
Theoretical Foundations of the UML
Lecture 17: Statecharts Semantics (2)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

20. Januar 2013

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29

Statecharts

Definition (Statecharts)
A statechart SC is a triple (N,E,Edges) with:

1 N is a set of nodes (or: states) structured in a tree
2 E is a set of events

pseudo-event after(d) ∈ E denotes a delay of d ∈ R�0 time units
⊥ �∈ E stands for “no event available”

3 Edges is a set of (hyper-) edges, defined later on.

Definition (System)
A system is described by a finite collection of statecharts
(SC1, . . . ,SCk).

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

What does a single StateChart mean?

The semantics is given as a Mealy machine:

State = a set of nodes (“current control”) + the values of variables

Edge is enabled if all events are present and guard holds in current
state

Executing edge X
e[g]/A−−−−→Y = perform actions A, consume event e

leave source nodes X and switch to target nodes Y
⇒ events are unordered, and considered as a set

Principle: execute as many non-conflicting edges at once
⇒ the execution of such maximal set is a macro step

Joost-Pieter Katoen Theoretical Foundations of the UML 3/29

States and configurations

Definition (Configuration)
A configuration of SC = (N,E,Edges) is a set C ⊆ N of nodes
satisfying:

root ∈ C

x ∈ C and type(x) = or implies |children(x) ∩ C| = 1

x ∈ C and type(x) = and implies children(x) ⊆ C

Let Conf denote the set of configurations of SC.

Definition (State)
State of SC = (N,E,Edges) is a triple (C, I, V) where

C is a configuration of SC
I ⊆ V is a set of events ready to be processed
V is a valuation of the variables.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

Enabling of an edge

Definition (Enabledness)

Edge X
e[g]/A−−−−→ Y is enabled in state (C, I, V) whenever:

X ⊆ C, i.e. all source nodes are in configuration C

((C1, . . . , Cn)︸ ︷︷ ︸
configurations

, (V1, . . . , Vn)︸ ︷︷ ︸
variable valuations

) |= g, i.e., guard g is satisfied

either e �= ⊥ implies e ∈ I, or e = ⊥
Let En(C, I, V) denote the set of enabled edges in state (C, I, V).

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

Macro steps

On receiving an input e, several edges in SC may become enabled

Then, a maximal and consistent set of enabled edges is taken

If there are several such sets, choose one nondeterministically

Edges in concurrent components can be taken simultaneously

But edges in other components cannot; they are inconsistent

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

Least common ancestor

Definition (Least common ancestor)
For X ⊆ N , the least common ancestor, denoted lca(X), is the node
y ∈ N such that:

(∀x ∈ X.x� y) and ∀z ∈ N. (∀x ∈ X.x� z) implies y � z.

Intuition
Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Orthogonality of nodes

Definition (Orthogonality of nodes)
Nodes x, y ∈ N are orthogonal, denoted x⊥y, if

¬(x� y) and ¬(y � x) and type(lca({x, y })) = and.

Orthogonality captures the notion of independence. Orthogonal nodes can
execute enabled edges independently, and thus concurrently.

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Scope

Definition (Scope of edge)
The scope of edge X ...−−→Y is the most nested or-node that is an
ancestor of both X and Y .

Intuition
The scope of edge X ...−−→Y is the most nested or-node that is
unaffected by executing the edge X ...−−→Y .

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Scope: example

F

A B

D E

C
G

scope(A−→D) = root and scope(A−→C) = G and scope(A−→B) = F

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Consistency: formal definition

Definition (Consistency)
1 Edges ed, ed′ ∈ Edges are consistent if:

ed = ed′ or scope(ed)⊥ scope(ed′).

2 T ⊆ Edges is consistent if all edges in T are pairwise consistent.
Cons(T) is the set of edges that are consistent with all edges in
T ⊆ Edges

Cons(T) = {ed ∈ Edges | ∀ed′ ∈ T : ed is consistent with ed′}

Example
On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent, that is:
they are identical or
scopes are (descendants of) different children of the same and-node

enabled edge ed is not in step T implies
there exists ed′ ∈ T such that ed is inconsistent with ed′, and
the priority of ed′ is not smaller than ed

step T is maximal (wrt. set inclusion)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)
The priority relation 	 ⊆ Edges × Edges is a partial order defined for
ed, ed′ ∈ Edges by:

ed 	 ed′ if scope(ed′)� scope(ed)

So, ed′ has priority over ed if its scope is a descendant of ed’s scope.

Example:

2 	 1 since scope(1) = D � scope(2) = root.
Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

Priority: examples

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

What is now a macro step?

