

Theoretical Foundations of the UML

Lecture 17: Statecharts Semantics (2)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

20. Januar 2013

Definition (Statecharts)

A **statechart** SC is a triple (N, E, Edges) with:

- ① N is a set of **nodes** (or: states) structured in a **tree**
- ② E is a set of **events**
 - pseudo-event $\text{after}(d) \in E$ denotes a delay of $d \in \mathbb{R}_{\geq 0}$ time units
 - $\perp \notin E$ stands for “no event available”
- ③ Edges is a set of (hyper-) **edges**, defined later on.

Definition (System)

A **system** is described by a finite collection of statecharts (SC_1, \dots, SC_k) .

What does a single StateChart mean?

- The semantics is given as a **Mealy machine**:
- **State** = a set of nodes (“current control”) + the values of variables
- Edge is **enabled** if all events are present and guard holds in current state
- Executing edge $X \xrightarrow{e[g]/A} Y$ = perform actions A , consume event e
 - leave source nodes X and switch to target nodes Y
 - ⇒ events are unordered, and considered as a set
- **Principle**: execute as many non-conflicting edges at once
 - ⇒ the execution of such maximal set is a **macro step**

Definition (Configuration)

A **configuration** of $SC = (N, E, \text{Edges})$ is a set $C \subseteq N$ of nodes satisfying:

- $\text{root} \in C$
- $x \in C$ and $\text{type}(x) = \text{OR}$ implies $|\text{children}(x) \cap C| = 1$
- $x \in C$ and $\text{type}(x) = \text{AND}$ implies $\text{children}(x) \subseteq C$

Let Conf denote the **set of configurations** of SC .

Definition (State)

State of $SC = (N, E, \text{Edges})$ is a triple (C, I, V) where

- C is a configuration of SC
- $I \subseteq V$ is a set of events ready to be processed
- V is a valuation of the variables.

Definition (Enabledness)

Edge $X \xrightarrow{e[g]/A} Y$ is **enabled** in state (C, I, V) whenever:

- $X \subseteq C$, i.e. all source nodes are in configuration C
- $(\underbrace{(C_1, \dots, C_n)}_{\text{configurations}}, \underbrace{(V_1, \dots, V_n)}_{\text{variable valuations}}) \models g$, i.e., guard g is satisfied
- either $e \neq \perp$ implies $e \in I$, or $e = \perp$

Let $En(C, I, V)$ denote the set of enabled edges in state (C, I, V) .

- On receiving an input e , several edges in SC may become **enabled**
- Then, a **maximal** and **consistent** set of enabled edges is taken
- If there are several such sets, choose one **nondeterministically**
- Edges in **concurrent** components can be taken **simultaneously**
- But edges in other components cannot; they are **inconsistent**
- To resolve nondeterminism (partly), **priorities** are used

Definition (Least common ancestor)

For $X \subseteq N$, the **least common ancestor**, denoted $lca(X)$, is the node $y \in N$ such that:

$$(\forall x \in X. x \sqsubseteq y) \quad \text{and} \quad \forall z \in N. (\forall x \in X. x \sqsubseteq z) \text{ implies } y \sqsubseteq z.$$

Intuition

Node y is an ancestor of any node in X (first clause), and is a descendant of any node which is an ancestor of any node in X (second clause).

Orthogonality of nodes

Definition (Orthogonality of nodes)

Nodes $x, y \in N$ are **orthogonal**, denoted $x \perp y$, if

$$\neg(x \trianglelefteq y) \quad \text{and} \quad \neg(y \trianglelefteq x) \quad \text{and} \quad \text{type}(\text{lca}(\{x, y\})) = \text{AND}.$$

Orthogonality captures the notion of independence. Orthogonal nodes can execute enabled edges independently, and thus concurrently.

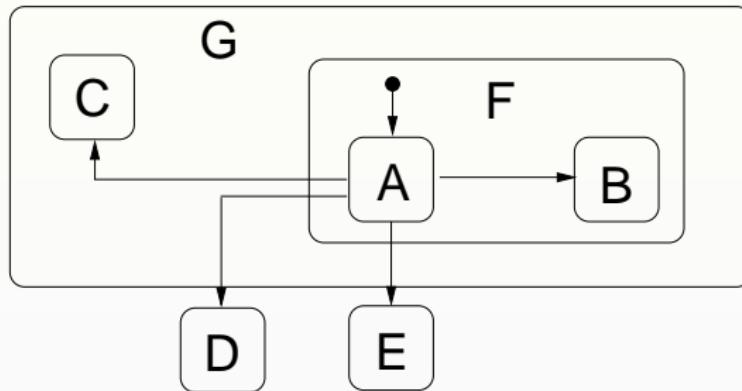
Definition (Scope of edge)

The **scope** of edge $X \rightarrow\!\!\!\rightarrow Y$ is the most nested OR-node that is an ancestor of both X and Y .

