
Theoretical Foundations of the UML
Lecture 2: Sequence Diagrams

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

16. Oktober 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/31

History

70s - 80s: often used informally

1992: first version of MSCs standardized by CCITT (currently
ITU) Z.120

1992 - 1996: many extensions, e.g., high-level + formal semantics
(using process algebras)

1996: MSC’96 standard

2000: MSC 2000, time, data, o-o features

2005: MSC 2004 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 2/31

Variants of MSCs

UML sequence diagrams

(instantiations of) use cases

triggered MSCs

netcharts (= Petri net + MSC)

STAIRS

Live sequence charts

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 3/31

Characteristics

scenario-based language

visual representation

“easy” to comprehend

generalization possible towards automata (states are MSCs)

widely used in industrial practice

Joost-Pieter Katoen Theoretical Foundations of the UML 4/31

Applications

requirements specification
(positive, negative scenarios, e.g., CREWS)

system design and software engineering

visualization of test cases
(graphical extension to TTCN)

feature interaction detection

workflow management systems

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 5/31

Example

p1 p2 p3

a
b

c

d

e

Joost-Pieter Katoen Theoretical Foundations of the UML 6/31

Preliminaries (1)

Definition
Let P: finite set of ≥ 2 sequential processes

C: finite set of message contents (a, b, c, . . . ∈ C)

Definition
Communication action: p, q ∈ P, p �= q, a ∈ C

!(p, q, a) “p sends message a to q”

?(p, q, a) “p receives message a sent by q”

Let Act denote the set of actions

Joost-Pieter Katoen Theoretical Foundations of the UML 7/31

Preliminaries (2)

Definition
Let E be a set of events
A partial order over E is a relation � ⊆E × E such that:

1 � is reflexive, i.e., ∀e ∈ E. e � e,
2 � is transitive, i.e., e � e′ ∧ e′ � e′′ implies e � e′′, and
3 � is anti-symmetric, i.e., ∀e, e′. (e � e′ ∧ e′ � e) ⇒ e = e′.

Definition
Let (E,�) be a poset.
The Hasse diagram (E,�) is defined by:

e� e′ iff e � e′ and ¬(∃e′′ �= e, e′. e � e′′ � e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/31

Preliminaries (3)

Definition
Let (E,�) be a poset.
A linearization of (E,�) is a total order
 such that

e � e′ implies e
 e′

A linearization is a topological sort of the Hasse diagram of (E,�).

Joost-Pieter Katoen Theoretical Foundations of the UML 9/31

Preliminaries (4)

Example
Let E = {e1, . . . , e6},

� = { (e1, e2), (e1, e3), (e3, e4), (e4, e5), (e5, e6), (e1, e4),
(e3, e5), (e1, e5), (e1, e6), (e3, e6), (e4, e6)

}r where Rr denotes the reflexive closure of R

Hasse diagram:

e1

e2

e3 e4 e5 e6

Linearizations:
• e1e2e3e4e5e6,
• e1e3e2e4e5e6,
• e1e3e4e2e5e6,
• e1e3e4e5e2e6,
• e1e3e4e5e6e2

Not a linearization:
• e2e1e3 . . ., and e1e4e3 . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 10/31

Message Sequence Chart (MSC) (1)

Definition
An MSC M = (P, E, C, l,m,<) with:

P, a finite set of processes {p1, p2, . . . , pn}
E, a finite set of events

E =
⊎
p∈P

Ep = E? ·∪ E! ·∪ Eloc︸ ︷︷ ︸
partitioning of E

C, a finite set of message content
l : E → Act , a labelling function defined by:

l(e) =




!(p, q, a) if e ∈ Ep ∩ E!

?(p, q, a) if e ∈ Ep ∩ E?

p(a) if e ∈ Ep ∩ Eloc

, p �= q ∈ P, a ∈ C

Joost-Pieter Katoen Theoretical Foundations of the UML 11/31

Message Sequence Chart (MSC) (2)

Definition
m : E! → E? a bijection (“matching function”), satisfying:

m(e) = e′ ∧ l(e) = !(p, q, a) implies l(e′) = ?(q, p, a) (p �= q, a ∈ C)

< ⊆E × E is a partial order (“visual order”) defined by:

< =
(⋃

p∈P
<p

︸ ︷︷ ︸
<p is a total order = “top-to-
bottom” order on process p

∪ {(e,m(e)) | e ∈ E!}
︸ ︷︷ ︸

communication order <c

)∗

where for relation R, R∗ denotes its reflexive and transitive closure.

