

Theoretical Foundations of the UML

Lecture 2: Sequence Diagrams

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

16. Oktober 2012

- 70s - 80s: often used informally
- 1992: first version of MSCs standardized by CCITT (currently ITU) Z.120
- 1992 - 1996: many extensions, e.g., high-level + formal semantics (using process algebras)
- 1996: MSC'96 standard
- 2000: MSC 2000, time, data, o-o features
- 2005: MSC 2004 ...

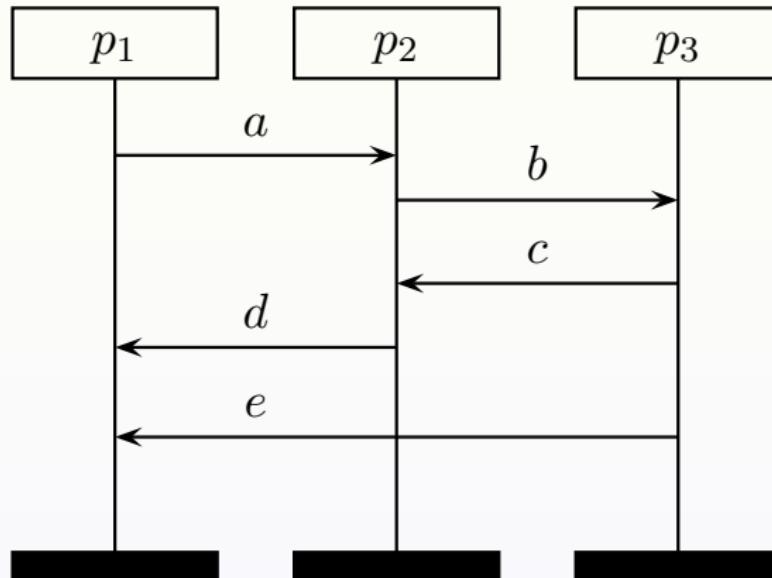
- UML sequence diagrams
- (instantiations of) use cases
- triggered MSCs
- netcharts (= Petri net + MSC)
- STAIRS
- Live sequence charts
- ...

- scenario-based language
- visual representation
- “easy” to comprehend
- generalization possible towards automata (states are MSCs)
- widely used in industrial practice

Applications

- requirements specification
(positive, negative scenarios, e.g., CREWS)
- system design and software engineering
- visualization of test cases
(graphical extension to TTCN)
- feature interaction detection
- workflow management systems
- ...

Example



Preliminaries (1)

Definition

Let \mathcal{P} : finite set of ≥ 2 sequential **processes**

\mathcal{C} : finite set of **message contents** ($a, b, c, \dots \in \mathcal{C}$)

Definition

Communication action: $p, q \in \mathcal{P}, p \neq q, a \in \mathcal{C}$

$!(p, q, a)$ “ p sends message a to q ”

$?(p, q, a)$ “ p receives message a sent by q ”

Let Act denote the set of actions

Definition

Let E be a set of events

A **partial order** over E is a relation $\preceq \subseteq E \times E$ such that:

- ① \preceq is reflexive, i.e., $\forall e \in E. e \preceq e$,
- ② \preceq is transitive, i.e., $e \preceq e' \wedge e' \preceq e''$ implies $e \preceq e''$, and
- ③ \preceq is anti-symmetric, i.e., $\forall e, e'. (e \preceq e' \wedge e' \preceq e) \Rightarrow e = e'$.

Definition

Let (E, \preceq) be a poset.

The **Hasse diagram** (E, \lessdot) is defined by:

$$e \lessdot e' \text{ iff } e \preceq e' \text{ and } \neg(\exists e'' \neq e, e'. e \preceq e'' \preceq e')$$

Definition

Let (E, \preceq) be a poset.

A **linearization** of (E, \preceq) is a total order \sqsubseteq such that

$$e \preceq e' \quad \text{implies} \quad e \sqsubseteq e'$$

A linearization is a topological sort of the Hasse diagram of (E, \preceq) .