Intuition

The scope of edge $X \rightarrow\!\!\!\rightarrow Y$ is the most nested OR-node that is **unaffected** by executing the edge $X \rightarrow\!\!\!\rightarrow Y$.

Scope: example



$\text{scope}(A \rightarrow D) = \text{root}$ and $\text{scope}(A \rightarrow C) = G$ and $\text{scope}(A \rightarrow B) = F$

Definition (Consistency)

① Edges $ed, ed' \in Edges$ are **consistent** if:

$$ed = ed' \quad \text{or} \quad \text{scope}(ed) \perp \text{scope}(ed').$$

② $T \subseteq Edges$ is **consistent** if all edges in T are pairwise consistent.
 $Cons(T)$ is the set of edges that are **consistent** with all edges in $T \subseteq Edges$

$$Cons(T) = \{ed \in Edges \mid \forall ed' \in T : ed \text{ is consistent with } ed'\}$$

Example

On the black board.

What is now a macro step?

A **macro step** is a **set T of edges** such that:

- all edges in step T are enabled
- all edges in T are pairwise consistent, that is:
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- enabled edge ed is not in step T implies
 - there exists $ed' \in T$ such that ed is inconsistent with ed' , and the priority of ed' is not smaller than ed
- step T is **maximal** (wrt. set inclusion)

Priorities

Priorities restrict (but do not abandon) nondeterminism between multiple enabled edges.

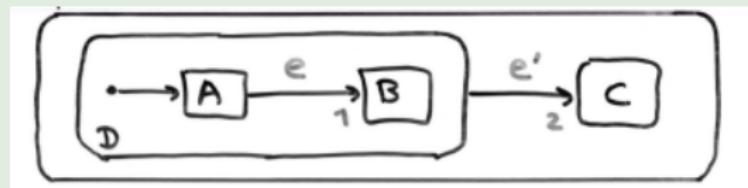
Definition (Priority relation)

The **priority** relation $\preceq \subseteq \text{Edges} \times \text{Edges}$ is a partial order defined for $ed, ed' \in \text{Edges}$ by:

$$ed \preceq ed' \quad \text{if} \quad \text{scope}(ed') \trianglelefteq \text{scope}(ed)$$

So, ed' has priority over ed if its scope is a descendant of ed 's scope.

Example:



$2 \preceq 1$ since $\text{scope}(1) = D \trianglelefteq \text{scope}(2) = \text{root}$.

Priority: examples

Priorities rule out some nondeterminism, but not necessarily all.

What is now a macro step?

A **macro step** is a **set T of edges** such that:

- all edges in step T are **enabled**
- all edges in T are **pairwise consistent**
 - they are identical or
 - scopes are (descendants of) different children of the same AND-node
- step T is **maximal** (wrt. set inclusion)
 - T cannot be extended with any enabled, consistent edge
- **priorities**: enabled edge ed is not in step T implies
 $\exists ed' \in T. (ed \text{ is inconsistent with } ed' \wedge \neg(ed' \preceq ed))$

A macro step — formally

A macro step is a set T of edges such that:

- **enabledness**: $T \subseteq \text{En}(C, I, V)$
- **consistency**: $T \subseteq \text{Cons}(T)$
- **maximality**: $\text{En}(C, I, V) \cap \text{Cons}(T) \subseteq T$
- **priority**: $\forall ed \in \text{En}(C, I, V) - T$ we have
 $(\exists ed' \in T. (ed \text{ is inconsistent with } ed' \wedge \neg(ed' \preceq ed)))$

Note:

The first three points yield: $T = \text{En}(C, I, V) \cap \text{Cons}(T)$.

Computing the set T of macro steps in state (C, I, V)

function $\text{nextStep}(C, I, V)$

$T := \emptyset$

while $T \subset \text{En}(C, I, V) \cap \text{Cons}(T)$

do let $ed \in \text{High}((\text{En}(C, I, V) \cap \text{Cons}(T)) - T)$;

$T := T \cup \{ed\}$

od

return T .

where $\text{High}(T) = \{ed \in T \mid \neg(\exists ed' \in T. ed \preceq ed')\}$

Theorem:

For any state (C, I, V) , $\text{nextStep}(C, I, V)$ is a macro step.

Proof.

The proof goes in two steps:

- ① We prove enabledness, consistency, and maximality by applying some standard results from fixed point theory, in particular Tarski's-Kleene fixpoint theorem;
- ② Then we consider priority and use some monotonicity argument.

Intermezzo on fixed point theory

What happens in performing a step?

For a single statechart, executing a step results in performing the actions of all the edges in the step, and changing “control” to the target nodes of these edges.

Interference

Actions in statechart SC_j may influence the sets of events of other statecharts, e.g., SC_i with $i \neq j$ if action *send* i.e is performed by SC_j in a step.

