

Theoretical Foundations of the UML

Lecture 16: Statecharts Semantics (1)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

14. Januar 2013

1 Formal Definition of Statecharts

2 A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

1 Formal Definition of Statecharts

2 A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

What are Statecharts?

Statecharts := Mealy machines

- + State hierarchy
- + Broadcast communication
- + Orthogonality

Definition (Statecharts)

A **statechart** SC is a triple (N, E, Edges) with:

- ① N is a set of **nodes** (or: states) structured in a **tree**
- ② E is a set of **events**
 - pseudo-event $\text{after}(d) \in E$ denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\perp \notin E$ stands for “no event available”
- ③ Edges is a set of (hyper-) **edges**, defined later on.

Definition (System)

A **system** is described by a finite collection of statecharts (SC_1, \dots, SC_k) .

Tree structure

Function *children*

Nodes obey a **tree structure** defined by function $\text{children} : N \rightarrow 2^N$ where $x \in \text{children}(y)$ means that x is a child of y , or equivalently, y is the parent of x .

Ancestor relation \trianglelefteq

The partial order $\trianglelefteq \subseteq N \times N$ is defined by:

- $\forall x \in N. x \trianglelefteq x$
- $\forall x, y \in N. x \trianglelefteq y$ if $x \in \text{children}(y)$
- $\forall x, y, z \in N. x \trianglelefteq y \wedge y \trianglelefteq z \Rightarrow x \trianglelefteq z$

$x \trianglelefteq y$ means that x is a **descendant** of y , or equivalently, y is an **ancestor** of x . If $x \trianglelefteq y$ or $y \trianglelefteq x$, nodes x and y are ancestrally related.

Root node

There is a unique **root** with no ancestors, and $\forall x \in N. x \trianglelefteq \text{root}$.

The type of nodes

Nodes are **typed**, $\text{type}(x) \in \{\text{BASIC, AND, OR}\}$ such that for $x \in N$:

- $\text{type}(\text{root}) = \text{OR}$
- $\text{type}(x) = \text{BASIC}$ iff $\text{children}(x) = \emptyset$, i.e., x is a leaf
- $\text{type}(x) = \text{AND}$ implies $(\forall y \in \text{children}(x). \text{type}(y) = \text{OR})$

Default nodes

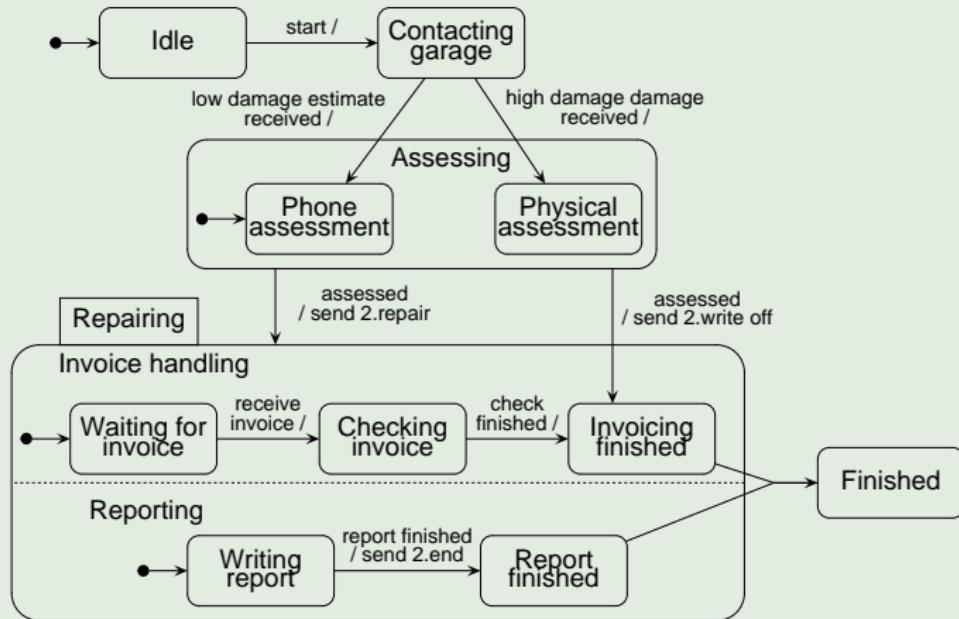
$\text{default} : N \rightarrow N$ is a partial function on $\{x \in N \mid \text{type}(x) = \text{OR}\}$ with

