSC M .

M |= ∃ϕ iff ∃e ∈ E.M, e |= ϕ

M |= ∀ϕ iff ∀e ∈ E.M, e |= ϕ

M |= Φ1 ∧ Φ2 iff M |= Φ1 and M |= Φ2

M |= Φ1 ∨ Φ2 iff M |= Φ1 or M |= Φ2

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32

Example (1)

The (unique) maximal event of M is labelled by ?(2, 1, a) Yes. No.

∀ (〈(proc + msg)∗〉([proc] false ∧ ?(2, 1, a))) Yes. No.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Example (2)

The maximal event on process 2 is labelled by ?(2, 1, a) Yes. Yes.

∃ ([proc] false ∧ ?(2, 1, a)) Yes. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Example (3)

No two consecutive events are labelled with ?(2, 3, c) No. Yes.

∀ ([?(2, 3, c); proc; ?(2, 3, c)] false) No. Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/32

Example (4)

The number of send events at process 3 is odd. No. No.

See next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 25/32

Example (slightly changed)

MSC M has an even number of messages sent from process 1 to 2:

∀([proc]−1 false ∧ P1︸ ︷︷ ︸
minimal event on process 1

→ 〈α〉 [proc] false︸ ︷︷ ︸
maximal event on process

)

where P1 =
∨

j∈P,j �=1(!1,j ∨ ?1,j) with !1,j =
∨

a∈C !(1, j, a) and ?1,j is
defined in a similar way, i.e., e |= P1 iff e occurs at process 1.
Path expression α is defined by:

α = (({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗; {!1}; proc; ({¬!1}; proc)∗)∗

and where !1 abbreviates
∨

a∈C !(1, 2, a)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/32

Overview

1 Introduction

2 Local Formulas and Path Expressions
Syntax
Formal Semantics

3 PDL Formulas

4 Verification problems for PDL
Model checking CFMs
Model checking MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

Communication finite-state machines

A CFM is accepting if all its processes have reached a local accepting
state and either halt there or visit a local accepting state infinitely often.

An example CFM and an infinite MSC accepted by it

Client-server interaction to get access to an interface. Accepting state is (s3, t0, q0).

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

PDL formulas on CFMs

A CFM is accepting if all its processes have reached a local accepting
state and reside their ad infinitum.

The language L(A) of CFM A is the set of MSCs that admit an
accepting run.

CFM versus PDL
A CFM A satisfies PDL-formula Φ, denoted A |= Φ, whenever for all
MSCs M it holds: M ∈ L(A) if and only if M |= Φ.

The example CFM satisfies ∀ (P1 → (〈proc∗;msg; proc∗;msg〉P3) where for
i ∈ P , formula Pi =

∨
j∈P,j �=i(!i,j ∨ ?i,j), i.e., M, e |= Pi iff e occurs at process

i. The PDL formula asserts that process 3 (Interface) can be “reached” from 1
(Client) by exactly two messages using an intermediate process in between.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

PDL model checking problem

Model checking CFMs versus PDL
The following model-checking problem is undecidable:

Input: a CFM A, PDL-formula Φ

Output: is there an MSC M ∈ L(A) with M |= Φ?

Proof.
Follows immediately from the fact that the emptiness problem for CFMs is
undecidable. By using the formula true, the above problem encodes the
emptiness problem.

To obtain decidability of the model-checking problem, we restrict ourselves to
B-bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/32

PDL model checking problem

Model checking CFMs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

Input: a CFM A and B ∈ N>0, PDL-formula Φ

Output: is there an ∃B-bounded MSC M ∈ L(A) with M |= Φ?

Proof.
(Sketch). Every PDL formula Φ can effectively be translated into a CFM AΦ

such that AΦ |= Φ. The details are out of the scope of this lecture. This
synthesis step is independent of the channel bound size B (if any). The size of
AΦ is exponential in the length of Φ and the number of processes in P . Then
construct a CFM accepting L(A) ∩ L(AΦ). Decide whether the resulting CFM
accepts some ∃B-bounded MSC. This can all be done in polynomial space.
The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

Model checking an MSG versus PDL

Model checking MSGs versus PDL [Bollig et. al, 2011]
The following model-checking problem is PSPACE-complete:

Input: a MSG G and PDL-formula Φ

Output: is there an MSC M ∈ L(G) with M |= Φ?

Proof.
(Sketch.) For every vertex v, we can determine a linearization of the MSC λ(v).
Construct a finite automaton AG that accepts a linearization for every M ∈ L(G),
and vice versa, each word accepted by AG is a linearization of some M ∈ L(G). The
size of AG is linear in the size of G. Construct a CFM AΦ for PDL-formula Φ with
M ∈ L(AΦ) iff M |= Φ. Construct a transition system by running AG and AΦ

simultaneously. This construction terminates as AG only accepts linearizations that
are B-bounded (as every linearization of MSG G is ∃B-bounded by definition).
Deciding whether some simultaneous run is accepting can be done in polynomial
space. The PSPACE-hardness follows from the hardness of LTL model checking.

Joost-Pieter Katoen Theoretical Foundations of the UML 32/32