Joost-Pieter Katoen Theoretical Foundations of the UML 12/31

Example (1)

p1 p2

a

b

MSC M :

e1 e2

e3e4

M = (P , E, C, l,m,<) with:
P = {p1, p2} Ep1 = {e1, e4}
E = {e1, e2, e3, e4} Ep2 = {e2, e3}
C = {a, b} E! = {e1, e3}, E? = {e2, e4

l(e1) = !(p1, p2, a) m(e1) = e2
l(e2) = ?(p2, p1, a)
l(e3) = !(p2, p1, b) m(e3) = e4
l(e4) = ?(p1, p2, b)

Ordering at processes: e1 <p1 e4 and e2 <p2 e3
Hasse diagram of (E,<):

e1 e2 e3 e4

Linearizations?

Joost-Pieter Katoen Theoretical Foundations of the UML 13/31

Example (2)

p1 p2

a b

MSC M ′:

e1

e2

e3

e4

M ′ = (P, E, C, l,m︸ ︷︷ ︸
as above

, <′) with:

e1

e3

e2

e4

<′
c:

e1

e3

e4

e2

<′
p1 :

<′
p2 :

e1

e3

e2

e4

<′:

Joost-Pieter Katoen Theoretical Foundations of the UML 14/31

Example (3)

Not an MSC:
p1 p2

a

b

Joost-Pieter Katoen Theoretical Foundations of the UML 15/31

FIFO property

MSC M = (P, E, C, l,m,<) has the First-In-First-Out (FIFO) property
whenever:
for all e, e′ ∈ E! we have

e < e′ ∧ l(e) = !(p, q, a) ∧ l(e′) = !(p, q, b) implies m(e) < m(e′)

i.e., “no message overtaking allowed”

p1 p2

a

b
e

e′
m(e)

m(e′)

p1 p2

a

b

e

e′

m(e′)

m(e)

FIFO

non-FIFO

l(e) = !(p1, p2, a)
l(e′) = !(p1, p2, b)
e < e′

⇒ m(e) < m(e′)

Note:
We assume an MSC to
possess the FIFO property,
unless stated otherwise!

Joost-Pieter Katoen Theoretical Foundations of the UML 16/31

Linearizations

Definition
Let Lin(M) = denote the set of linearizations of MSC M .

Lemma: MSCs and their linearizations are interchangeable
There is a one-to-one correspondence between an MSC and its set of
linearizations.

Thus:
Lin(M) uniquely characterizes M .

Joost-Pieter Katoen Theoretical Foundations of the UML 17/31

Well-formedness

Let Ch := {(p, q) | p �= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑
m∈C

|u|!(p,q,m)

︸ ︷︷ ︸
sends from p to q

�
∑
m∈C

|u|?(q,p,m)

︸ ︷︷ ︸
receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 � i < j � n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 18/31

Properties of well-formedness

Lemma
For any MSC M , w ∈ Lin(M) is well-formed.

we use Lin(M) here as a set of words (and not linearizations)
the word of linearization e1 . . . en equals �(e1) . . . �(en)

Joost-Pieter Katoen Theoretical Foundations of the UML 19/31

From linearizations to posets

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, �)

such that:
E = {1, . . . , n} are the positions in w labelled with �(i) = ai

≺=
(
≺msg ∪ ⋃

p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

�(i) = !(p, q,m) and �(j) = ?(q, p,m) and∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m)

Example
construct M(w) for w = !(r, q,m)!(p, q,m1)!(p, q,m2)?(q, p,m1)?(q, p,m2)?(q, r,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 20/31

Properties

Relating well-formed words to MSCs
For any well-formed w ∈ Act∗, M(w) is an MSC.

Definition
(E,�, �) and (E′,�′, �′) are isomorphic if there exists a bijection
f : E → E′ such that e � e′ iff f(e) �′ f(e′) and �(e) = �′(f(e)).

Linearizations yield isomorphic MSCs
For any well-formed w ∈ Act∗ and w′ ∈ Lin(M(w)):

M(w) and M(w′) are isomorphic.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/31

Visual order vs. possible order

p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

e2 < e6?

If message b takes much shorter than message a,
then c might arrive at p1 before a!

Formally: <p1 = {e6, e2} is possible but �= visual order.

When are such situations possible and how to detect them?

Joost-Pieter Katoen Theoretical Foundations of the UML 22/31

Races (1)

Let M = (P, E, C, l,m,<) be an MSC.
Let � ⊆ E × E be defined by:

e � e′ iff e′ = m(e)
or e <p e

′ and E! ∩ {e, e′} �= ∅

or e, e′ ∈ Ep ∩ E? and m−1(e) <q m
−1(e′)

� is the “interpreted / possible order” (also called causal order)
p1 p2 p3

a

b

c

e1e2

e3 e4

e5e6

Example
e1 � e2, e3 � e4, e5 � e6, e1 � e3, e4 � e5, ¬(e2 � e6)

Joost-Pieter Katoen Theoretical Foundations of the UML 23/31

Races (2)

Definition
MSC M contains a race if for some e, e′ ∈ E?:

e <p e
′ but ¬(e �∗ e′)

where �∗ ⊆ E × E is the reflexive and transitive closure of �.