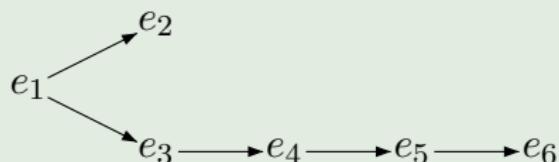
Preliminaries (4)

Example

Let $E = \{e_1, \dots, e_6\}$,

$$\preceq = \{ (e_1, e_2), (e_1, e_3), (e_3, e_4), (e_4, e_5), (e_5, e_6), (e_1, e_4), (e_3, e_5), (e_1, e_5), (e_1, e_6), (e_3, e_6), (e_4, e_6) \}^r \text{ where } R^r \text{ denotes the reflexive closure of } R$$

Hasse diagram:



Linearizations:

- $e_1 e_2 e_3 e_4 e_5 e_6$,
- $e_1 e_3 e_2 e_4 e_5 e_6$,
- $e_1 e_3 e_4 e_2 e_5 e_6$,
- $e_1 e_3 e_4 e_5 e_2 e_6$,
- $e_1 e_3 e_4 e_5 e_6 e_2$

Not a linearization:

- $e_2 e_1 e_3 \dots$, and $e_1 e_4 e_3 \dots$

Message Sequence Chart (MSC) (1)

Definition

An MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

- \mathcal{P} , a finite set of **processes** $\{p_1, p_2, \dots, p_n\}$
- E , a finite set of **events**

$$E = \biguplus_{p \in \mathcal{P}} E_p = \underbrace{E_? \cup E_! \cup E_{\text{loc}}}_{\text{partitioning of } E}$$

- \mathcal{C} , a finite set of **message content**
- $l : E \rightarrow \text{Act}$, a **labelling** function defined by:

$$l(e) = \begin{cases} !(p, q, a) & \text{if } e \in E_p \cap E_! \\ ?(p, q, a) & \text{if } e \in E_p \cap E_? \quad , p \neq q \in \mathcal{P}, a \in \mathcal{C} \\ p(a) & \text{if } e \in E_p \cap E_{\text{loc}} \end{cases}$$

Message Sequence Chart (MSC) (2)

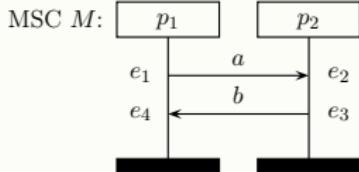
Definition

- $m : E_! \rightarrow E_?$ a bijection (“**matching function**”), satisfying:
 $m(e) = e' \wedge l(e) = !(p, q, a)$ implies $l(e') = ?(q, p, a)$ ($p \neq q, a \in \mathcal{C}$)
- $< \subseteq E \times E$ is a partial order (“**visual order**”) defined by:

$$< = \left(\underbrace{\bigcup_{p \in \mathcal{P}} <_p}_{<_p \text{ is a total order} = \text{"top-to- bottom" order on process } p} \cup \underbrace{\{(e, m(e)) \mid e \in E_!\}}_{\text{communication order } <_c} \right)^*$$

where for relation R , R^* denotes its reflexive and transitive closure.

Example (1)



$M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

$$\begin{array}{lll} \mathcal{P} & = & \{p_1, p_2\} & E_{p_1} = \{e_1, e_4\} \\ E & = & \{e_1, e_2, e_3, e_4\} & E_{p_2} = \{e_2, e_3\} \\ \mathcal{C} & = & \{a, b\} & E_! = \{e_1, e_3\}, E? = \{e_2, e_4\} \end{array}$$

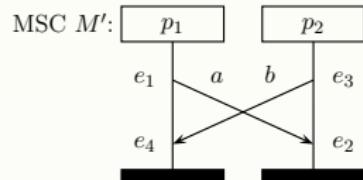
$$\begin{array}{ll} l(e_1) = !(p_1, p_2, a) & m(e_1) = e_2 \\ l(e_2) = ?(p_2, p_1, a) & \\ l(e_3) = !(p_2, p_1, b) & m(e_3) = e_4 \\ l(e_4) = ?(p_1, p_2, b) & \end{array}$$