Thus:

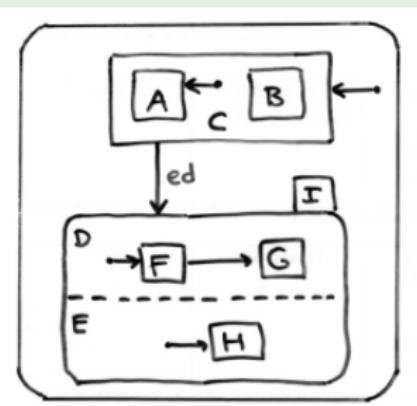
Execution of steps is considered on the system (SC_1, \dots, SC_n) .

Default completion

Definition (Default completion)

The **default completion** C' of some set C of nodes is the canonical superset of C such that C' is a configuration. If C' contains an OR-node x and $\text{children}(x) \cap C = \emptyset$ implies $\text{default}(x) \in C'$.

Example:



- ➊ Default completion of $C = \{\text{root}, I\}$ is $C' = C \cup \{D, E, F, H\}$
- ➋ Default completion of $C = \{\text{root}, C\}$ is $C' = C \cup \{A\}$.

Step execution by a single statechart

- Let C_j be the current configuration of statechart SC_j
- Let $T_j \subseteq Edges_j$ be a step for SC_j
- The next state (C'_j, I'_j, V'_j) of statechart SC_j is given by:
 - C'_j is the default completion of

$$C'_j = \bigcup_{\substack{Y \in T_j \\ X \xrightarrow{e[g]/A} Y}} \{x \in C_j \mid \forall X \rightarrow Y \in T_j. \neg(x \sqsubseteq \text{scope}(X \rightarrow Y))\}$$

$$I'_j = \bigcup_{k=1}^n \{e \mid \exists X \xrightarrow{e[g]/A} Y \in T_k. \text{send } j.e \in A\}$$

$$V'_j(v) = \begin{cases} V_j(v) & \text{if } \forall X \xrightarrow{e[g]/A} Y \in T_j. v := \dots \notin A \\ \text{val(expr)} & \text{if } \exists X \xrightarrow{e[g]/A} Y \in T_j. v := \text{expr} \in A \end{cases}$$

Definition (Mealy machine)

A **Mealy machine** $\mathcal{A} = (Q, q_0, \Sigma, \Gamma, \delta, \omega)$ with:

- Q is a finite set of states with initial state $q_0 \in Q$
- Σ is the input alphabet
- Γ is the output alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the deterministic (input) transition function, and
- $\omega : Q \times \Sigma \rightarrow \Gamma$ is the output function

Intuition

A Mealy machine (or: finite-state transducer) is a finite-state automaton that produces **output** on a transition, based on current input and state.

Moore machines

In a Moore machine $\omega : Q \rightarrow \Gamma$, output is purely state-based.

From statecharts to a Mealy machine (1)

States

A state q is a tuple of the (local) states of SC_1 through SC_n .

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function δ

Defines the effect of executing a step.

Output function ω

Defines all events sent to some SC outside the system (SC_1, \dots, SC_n).

States

A state q is a tuple of the (local) states of SC_1 through SC_k .

Formally:

- $Q = \prod_{k=1}^n (Conf_k \times 2^{E_k} \times Val_k)$ is the set of **states**
 - where $Conf_k$ is the set of configurations of SC_k ,
 - E_k is the set of the events of SC_k ,
 - and Val_k is the set of variable valuations of SC_k
- $q_0 = \prod_{k=1}^n (C_{0,k}, \emptyset, Val_{0,k})$ is the **initial state**
 - where $C_{0,k}$ is the default completion of the set $\{\text{root}\}$
 - the initial set of events is empty
 - $Val_{0,k}$ is the initial variable valuation of SC_k

Input and output events

Any input is a set of events, and any output is a set of events.

Formally,

- **Input alphabet:** $\Sigma = 2^E - \{\emptyset\}$
 - where $E = \bigcup_{k=1}^n E_k$ is the set of **events** in all statecharts
- **Output alphabet:** $\Gamma = 2^{E'}$
 - with $E' = \underbrace{\left\{ \text{send } j.e \in \bigcup_{k=1}^n SC_k \mid j \notin \{1, \dots, n\} \right\}}_{\text{all outputs that cannot be consumed}}$

Next-state function δ

Defines the effect of executing a step.

Formally,

- $(s'_1, \dots, s'_n) \in \delta((s_1, \dots, s_n), E)$ where
 - $s''_i = (C'_i, I''_i, V'_i)$ is the next state after executing
 $T_i = \text{nextStep}(C_i, I_i, V_i)$
 - and $s'_i = (C'_i, I''_i \cup (E \cap E_i), V'_i)$

Output function ω

Defines all events sent to some SC outside the system (SC_1, \dots, SC_n) .

Formally,

- $\omega((s_1, \dots, s_n), E) = \left\{ \text{send } j.e \mid j \notin \{1, \dots, n\} \wedge \exists i. \exists X \xrightarrow{e[g]/\text{send } j.e} Y \in \text{nextStep}(C_i, I_i, V_i) \right\}$