Theoretical Foundations of the UML

Lecture 2: Sequence Diagrams

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/um109100/

16. Oktober 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/31

@ 70s - 80s: often used informally

@ 1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

@ 1992 - 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

@ 1996: MSC’96 standard
@ 2000: MSC 2000, time, data, o-o features
@ 2005: MSC 2004 ...

Joost-Pieter Katoen Theoretical Foundations of the UML 2/31

Variants of MSCs

UML sequence diagrams

©

©

(instantiations of) use cases

©

triggered MSCs
@ netcharts (= Petri net + MSC)

STAIRS

(]

©

Live sequence charts

Joost-Pieter Katoen Theoretical Foundations of the UML 3/31

Characteristics

@ scenario-based language

@ visual representation

@ ‘“easy” to comprehend

@ generalization possible towards automata (states are MSCs)

@ widely used in industrial practice

Joost-Pieter Katoen Theoretical Foundations of the UML 4/31

Applications

@ requirements specification
(positive, negative scenarios, e.g., CREWS)

©

system design and software engineering

@ visualization of test cases
(graphical extension to TTCN)

feature interaction detection

©

o workflow management systems

Joost-Pieter Katoen Theoretical Foundations of the UML 5/31

Example

P1 D2 P3

Y
S

A

A

A

Joost-Pieter Katoen Theoretical Foundations of the UML

Preliminaries (1)

Definition

Let “P: finite set of > 2 sequential processes
C: finite set of message contents (a,b,c,... € C)

Definition
Communication action: p,q € P, p#q, a € C

(p,q,a) “p sends message a to ¢”

?(p,q,a) “p receives message a sent by ¢”
Let Act denote the set of actions

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Preliminaries (2)

Definition

Let E be a set of events
A partial order over FE is a relation < C E x E such that:

O =< is reflexive, i.e., Ve € E.e < e,
(2
o

is transitive, i.e., e < & A e < e’ implies e < €”, and

=
= is anti-symmetric, i.e., Ve,e'. (e X N e <e)=e=¢.

o

Let (E, <) be a poset.
The Hasse diagram (F, <) is defined by:

e<e iffe e and ~(Fe” #e,e.e <’ <€)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/31

Preliminaries (3)

Definition
Let (E, =) be a poset.
A linearization of (F, <) is a total order C such that

e=<¢ implies eC ¢

A linearization is a topological sort of the Hasse diagram of (F, <).

Joost-Pieter Katoen Theoretical Foundations of the UML 9/31

Preliminaries (4)

Let £ = {61,...,66},

= = { (e1,e2),(e1,€3),(es,€4),(ea,€5), (e5,€6), (€1,€4),
(es,e5), (e1,€5), (e1,¢€6), (€3, €6), (€4, €6)
}" where R" denotes the reflexive closure of R

Linearizations:
) ® €1€2€3€4€65€¢,
Hasse diagram: e1e36e2e4e5e4,
€1€3€4€2€5€6,
€1€3€4€5€2€6,

°
°
°
® C1€3€4€5€6€9

61/
\

Not a linearization:
® eseies..., and ejeq€g. ..

Joost-Pieter Katoen Theoretical Foundations of the

Message Sequence Chart (MSC) (1)

An MSC M = (P, E,C,l,m, <) with:
@ P, a finite set of processes {p1,p2,...,pn}

@ F. a finite set of events

E=|H E,=E: UE U B,
—_————

peP partitioning of £

@ C, a finite set of message content

@ [: E — Act, a labelling function defined by:

!(p’q’a) if ee€ Ep N E)
l(e): ?(p7Q7a) if e€ E,NE, ,pEqEP,acC
p(a) if e€ E,N Eoc

o

Joost-Pieter Katoen Theoretical Foundations of the UML 11/31

Message Sequence Chart (MSC) (2)

@ m: E) — E> a bijection (“matching function”), satisfying:

m(e) =€ Al(e) =!(p,q,a) implies I(e') =?(q,p,a) (p#q, a €C)

@ < CFE x E is a partial order (“visual order”) defined by:

<= U <p U {(e,m(e)) |e€e B})T
pEP

——

<p is a total order = “top-to- communication order <.

bottom” order on process p

where for relation R, R* denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Example (1)

M = (P,E,C,l,m,<) with:
MSC M: [m) P = {p1,p2} E, ={e1,e4}
@ a e E = {ei, ez e3,es} E,, ={eze3}
es b e C = {ab} Ey={ey,es}, Er = {ea, e4
| |
l(e1) =(p1,p2,0a) m(e1) = eg
l(e2) =?(p2,p1,a)
l(es) = (p2,p1,b) m(es) = ey
1(64) :7(p17p2,b)

Ordering at processes: e; <p, e4 and e <;, €3
Hasse diagram of (F, <):

€1 »Co »C3 »CA

Linearizations?

