Theoretical Foundations of the UML

Lecture 16: Statecharts Semantics (1)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/um109100/

14. Januar 2013

Joost-Pieter Katoen Theoretical Foundations of the UML 1/31

@ Formal Definition of Statecharts

© A Semantics for Statecharts
@ Intuition and Assumptions
@ States and Configurations
@ Enabledness
@ Consistency
o Priority

Joost-Pieter Katoen Theoretical Foundations of the UML 2/31

Overview

@ Formal Definition of Statecharts

Joost-Pieter Katoen Theoretical Foundations of the

What are Statecharts?

Statecharts := Mealy machines
+ State hierarchy
+ Broadcast communication

+ Orthogonality

Joost-Pieter Katoen Theoretical Foundations of the UML 4/31

Statecharts

Definition (Statecharts)
A statechart SCis a triple (N, E, Edges) with:

O N is a set of nodes (or: states) structured in a tree

@ F is a set of events

o pseudo-event after(d) € E denotes a delay of d € R>(time units
o | & F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts

(SC1,...,SCy).

Joost-Pieter Katoen Theoretical Foundations of the UML 5/31

Tree structure

Function children

Nodes obey a tree structure defined by function children : N — 2V
where x € children(y) means that x is a child of y, or equivalently, y is
the parent of x.

| A

Ancestor relation <

The partial order < C N x N is defined by:
oVre N.x<dx
o Vx,y € N.x Jy if x € children(y)
o Vx,y,ze Nedy ANydz = x4z

x <y means that z is a descendant of y, or equivalently, y is an ancestor
of z. If x <y or y <z, nodes = and y are ancestrally related.

o

Root node
There is a unique root with no ancestors, and Vz € N.z < root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Functions on nodes

The type of nodes

Nodes are typed, type(x) € { BASIC, AND, OR } such that for x € N:
o type(root) = OR
o type(x) = BASIC iff children(z) = &, i.e., x is a leaf
@ type(xz) = AND implies (Vy € children(z). type(y) = OR)

o

Default nodes

default : N — N is a partial function on {z € N | type(z) = OR } with

default(x) =y implies y € children(z).

The function default assigns to each OR-node x one of its children as
default node that becomes active once node x becomes active.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Example

damage assess
m stat/ | Contacting
garage

low damage estimate high damage damage
received /

received /
/ Assessing \

Physical
assessment assessment]

— 8 assessed
‘ Repairing ‘ /'send 2.repair / send 2.write off

Invoice handling

— receive -
Waiting for | invoice/ | Checking
invoite > invoice

Reporting

check
finished /

|PVQICIFI
inishe

report finished
/ send 2.end

Writin
repor

fﬁue Oer}i

?

ieter Katoen Theoretical Foundations of the U

Edges

Definition (Edges)

An edge is a quintuple (X, e, g, A,Y), denoted X /ALy with:
@ X C N is a set of source nodes with X # @&
@ e € EU{ L} is the trigger event

@ A C Act is a finite set of actions

@ such as v := expr for local variable v and expression expr
o or send j.e, i.e., send event e to statechart SC;

@ Guard ¢ is a Boolean expression over all variables in (SCy, ..., SCy)
@ Y C N is a set of target nodes with Y # &

The sets X and Y may contain nodes at different depth in the node tree.J

Joost-Pieter Katoen Theoretical Foundations of the UML 9/31

Example

Example statechart

((oler)=e

T

e[x‘io]/ x:=0

edge 1: {C'} Lltrue]/{z:=1} {D}

edge 2: { D} —z=2UMzi=0}, £ 4 o

Joost-Pieter Katoen Theoretical Foundations of the UML

© A Semantics for Statecharts
@ Intuition and Assumptions
@ States and Configurations
@ Enabledness
@ Consistency
o Priority

Joost-Pieter Katoen Theoretical Foundations of the U

Towards a Statechart semantics

o Formal semantics: map (SCi, ..., SCy) onto a single Mealy machine

@ This is done using a step semantics distinguishing macro and micro
steps

o Macro steps are “observable” and are subdivided into a finite
number of micro steps that cannot be prolonged

o In a macro step, a maximal set of edges is performed

o Events generated in macro step n are only available in macro step
n+1

o If such event is not “consumed” in step n+1, it dies, and is not
available in step n+2, n+3, ... RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Assumptions

o Input to a macro step is a set of events (and not a queue)
the order of event generation is ignored, i.e., if e and €’ are generated
in macro step 4, the order in which they are generated is irrelevant
in step i+1

@ A macro step reacts to all available events
events can only be used in macro step immediately following their
generation

o Instantaneous edges and actions

@ Unlimited concurrency

there is no limit on the number of events that can be consumed in a
macro step

@ Perfect communication, i.e., messages are not lost

Joost-Pieter Katoen Theoretical Foundations of the

What does a single StateChart mean?