A macro step is a set T of edges such that:

all edges in step T are enabled

all edges in T are pairwise consistent
they are identical or
scopes are (descendants of) different children of the same and-node

step T is maximal (wrt. set inclusion)
T cannot be extended with any enabled, consistent edge

priorities: enabled edge ed is not in step T implies
∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ 	 ed))

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

A macro step — formally

A macro step is a set T of edges such that:

enabledness: T ⊆ En(C, I, V)

consistency: T ⊆ Cons(T)

maximality: En(C, I, V) ∩ Cons(T) ⊆ T

priority: ∀ed ∈ En(C, I, V)− T we have
(∃ed′ ∈ T. (ed is inconsistent with ed′ ∧ ¬(ed′ 	 ed)))

Note:
The first three points yield: T = En(C, I, V) ∩ Cons(T).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Computing the set T of macro steps in state (C, I, V)

function nextStep(C, I, V)

T := ∅

while T ⊂ En(C, I, V) ∩ Cons(T)

do let ed ∈ High ((En(C, I, V) ∩ Cons(T))− T) ;

T := T ∪ {ed}
od

return T .

where High(T) = {ed ∈ T | ¬(∃ed′ ∈ T. ed 	 ed′)}

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Correctness

Theorem:
For any state (C, I, V), nextStep(C, I, V) is a macro step.

Proof.
The proof goes in two steps:

1 We prove enabledness, consistency, and maximality by applying
some standard results from fixed point theory, in particular
Tarski’s-Kleene fixpoint theorem;

2 Then we consider priority and use some monotonicity argument.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

Intermezzo on fixed point theory

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Step execution

What happens in performing a step?
For a single statechart, executing a step results in performing the
actions of all the edges in the step, and changing “control” to the target
nodes of these edges.

Interference
Actions in statechart SCj may influence the sets of events of other
statecharts, e.g., SCi with i �= j if action send i.e is performed by SCj in
a step.

Thus:
Execution of steps is considered on the system (SC1, . . . ,SCn).

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Default completion

Definition (Default completion)
The default completion C ′ of some set C of nodes is the canonical
superset of C such that C ′ is a configuration. If C ′ contains an or-node
x and children(x) ∩ C = ∅ implies default(x) ∈ C ′.

Example:

1 Default completion of

C = {root, I} is C ′ = C ∪ {D,E,F,H}
2 Default completion of

C = {root, C} is C ′ = C ∪ {A}.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Step execution by a single statechart

Let Cj be the current configuration of statechart SCj

Let Tj ⊆ Edgesj be a step for SCj

The next state (C ′
j, I

′
j , V

′
j) of statechart SCj is given by:

1 C′
j is the default completion of⋃

X
e[g]/A−−−−−→ Y ∈Tj

Y ∪ {x ∈ Cj | ∀X → Y ∈ Tj .¬(x� scope(X → Y))}

2 I ′j =
⋃n

k=1{e | ∃X e[g]/A−−−−−→Y ∈ Tk. send j.e ∈ A}

3 V ′
j (v) =


 Vj(v) if ∀X e[g]/A−−−−−→Y ∈ Tj. v := . . . �∈ A

val(expr) if ∃X e[g]/A−−−−−→Y ∈ Tj. v := expr ∈ A

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

Mealy machines [Mealy, 1953]

Definition (Mealy machine)
A Mealy machine A = (Q, q0,Σ,Γ, δ, ω) with:

Q is a finite set of states with initial state q0 ∈ Q

Σ is the input alphabet
Γ is the output alphabet
δ : Q× Σ → Q is the deterministic (input) transition function, and
ω : Q× Σ → Γ is the output function

Intuition
A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine ω : Q → Γ, output is purely state-based.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

From statecharts to a Mealy machine (1)

States
A state q is a tuple of the (local) states of SC1 through SCn.

Input and output events
Any input is a set of events, and any output is a set of events.

Next-state function δ

Defines the effect of executing a step.

Output function ω

Defines all events sent to some SC outside the system (SC1, . . . ,SCn).

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

From statecharts to a Mealy machine (2)

States
A state q is a tuple of the (local) states of SC1 through SCk.

Formally:
Q =

∏n
k=1(Confk × 2Ek × Valk) is the set of states

where Confk is the set of configurations of SCk,
Ek is the set of the events of SCk,
and Valk is the set of variable valuations of SCk

q0 =
∏n

k=1(C0,k,∅,Val0,k) is the initial state
where C0,k is the default completion of the set {root}
the initial set of events is empty
Val0,k is the initial variable valuation of SCk

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

From statecharts to a Mealy machine (3)

Input and output events
Any input is a set of events, and any output is a set of events.

Formally,
Input alphabet: Σ = 2E − {∅ }

where E =
⋃n

k=1 Ek is the set of events in all statecharts

Output alphabet: Γ = 2E
′

with E′ =

{
send j.e ∈

n⋃
k=1

SCk | j �∈ {1, . . . , n}
}

︸ ︷︷ ︸
all outputs that cannot be consumed

Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

From statecharts to a Mealy machine (4)

Next-state function δ

Defines the effect of executing a step.

Formally,
(s′1, . . . , s

′
n) ∈ δ((s1, . . . , sn), E) where

s′′i = (C′
i, I

′′
i , V

′
i) is the next state after executing

Ti = nextStep(Ci, Ii, Vi)
and s′i = (C′

i, I
′′
i ∪ (E ∩Ei), V

′
i)

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

From statecharts to a Mealy machine (5)

Output function ω

Defines all events sent to some SC outside the system (SC1, . . . ,SCn).

Formally,
ω((s1, . . . , sn), E) ={

send j.e | j �∈ {1, . . . , n} ∧ ∃i. ∃X e[g]/send j.e−−−−−−−−−→Y ∈ nextStep(Ci, Ii, Vi)

}

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