Ordering at processes: $e_1 <_{p_1} e_4$ and $e_2 <_{p_2} e_3$

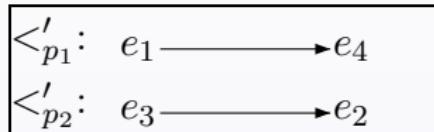
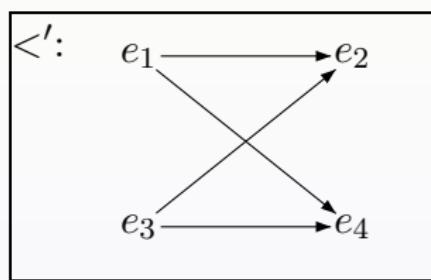
Hasse diagram of $(E, <)$:

Linearizations?

Example (2)

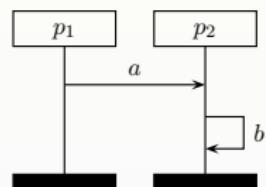


$M' = \underbrace{(\mathcal{P}, E, \mathcal{C}, l, m)}_{\text{as above}}, <'$ with:



Example (3)

Not an MSC:



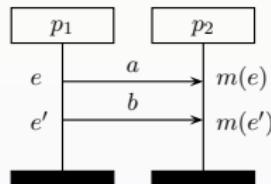
FIFO property

MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ has the *First-In-First-Out* (FIFO) property whenever:

for all $e, e' \in E!$ we have

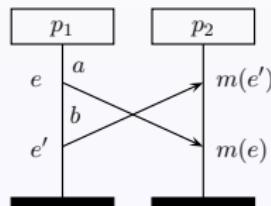
$$e < e' \wedge l(e) = !(p, q, a) \wedge l(e') = !(p, q, b) \text{ implies } m(e) < m(e')$$

i.e., “no message overtaking allowed”



FIFO

$$\begin{aligned} l(e) &= !(p_1, p_2, a) \\ l(e') &= !(p_1, p_2, b) \\ e &< e' \\ \Rightarrow \quad m(e) &< m(e') \end{aligned}$$



non-FIFO

Note:

We assume an MSC to possess the FIFO property, unless stated otherwise!

Definition

Let $\text{Lin}(M)$ = denote the set of linearizations of MSC M .

Lemma: MSCs and their linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of linearizations.

Thus:

$\text{Lin}(M)$ uniquely characterizes M .

Well-formedness

Let $Ch := \{(p, q) \mid p \neq q, p, q \in \mathcal{P}\}$ be a set of **channels** over \mathcal{P} .

We call $w = a_1 \dots a_n \in Act^*$ **proper** if

- ① every receive in w is preceded by a corresponding send, i.e.:
 $\forall (p, q) \in Ch$ and prefix u of w , we have:

$$\underbrace{\sum_{m \in \mathcal{C}} |u|_{!(p,q,m)}}_{\# \text{ sends from } p \text{ to } q} \geq \underbrace{\sum_{m \in \mathcal{C}} |u|_{?(q,p,m)}}_{\# \text{ receipts by } q \text{ from } p}$$

where $|u|_a$ denotes the number of occurrences of action a in u

- ② the **FIFO policy is respected**, i.e.:

$\forall 1 \leq i < j \leq n, (p, q) \in Ch$, and $a_i = !(p, q, m_1)$, $a_j = ?(q, p, m_2)$:

$$\sum_{m \in \mathcal{C}} |a_1 \dots a_{i-1}|_{!(p,q,m)} = \sum_{m \in \mathcal{C}} |a_1 \dots a_{j-1}|_{?(q,p,m)} \quad \text{implies} \quad m_1 = m_2$$

A proper word w is **well-formed** if $\sum_{m \in \mathcal{C}} |w|_{!(p,q,m)} = \sum_{m \in \mathcal{C}} |w|_{?(q,p,m)}$

Properties of well-formedness

Lemma

For any MSC M , $w \in \text{Lin}(M)$ is well-formed.

we use $\text{Lin}(M)$ here as a set of words (and not linearizations)
the word of linearization $e_1 \dots e_n$ equals $\ell(e_1) \dots \ell(e_n)$