Intuitive semantics as a transition system:

@ State = a set of nodes (“current control”) + the values of variables

o Edge is enabled if guard holds in current state

o Executing edge X eldl/Ay perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

@ Principle: execute as many edges at once (without conflict)
= the total execution of such maximal set is a macro step

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

States and configurations

Definition (Configuration)
A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

o z € C and type(x) = OR implies |children(z) N C| =1

o z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C,I,V') where

@ (' is a configuration of SC

@ [C V is the set of events to be processed

@ V is a valuation of the variables.

v
Joost-Pieter Katoen Theoretical Foundations of the UML 15/31

Example

ieter Katoen

Enabling of an edge

Definition (Enabledness)

Edge X —<9/A, ¥ is enabled in state (C,1,V) whenever:
@ X C (,i.e. all source nodes are in configuration C

o ((C1,...,Cn), (V,....V,)) Eg, ie., guard g is satisfied

configurations variable :/,aluations
@ cither e #£ | impliese € [, or e = |
Let En(C,1,V) denote the set of enabled edges in state (C,I,V).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/31

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

If there are several such sets, choose one nondeterministically

Edges in concurrent components can be taken simultaneously

But edges in other components cannot; they are inconsistent

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Theoretical Foundations of the

Consistency: examples

To define consistency formally, we need some auxiliary concepts

Joost-Pieter Katoen Theoretical Foundations of the U

Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vze X.2<y) and Vze N.(Vze X.x<z) implies y < z.

Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).

Joost-Pieter Katoen Theoretical Foundations of the UML 20/31

Orthogonality of nodes

Definition (Orthogonality of nodes)
Nodes z,y € N are orthogonal, denoted z Ly, if

—(r<y) and —(y<z) and type(lca({z,y})) = AND.

Orthogonality captures the notion of independence. Orthogonal nodes can
execute enabled edges independently, and thus concurrently. J

Joost-Pieter Katoen Theoretical Foundations of the UML 21/31

Definition (Scope of edge)

The scope of edge X —= Y is the most nested OR-node that is an
ancestor of both X and Y.

The scope of edge X =Y is the most nested OR-node that is
unaffected by executing the edge X — Y.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/31

Scope: example

1 F
t——{a}—{8]

(o) (&)

scope(A— D) =root and scope(A—C)=G and scope(A— B)=F

Joost-Pieter Katoen Theoretical Foundations of the UML 23/31

Consistency: formal definition

Definition (Consistency)

Q Edges ed, ed’ € FEdges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in T" are pairwise consistent.
Cons(T) is the set of edges that are consistent with all edges in
T C Edges

Cons(T) = {ed € Edges | Ved' € T : ed is consistent with ed'}

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

o all edges in T are pairwise consistent, that is:

@ they are identical or
o scopes are (descendants of) different children of the same AND-node

@ enabled edge ed is not in step T implies

there exists ed’ € T such that ed is inconsistent with ed’, and
the priority of ed’ is not smaller than ed

@ step T is maximal (wrt. set inclusion)
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Example:

| A

2 < 1 since scope(1) = D < scope(2) = root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priority: examples

ieter Katoen Theoretical Foundations of the U

Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Theoretical Foundations of the

What is now a macro step?

A macro step is a set T" of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent

@ they are identical or
@ scopes are (descendants of) different children of the same AND-node

@ step T is maximal (wrt. set inclusion)
@ T cannot be extended with any enabled, consistent edge

@ priorities: enabled edge ed is not in step 71" implies

Jded’ € T. (ed is inconsistent with ed’ A =(ed’ < ed))
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

A macro step — formally

A macro step is a set T" of edges such that:

enabledness: T C En(C,I,V)

@ consistency: T' C Cons(T)

maximality: En(C,I,V) N Cons(T) C T

@ priority: Ved € En(C,1,V) — T we have
(Jed' € T. (ed is inconsistent with ed’ A —(ed’ < ed)))

The first three points yield: T'= En(C, I, V) N Cons(T).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

Computing the set T' of macro steps in state (C, I,V

function nextStep(C,1,V)

T:=0

while 7' C En(C,1,V) N Cons(T)

do let ed € High ((En(C,1,V) N Cons(T)) —T);
T:=T U {ed}

od

return 7.

where High(T) = {ed € T | ~(Jed € T.ed < ed')}

Joost-Pieter Katoen Theoretical Foundations of the UML 31/31