How to check whether MSC M has a race?

compute �∗ and compare to <p

�∗ can be computed using Floyd-Warshall’s algorithm
worst-case time complexity O(|E|3), improved here to O(|E|2)

Joost-Pieter Katoen Theoretical Foundations of the UML 24/31

Races (3)

MSC M has a race if < �⊆ �∗ or equivalently:

∃e, e′ ∈ E? . (e <p e
′ and e ��∗ e′)

⇒ system implementation based on <p may cause problems, e.g.,
1 unspecified message reception
2 deadlock situations
3 use content of wrong message

Joost-Pieter Katoen Theoretical Foundations of the UML 25/31

Computing �∗: Warshall’s algorithm

Algorithm
compute �∗︸ ︷︷ ︸

Warshall’s Algorithm

and compare with <

Warshall’s Algorithm: input: R ⊆ X ×X where X is a set
output: R∗

Idea:
Consider R and R∗ as directed graphs

There is an edge x ⇒ y in R∗ iff there is a (possibly empty) path

x = x0 → x1 → x2 → . . . → xn = y in R

(our setting: X = E,R = � , R∗ = �∗)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/31

Warshall’s algorithm

assume: vertices are numbered {1, 2, . . . , n} where n = |E|
for j ∈ {1, . . . , n+1} define relation j

=⇒ as follows:
x

j
=⇒ y iff ∃ path in R from x to y such that all vertices

on the path (�= x, y) have a smaller number than j

Then: (1) x =⇒ y iff x
n+1
=⇒ y

(2) x
1

=⇒ y iff x = y or x � y

(3) x
y+1
=⇒ z iff x

y
=⇒ z or x

y
=⇒ y

y
=⇒ z

Algorithm: determine the relations 1
=⇒, . . . ,

n
=⇒,

n+1
=⇒ iteratively

using properties (2) + (3); Result is then given by (1).

Store i
=⇒ in a boolean matrix C

Postcondition: C[x, y] = true iff (x, y) ∈ R∗

Precondition: ∀x, y ∈ X . C[x, y] = false

Joost-Pieter Katoen Theoretical Foundations of the UML 27/31

Warshall’s algorithm (1)

for x := 1 to n do
for y := 1 to n do

C[x, y] := (x = y or (x, y) ∈ R︸ ︷︷ ︸
x�y

)

/* loop invariant */
/* after the j-th iteration of outermost loop it holds: C[x, y] iff x

j+1
=⇒ y */

for y := 1 to n do
for x := 1 to n do

if C[x, y] then
for z := 1 to n do

if C[y, z] then
C[x, z] := true

Joost-Pieter Katoen Theoretical Foundations of the UML 28/31

Correctness and complexity

Lemma: correctness

After j iterations: x j+1
=⇒ y iff C[x, y] = 1.

Proof:
if: trivial; only if: by induction on j.

Complexity
Time complexity of Warshall’s algorithm : O(n3) where n = |X|

Proof:
follows from the fact that each loop has at most n iterations.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/31

Efficiency improvement [Alur et al. ’96] (1)

Warshall’s algorithm determines R∗ for any binary relation R.

Recall: our interest is in determining R∗ for R =�
Using some properties of � the complexity can be improved.

Exploit that for �:
� is acyclic (as it is a partial order)

number of immediate predecessors of e ∈ E
under � is at most two (why?)

Recall that e is an immediate predecessor of e′ (under �) if:

e � e′ and ¬(∃e′′ /∈ {e, e′}. e � e′′ � e′)

Joost-Pieter Katoen Theoretical Foundations of the UML 30/31

Efficiency improvement [Alur et al. ’96] (2)

Body of the algorithm for detecting races now becomes:

for e := 1 to n do
for e′ := e− 1 downto 1 do

if C[e′, e] then
for e′′ := 1 to e′ − 1 do

if C[e′′, e′] then
C[e′′, e] := true

for e′′ := 1 to e′ − 1 do
if C[e′′, e′] then

C[e′′, e] := true

this part is executed for (e, e′) only if e′ is an immediate predecessor of
e, i.e., number of loops per outermost iteration is ≤ 2 · n =⇒ time
complexity O(n2)

Joost-Pieter Katoen Theoretical Foundations of the UML 31/31