From linearizations to posets

Associate to $w = a_1 \dots a_n \in Act^*$ an Act -labelled poset

$$M(w) = (E, \prec, \ell)$$

such that:

- $E = \{1, \dots, n\}$ are the positions in w labelled with $\ell(i) = a_i$
- $\prec = (\prec_{\text{msg}} \cup \bigcup_{p \in \mathcal{P}} \prec_p)^*$ where
 - $i \prec_p j$ if and only if $i < j$ for any $i, j \in E_p$
 - $i \prec_{\text{msg}} j$ if for some $(p, q) \in Ch$ and $m \in \mathcal{C}$ we have:

$$\ell(i) = !(p, q, m) \text{ and } \ell(j) = ?(q, p, m) \text{ and}$$

$$\sum_{m \in \mathcal{C}} |a_1 \dots a_{i-1}|_{!(p, q, m)} = \sum_{m \in \mathcal{C}} |a_1 \dots a_{j-1}|_{?(q, p, m)}$$

Example

construct $M(w)$ for $w = !(r, q, m)!?(p, q, m_1)!?(p, q, m_2)?(q, p, m_1)?(q, p, m_2)?(q, r, m)$

Properties

Relating well-formed words to MSCs

For any well-formed $w \in Act^*$, $M(w)$ is an MSC.

Definition

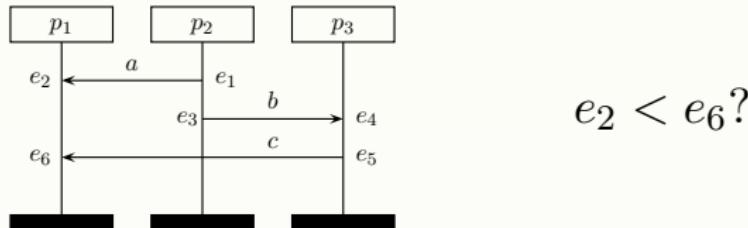
(E, \preceq, ℓ) and (E', \preceq', ℓ') are **isomorphic** if there exists a bijection $f : E \rightarrow E'$ such that $e \preceq e'$ iff $f(e) \preceq' f(e')$ and $\ell(e) = \ell'(f(e))$.

Linearizations yield isomorphic MSCs

For any well-formed $w \in Act^*$ and $w' \in Lin(M(w))$:

$M(w)$ and $M(w')$ are isomorphic.

Visual order vs. possible order



If message b takes much shorter than message a ,
then c might arrive at p_1 before a !

Formally: $<_{p_1} = \{e_6, e_2\}$ is possible but \neq visual order.

When are such situations possible and how to detect them?

Races (1)

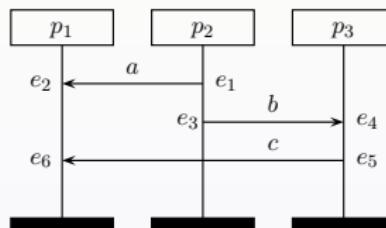
- Let $M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ be an MSC.
- Let $\ll \subseteq E \times E$ be defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e)$$

or $e <_p e'$ and $E_! \cap \{e, e'\} \neq \emptyset$

or $e, e' \in E_p \cap E_?$ and $m^{-1}(e) <_q m^{-1}(e')$

\ll is the “interpreted / possible order” (also called **causal order**)



Example

$$e_1 \ll e_2, \quad e_3 \ll e_4, \quad e_5 \ll e_6, \quad e_1 \ll e_3, \quad e_4 \ll e_5, \quad \neg(e_2 \ll e_6)$$

Races (2)

Definition

MSC M contains **a race** if for some $e, e' \in E_?$:

$$e <_p e' \text{ but } \neg(e \ll^* e')$$

where $\ll^* \subseteq E \times E$ is the reflexive and transitive closure of \ll .