$$\text{default}(x) = y \quad \text{implies} \quad y \in \text{children}(x).$$

The function default assigns to each OR-node x one of its children as **default** node that becomes active once node x becomes active.

Example

A damage assessor



Definition (Edges)

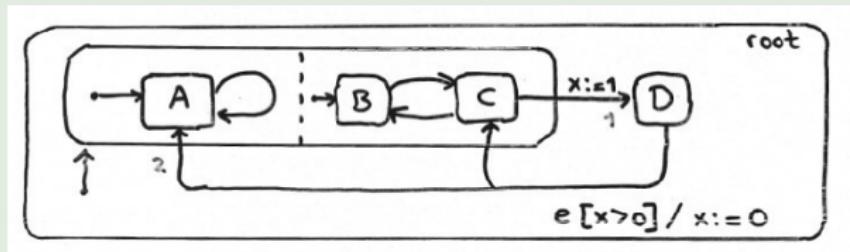
An **edge** is a quintuple (X, e, g, A, Y) , denoted $X \xrightarrow{e[g]/A} Y$ with:

- $X \subseteq N$ is a set of **source** nodes with $X \neq \emptyset$
- $e \in E \cup \{ \perp \}$ is the **trigger** event
- $A \subseteq Act$ is a finite set of **actions**
 - such as $v := \text{expr}$ for local variable v and expression expr
 - or *send j.e*, i.e., send event e to statechart SC_j
- **Guard** g is a Boolean expression over all variables in (SC_1, \dots, SC_k)
- $Y \subseteq N$ is a set of **target** nodes with $Y \neq \emptyset$

The sets X and Y may contain nodes at different depth in the node tree.

Example

Example statechart



edge 1: $\{ C \} \xrightarrow{\perp[\text{true}]/\{ x:=1 \}} \{ D \}$

edge 2: $\{ D \} \xrightarrow{e[x>0]/\{ x:=0 \}} \{ A, C \}$

1 Formal Definition of Statecharts

2 A Semantics for Statecharts

- Intuition and Assumptions
- States and Configurations
- Enabledness
- Consistency
- Priority

- Formal semantics: map (SC_1, \dots, SC_k) onto a single Mealy machine
- This is done using a step semantics distinguishing macro and micro steps
- Macro steps are “observable” and are subdivided into a finite number of micro steps that cannot be prolonged
- In a macro step, a maximal set of edges is performed
- Events generated in macro step n are only available in macro step $n+1$
 - If such event is not “consumed” in step $n+1$, it dies, and is not available in step $n+2, n+3, \dots$

- Input to a macro step is a **set** of events (and not a queue)
the order of event generation is ignored, i.e., if e and e' are generated in macro step i , the order in which they are generated is irrelevant in step $i+1$
- A macro step reacts to **all available** events
events can only be used in macro step immediately following their generation
- **Instantaneous** edges and actions
- **Unlimited concurrency**
there is no limit on the number of events that can be consumed in a macro step
- **Perfect communication**, i.e., messages are not lost

What does a single StateChart mean?