Joost-Pieter Katoen Theoretical Foundations of the UML 13/31

Example (2)

MSC M":

M' = (P,E,C,l,m,<’) with:
~————

as above

€]—— €9

€3—— €4

€l— €4

€3——€9

€l— €9

€3———¢€4

Joost-Pieter Katoen

Theoretical Foundations of the UML

Example (3)

Not an MSC:
y4% P2

a

b

Joost-Pieter Katoen Theoretical Foundations of the UML

FIFO property

MSC M = (P, E,C,l,m,<) has the First-In-First-Out (FIFO) property
whenever:
for all e, e’ € E) we have

e< e Nl(e) =Vp,q,a) Nl(e') =(p, q,b) implies m(e) < m(e)

i.e., “no message overtaking allowed”

p1 P2 l(e) = !(plaPQaa)
e ¢ m(e) l(e/) = !(p17p27 b)

S
—
e
o

[] []

¢ :>< m(e) Hon-FIFO We assume an MSC to

¢ mie) possess the FIFO property,
e — unless stated otherwise!

Joost-Pieter Katoen Theoretical Foundations of the UML 16/31

Linearizations

Definition
Let Lin(M) = denote the set of linearizations of MSC M.

Lemma: MSCs and their linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of
linearizations.

Lin(M) uniquely characterizes M.

Joost-Pieter Katoen Theoretical Foundations of the UML 17/31

Well-formedness

Let Ch:={(p,q) | p# q, p,q € P} be a set of channels over P.

We call w =ay...a, € Act™ proper if

© every receive in w is preceded by a corresponding send, i.e.:
Y(p, q) € Ch and prefix u of w, we have:

Z [ulip,gm) = Z |ul2(qpm)

meC meC

sends from p to q # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

© the FIFO policy is respected, i.e.:
V1<i< j <, (p7 Q) € Ch7 and a; = !(p7Q7m1)7 aj = ?(Q7pv m2):

E |a1 000 ai_1|!(p)q)m) = E |0,1 600 aj_1|7(q)p)m) implies mip = ma
meC meC

A proper word w is well-formed if Y . [w]i(p,q.m) = D mec |Wl2(g,p

Joost-Pieter Katoen Theoretical Foundations of the UML 18/31

Properties of well-formedness

For any MSC M, w € Lin(M) is well-formed.

we use Lin(M) here as a set of words (and not linearizations)
the word of linearization ey ... e, equals £(e1) ... £4(ey)

Joost-Pieter Katoen Theoretical Foundations of the UML 19/31

From linearizations to posets

Associate to w = aq ...a, € Act™ an Act-labelled poset
M(w) = (E,<,?)
such that:
@ E={1,...,n} are the positions in w labelled with £(i) = a;

E3
0 <= <<msg U UpeP <p) where
e i <, jif and only if ¢ < j for any 4,5 € E),
o i <msg j if for some (p,q) € Ch and m € C we have:

((i) =(p,q,m) and £(j) = (g, p,m) and

Z |a1 e ai—1|!(p,q,m) = Z |a’1 e aj—1|?(q,p,M)

meC meC

construct M (w) for w =!(r, g, m)!(p, g, m1)\(p, ¢, m2)?(q, p,m1)?(q, p,m2)?(q,7,Mm)

Joost-Pieter Katoen Theoretical Foundations of the UML 20/31

Properties

Relating well-formed words to MSCs
For any well-formed w € Act*, M(w) is an MSC.

Definition

(E,=<,0) and (E', =<', ¢') are isomorphic if there exists a bijection
f:E — E' such that e X €' iff f(e) X' f(¢') and £(e) = V' (f(e)).

Linearizations yield isomorphic MSCs
For any well-formed w € Act* and w’ € Lin(M (w)):

M (w) and M (w') are isomorphic.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/31

Visual order vs. possible order

e ey
[b €4 eo < 66?