- How to check whether MSC M has a race?

compute \ll^ and compare to $<_p$*

- \ll^* can be computed using **Floyd-Warshall's algorithm**
worst-case time complexity $\mathcal{O}(|E|^3)$, improved here to $\mathcal{O}(|E|^2)$

Races (3)

MSC M has a **race** if $< \not\subseteq \ll^*$ or equivalently:

$$\exists e, e' \in E_? . (e <_p e' \text{ and } e \not\ll^* e')$$

⇒ system implementation based on $<_p$ may cause problems, e.g.,

- ➊ unspecified message reception
- ➋ deadlock situations
- ➌ use content of wrong message

Computing \ll^* : Warshall's algorithm

Algorithm

compute \ll^* and compare with $<$
Warshall's Algorithm

Warshall's Algorithm: input: $R \subseteq X \times X$ where X is a set
output: R^*

Idea:

Consider R and R^* as directed graphs

There is an edge $x \Rightarrow y$ in R^* iff there is a (possibly empty) path

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots \rightarrow x_n = y \text{ in } R$$

(our setting: $X = E, R = \ll, R^* = \ll^*$)

Warshall's algorithm

- assume: vertices are numbered $\{1, 2, \dots, n\}$ where $n = |E|$
- for $j \in \{1, \dots, n+1\}$ define relation \xrightarrow{j} as follows:
 $x \xrightarrow{j} y$ iff \exists path in R from x to y such that all vertices on the path ($\neq x, y$) have a smaller number than j
- Then:
 - (1) $x \xrightarrow{} y$ iff $x \xrightarrow{n+1} y$
 - (2) $x \xrightarrow{1} y$ iff $x = y$ or $x \ll y$
 - (3) $x \xrightarrow{y+1} z$ iff $x \xrightarrow{y} z$ or $x \xrightarrow{y} y \xrightarrow{y} z$
- Algorithm: determine the relations $\xrightarrow{1}, \dots, \xrightarrow{n}, \xrightarrow{n+1}$ iteratively using properties (2) + (3); Result is then given by (1).
- Store \xrightarrow{i} in a boolean matrix C
- Postcondition: $C[x, y] = \text{true}$ iff $(x, y) \in R^*$
- Precondition: $\forall x, y \in X . C[x, y] = \text{false}$

Warshall's algorithm (1)

for $x := 1$ to n do

 for $y := 1$ to n do

$$C[x, y] := (x = y \text{ or } \underbrace{(x, y) \in R}_{x \ll y})$$

/* loop invariant

/* after the j -th iteration of outermost loop it holds: $C[x, y]$ iff $x \xrightarrow{j+1} y$ */

for $y := 1$ to n do

 for $x := 1$ to n do

 if $C[x, y]$ then

 for $z := 1$ to n do

 if $C[y, z]$ then

$C[x, z] := \text{true}$

Correctness and complexity

Lemma: correctness

After j iterations: $x \xrightarrow{j+1} y$ iff $C[x, y] = 1$.

Proof:

if: trivial; *only if*: by induction on j .

Complexity

Time complexity of Warshall's algorithm : $\mathcal{O}(n^3)$ where $n = |X|$

Proof:

follows from the fact that each loop has at most n iterations.

Warshall's algorithm determines R^* for **any** binary relation R .

Recall: our interest is in determining R^* for $R = \ll$

Using some properties of \ll the complexity can be improved.

Exploit that for \ll :

- \ll is acyclic (as it is a partial order)
- number of **immediate predecessors** of $e \in E$ under \ll is at most two **(why?)**

Recall that e is an **immediate** predecessor of e' (under \ll) if:

$$e \ll e' \text{ and } \neg(\exists e'' \notin \{e, e'\}. e \ll e'' \ll e')$$

Body of the algorithm for detecting races now becomes:

```
for  $e := 1$  to  $n$  do
    for  $e' := e - 1$  downto 1 do
        if  $C[e', e]$  then
            for  $e'' := 1$  to  $e' - 1$  do
                if  $C[e'', e']$  then
                     $C[e'', e] := \text{true}$ 
```

```
for  $e'' := 1$  to  $e' - 1$  do
    if  $C[e'', e']$  then
         $C[e'', e] := \text{true}$ 
```

this part is executed for (e, e') only if e' is an immediate predecessor of e , i.e., **number of loops per outermost iteration is $\leq 2 \cdot n \implies$ time complexity $\mathcal{O}(n^2)$**