Intuitive semantics as a transition system:

- **State** = a set of nodes (“current control”) + the values of variables
- Edge is **enabled** if guard holds in current state
- **Executing edge** $X \xrightarrow{e[g]/A} Y$ = perform actions A , consume event e
 - leave source nodes X and switch to target nodes Y
 - ⇒ events are unordered, and considered as a set
- Principle: execute as many edges at once (without conflict)
 - ⇒ the total execution of such maximal set is a **macro step**

Definition (Configuration)

A **configuration** of $SC = (N, E, \text{Edges})$ is a set $C \subseteq N$ of nodes satisfying:

- $\text{root} \in C$
- $x \in C$ and $\text{type}(x) = \text{OR}$ implies $|\text{children}(x) \cap C| = 1$
- $x \in C$ and $\text{type}(x) = \text{AND}$ implies $\text{children}(x) \subseteq C$

Let Conf denote the set of configurations of SC .

Definition (State)

State of $SC = (N, E, \text{Edges})$ is a triple (C, I, V) where

- C is a configuration of SC
- $I \subseteq V$ is the set of events to be processed
- V is a valuation of the variables.

Example

Definition (Enabledness)

Edge $X \xrightarrow{e[g]/A} Y$ is **enabled** in state (C, I, V) whenever:

- $X \subseteq C$, i.e. all source nodes are in configuration C
- $(\underbrace{(C_1, \dots, C_n)}_{\text{configurations}}, \underbrace{(V_1, \dots, V_n)}_{\text{variable valuations}}) \models g$, i.e., guard g is satisfied
- either $e \neq \perp$ implies $e \in I$, or $e = \perp$

Let $En(C, I, V)$ denote the set of enabled edges in state (C, I, V) .

- On receiving an input e , several edges in SC may become **enabled**
- Then, a **maximal** and **consistent** set of enabled edges is taken
- If there are several such sets, choose one **nondeterministically**
- Edges in **concurrent** components can be taken **simultaneously**
- But edges in other components cannot; they are **inconsistent**
- To resolve nondeterminism (partly), **priorities** are used

Consistency: examples

To define consistency formally, we need some auxiliary concepts

Definition (Least common ancestor)

For $X \subseteq N$, the **least common ancestor**, denoted $lca(X)$, is the node $y \in N$ such that:

$$(\forall x \in X. x \sqsubseteq y) \quad \text{and} \quad \forall z \in N. (\forall x \in X. x \sqsubseteq z) \text{ implies } y \sqsubseteq z.$$

Intuition

Node y is an ancestor of any node in X (first clause), and is a descendant of any node which is an ancestor of any node in X (second clause).

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are **orthogonal**, denoted $x \perp y$, if

$$\neg(x \trianglelefteq y) \quad \text{and} \quad \neg(y \trianglelefteq x) \quad \text{and} \quad \text{type}(\text{lca}(\{x, y\})) = \text{AND}.$$

Orthogonality captures the notion of independence. Orthogonal nodes can execute enabled edges independently, and thus concurrently.

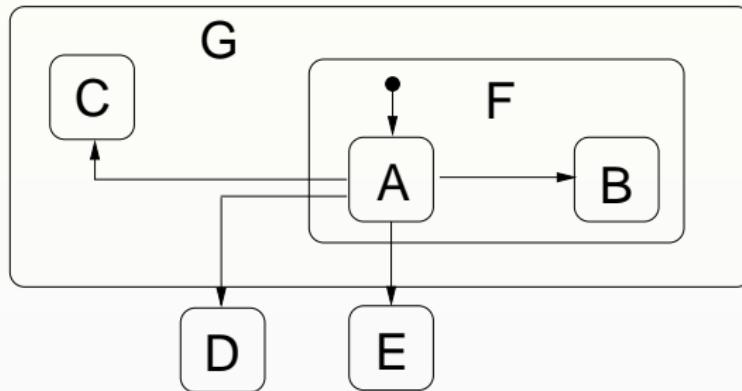
Definition (Scope of edge)

The **scope** of edge $X \rightarrow\!\!\!\rightarrow Y$ is the most nested OR-node that is an ancestor of both X and Y .