€6 &5

If message b takes much shorter than message a,
then ¢ might arrive at p; before a!

Formally: <,,, = {eg, e2} is possible but # visual order.

When are such situations possible and how to detect them?

Joost-Pieter Katoen Theoretical Foundations of the UML 22/31

Races (1)

o Let M = (P,E,C,l,m,<) be an MSC.
@ Let < C F x E be defined by:

e<e if ¢ =m(e)
or e<pe and By N {e,¢'} # &
or e €E,NE; and m™(e) <, m(e)

< is the “interpreted / possible order” (also called causal order)

[| [,] [» |

€9 e €1

€3 €4

€6 €5

e1<Key, e3<Kes, e5<Ke, e <Kes es<Les, (ea<Kep)

Joost-Pieter Katoen Theoretical Foundations of the UML 23/31

Definition

MSC M contains a race if for some e, e’ € Fo:

e <p € but ~(e <*¢€)

where <* C FE x E is the reflexive and transitive closure of <.

@ How to check whether MSC M has a race?
compute <* and compare to <,

@ <* can be computed using Floyd-Warshall’s algorithm
worst-case time complexity O(|E|?), improved here to O(|E|?)

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

Races (3)

MSC M has a race if < € <* or equivalently:
Je,e' € By . (e <, ¢ and e £ €')

= system implementation based on <, may cause problems, e.g.,
© unspecified message reception
© deadlock situations

© use content of wrong message

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

Computing <*: Warshall's algorithm

Algorithm

compute <* and compare with <
—_——

Warshall’s Algorithm

Warshall’s Algorithm: input: R C X x X where X is a set
output: R*

Consider R and R* as directed graphs

There is an edge x = y in R* iff there is a (possibly empty) path
rT=T9)—> XL > Tyg—>... > Ty, =yin R

(our setting: X = F,R = <, R* = <*)

vy

Joost-Pieter Katoen Theoretical Foundations of the UML 26/31

Warshall's algorithm

@ assume: vertices are numbered {1,2,...,n} where n = |E|

o for j € {1,...,n+1} define relation =L+ as follows:
z =L y iff 4 path in R from = to y such that all vertices
on the path (# z,y) have a smaller number than j
® Then: (1) z=y iff Tgy
(2) :L*:1>y iff z=yorz<y

+1 .
3 252 iff 252 or 1= y=L
. . . 1 1. .
o Algorithm: determine the relations =, ..., ==, ol iteratively

using properties (2) + (3); Result is then given by (1).
@ Store == in a boolean matrix C
@ Postcondition: C[z,y] = true iff (z,y) € R*
@ Precondition: Vz,y € X . C[z,y] = false RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 27/31

Warshall's algorithm (1)

for x :=1ton do
for y := 1 ton do
Clz,y] == (x =y or (x,y) € R)
~—_———
<Ly
/* loop invariant &
/* after the j-th iteration of outermost loop it holds: C[z,y] iff x £ Yy 2
for y := 1 ton do
for x :=1ton do
if Cfz,y] then
for z:=1ton do
if Cy, z] then
Clz, z] :== true

Joost-Pieter Katoen Theoretical Foundations of the UML 28/31

Correctness and complexity

Lemma: correctness

After j iterations: Rt y iff Clz,y] = 1.

if: trivial; only if by induction on j. l

Time complexity of Warshall’s algorithm : O(n3) where n = | X|

follows from the fact that each loop has at most n iterations. l

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

Efficiency improvement (1)

Warshall’s algorithm determines R* for any binary relation R.
Recall: our interest is in determining R* for R =<
Using some properties of < the complexity can be improved.

Exploit that for <:

@ < is acyclic (as it is a partial order)

@ number of immediate predecessors of e € F
under < is at most two (why?)

Recall that e is an immediate predecessor of €’ (under <) if:

e< e and =(3e" ¢ {e,'}. e < e’ <€)
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

Efficiency improvement)

Body of the algorithm for detecting races now becomes:

fore:=1ton do
for ¢/ := e — 1 downto 1 do
if Cle, e] then
fore” :==1toe’ —1do
if Cle”, '] then
Cle", €] ;= true

for e’ :=1toe —1do
if Cle”, €] then
Cle”,e] .= true

this part is executed for (e,e’) only if €’ is an immediate predecessor of
e, i.e., number of loops per outermost iteration is < 2 - n = time
complexity O(n?) RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 31/31