Intuition

The scope of edge $X \rightarrow\!\!\!\rightarrow Y$ is the most nested OR-node that is **unaffected** by executing the edge $X \rightarrow\!\!\!\rightarrow Y$.

Scope: example



$\text{scope}(A \rightarrow D) = \text{root}$ and $\text{scope}(A \rightarrow C) = G$ and $\text{scope}(A \rightarrow B) = F$

Consistency: formal definition

Definition (Consistency)

- ① Edges $ed, ed' \in Edges$ are **consistent** if:

$$ed = ed' \quad \text{or} \quad \text{scope}(ed) \perp \text{scope}(ed').$$

- ② $T \subseteq Edges$ is **consistent** if all edges in T are pairwise consistent.
 $Cons(T)$ is the set of edges that are **consistent** with all edges in $T \subseteq Edges$

$$Cons(T) = \{ed \in Edges \mid \forall ed' \in T : ed \text{ is consistent with } ed'\}$$

Example

On the black board.

What is now a macro step?

A **macro step** is a **set T of edges** such that:

- all edges in step T are enabled
- all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- enabled edge ed is not in step T implies
 - there exists $ed' \in T$ such that ed is inconsistent with ed' , and the priority of ed' is not smaller than ed
- step T is **maximal** (wrt. set inclusion)

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

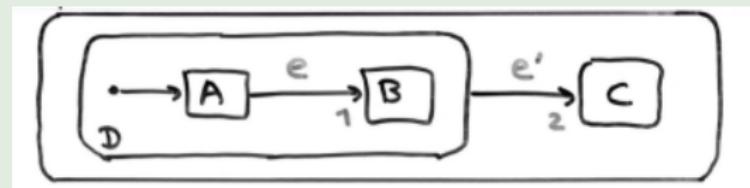
Definition (Priority relation)

The **priority** relation $\preceq \subseteq \text{Edges} \times \text{Edges}$ is a partial order defined for $ed, ed' \in \text{Edges}$ by:

$$ed \preceq ed' \quad \text{if} \quad \text{scope}(ed') \trianglelefteq \text{scope}(ed)$$

So, ed' has priority over ed if its scope is a descendant of ed 's scope.

Example:



$2 \preceq 1$ since $\text{scope}(1) = D \trianglelefteq \text{scope}(2) = \text{root}$.

Priority: examples

Priorities rule out some nondeterminism, but not necessarily all.

What is now a macro step?

A **macro step** is a **set T of edges** such that:

- all edges in step T are **enabled**
- all edges in T are **pairwise consistent**
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- step T is **maximal** (wrt. set inclusion)
 - T cannot be extended with any enabled, consistent edge
- **priorities**: enabled edge ed is not in step T implies
 $\exists ed' \in T. (ed \text{ is inconsistent with } ed' \wedge \neg(ed' \preceq ed))$

A macro step — formally

A macro step is a set T of edges such that:

- **enabledness**: $T \subseteq \text{En}(C, I, V)$
- **consistency**: $T \subseteq \text{Cons}(T)$
- **maximality**: $\text{En}(C, I, V) \cap \text{Cons}(T) \subseteq T$
- **priority**: $\forall ed \in \text{En}(C, I, V) - T$ we have
 $(\exists ed' \in T. (ed \text{ is inconsistent with } ed' \wedge \neg(ed' \preceq ed)))$

Note:

The first three points yield: $T = \text{En}(C, I, V) \cap \text{Cons}(T)$.

Computing the set T of macro steps in state (C, I, V)

function $\text{nextStep}(C, I, V)$

$T := \emptyset$

while $T \subset \text{En}(C, I, V) \cap \text{Cons}(T)$

do let $ed \in \text{High}((\text{En}(C, I, V) \cap \text{Cons}(T)) - T)$;

$T := T \cup \{ed\}$

od

return T .

where $\text{High}(T) = \{ed \in T \mid \neg(\exists ed' \in T. ed \preceq ed')\}$